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Inter-process Communication 

Objectives 

 After completing this unit you will be able to: 

• Understand why User mode processes need to 
synchronize themselves and exchange data. 

• Identify the main mechanisms that UNIX makes 
available for inter-process communication. 

• Identify the three elements of the Sys V IPC 
communication standard. 

• Make decisions regarding the type of interprocess 
communication that would best fit in a particular 
software design. 
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Interprocess Communications 

• Interprocess communication refers to the exchange of 
data between two different processes running on a 
single system. The primary interprocess 
communication mechanisms that will be discussed in 
this chapter are the following: 

− Pipes 

− FIFOs 

− IPC communications 

− Sys V Socket based communications 

• Note that UNIX signals are often used for 
interprocess communication, but they will not be 
described in the current chapter since this topic was 
discussed in Chapter 2. 
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Communication via Files 

• The two simplest process communication mechanisms 
are arguably pipes and FIFOs. 

• Both of these mechanisms involve file objects in the 
Kernel. They are handled in a first-in, first-out order 
(FIFO).  

• Since the data flow is handled sequentially, no file 
positioning is allowed with pipes and FIFOs. 

• As we will see, the major difference between pipes 
and FIFOs is that communication channels related to 
pipes are anonymous, whereas channels associated 
with a FIFO have a name. 

• The next few pages will focus on those two 
communication mechanisms so that you can identify 
where to use pipes instead of FIFOs, and vice versa. 
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Pipes 

• Pipes are known as the oldest communication 
mechanism under UNIX. They can be used on all 
UNIX operating systems, so there are usually very 
few portability problems involved with this method. 

• Pipes only provide half-duplex communication, so 
information flows only one way. Another 
disadvantage is that they can only be used by 
processes that have a common ancestor. 

• In UNIX/Linux, a pipe is used when we execute the 
following command: 
ls | more 
 

• In the previous example, the two executed processes 
are linked together by a pipe. The standard output of 
the first process is sent to the pipe, which sends the 
data to the input of the second process. Other shell 
commands involving the “<,>,>>” characters also 
work in a similar fashion. 

• In a shell, pipes are made possible since the shell is 
the common ancestor of the two processes. The shell 
is forked the first time for the “ls” command and a 
second time for the “more” command. 
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Programming With Pipes 

• A pipe is created by calling the pipe() function in the 
following way: 

Int fd[2]; 
if (pipe(fd) < 0) 
 printf(“Error!\n”); 
 

• Using a pipe involves the following aspects: 

− An array for two file descriptors must first be created. 

− The pipe() function is invoked. This returns two valid file 
descriptors in the array given as the argument. The input of 
the first file descriptor (fd[0]) is the output of the second file 
descriptor (fd[1]). 

− Test the return value of the pipe() function. A negative value 
indicates an error. 

− Close the file descriptors before the end of the process. 
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Kernel 

Pipe 
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Programming With Pipes 

• A pipe like the one that we have just created in the 
previous example is useless. In order to do be 
significantly usable, a fork() must be invoked after 
the pipe() function has been called. This allows two 
processes to communicate together.  

• After a fork, the pipe would look like the following: 

 

 

 

 

 

 

 

 

 

• The pipe is really made possible by the Kernel. It can 
be viewed as a mechanism existing inside the Kernel 
and providing access points (file descriptors). 

• The resulting file descriptors may be read and 
written as we usually do for a normal file descriptor. 

Parent User Process 
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Pipe Data Structures 

• Since the Kernel is the element making pipes possible, 
some Kernel data structures are associated with this 
type of operation. 

− Since the read() and write() functions have access to the file 
descriptors returned by the pipe() function, the Linux Kernel 
must create an inode object associated with the pipe.  

− The inode data structure has a field named i_pipe, which is a 
pointer to a data structure pipe_inode_info. Needless to say, 
this structure is only usable in a context where a pipe is used. 
It contains the address of a page frame acting as a buffer 
containing data written to the pipe, a lock flag, a wait queue, 
and flags used by processes reading from or writing to the 
pipe. 

− Two file objects (one for the read access and the other for the 
write access) must be created as well. Each file object points 
to the same inode object.  

• Note that the i_size field in the inode object contains 
the number of bytes currently stored in the pipe 
buffer. This is also known as the pipe size. 

• The Kernel does not allow two accesses to the pipe 
buffer at the same time.   

− This measure is taken in order to avoid race conditions. 

− Pipe operations must also be atomic (POSIX standard). 

− Write operation cannot be executed when the buffer is full. 
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Pipe Kernel Implementation 

• A pipe is implemented in the Linux Kernel as a 
Virtual File System object (we will see in the next 
chapter what is a VFS object). A VFS object 
representing a pipe does not have any data associated 
to it on the physical disk. 

• The pipe() function that we have seen previously is a 
libc stub for the system call associated with the 
sys_pipe() Kernel function. 

− We can take a look at the implementation of the sys_pipe() 
function in arch/i386/kernel/sys_i386.c. 

• The sys_pipe() function calls the do_pipe() Kernel 
function: 

− do_pipe() is the function that allocated the file objects and 
file descriptors for the read and write channel of the pipe. 

− It calls the get_pipe_inode() function in order to associate an 
inode object to the current pipe. This also associates a page 
frame for pipe buffering, and it stores its address in the base 
field of the pipe_inode_info structure. 

− A dentry object is allocated in order to tie together the two 
file objects and the inode object. 

• If no errors occurred during the sys_pipe() function, 
the two file descriptors are returned to the User mode 
process. Notice that this is accomplished with the 
copy_to_user() Kernel function. 
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FIFOs 

• Pipes have the drawback of being only usable with 
two processes that come from a common ancestor. 
There is no way two unrelated processes might 
communicate together by using a pipe. 

• This is a major issue for applications designed under 
the client-server model.  In this case, a client 
application that has just been started by the user 
would not be able to connect to the server, unless the 
server was started at the same time, from the same 
parent process. 

• FIFOs are the answer to this problem. They operate 
with the following aspects: 

− FIFOs are a special file type under UNIX operating systems. 

− They have a disk inode but they don’t take space on disks. 

− Any process can access them, since it appears on the 
directory tree as a file with a specific filename. 

− Just like pipes, data written to a FIFO is stored in a buffer 
located in memory. This fast temporary storage is therefore 
much more efficient than storing data on temporary disk 
files. 

− Client-server designs are much more easily implemented 
with this mechanism. A client can use the input FIFO of the 
server in order to issue requests, and the server writes the 
resulting data in the input FIFO of each client. 
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Programming With FIFOs 

• From the perspective of User space programs, FIFOs 
are usually created with the mkfifo() function. This 
function, in conformity with the POSIX standard, 
invokes the mknod() system call in order to 
communicate with the Kernel. 

•  The arguments of this system call are the path and 
name of the file to create or use as the FIFO, along 
with the value S_IFIFO and the file permissions in 
the flag field. 

• After it is created, the FIFO can be accessed with the 
same functions as pipes, namely the open(), read(), 
write() and close() calls.  

− The VFS Kernel subsystem determines if these functions are 
called in the context of a FIFO. 

− The VFS adapts file operations so that they can make sense 
on a FIFO. Otherwise, the file would be treated as a normal 
file located on the filesystem, and errors would result. When 
the FIFO is opened, the i_op field (which describes the 
possible operations on the current file) is set to the address of 
the fifo_inode_operations table.  

− A process may open a FIFO for reading, writing, or both at 
the same time. 

• FIFOs use the same data structures as pipes. 
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Programming With FIFOs 

• FIFOs may be used under a client-server model as in 
the following: 
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File Operations on Pipes and FIFOs 

• The file and inode objects contain a field called f_op 
and i_op, respectively, which determines which file 
operations can be executed on the associated object. 

• For pipes, this field f_op is modified (at the file object 
level) so that it now points to new operations: 

− The f_op field of the read channel is replaced with the 
address of the read_pipe_fops table. 

− The f_op field of the write channel is replaced with the 
address of the write_pipe_fops table. 

• For FIFOs, the associated file operations are modified 
at the inode object level: 

− The i_op field of the inode object now points to the 
fifo_inode_operations table. 

− File objects associated with FIFOs are initialized with the file 
operations defined in the inode i_op field. 
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Questions 

1. What restriction is imposed on pipes concerning the number and 
the type of processes that can use them? 

2. Why do we need an array of two file descriptors when we create 
a pipe with the pipe() function? 

3. What function does the program usually call once the pipes are 
created? What happens if we don’t call this  function? 

4. What other name do we often give to FIFOs? 

5. What is the main advantage of FIFOs over pipes? 

6. Multiple processes may simultaneously write to a given FIFO. 
What problem could then result? 

 

 

 



Linux Internals 

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-15 
 All Rights Reserved 

System V IPC 

• IPC stands for “Inter Process Communications”. 
This standard, which officially appeared for the first 
time in UNIX System V release (in 1983), is 
commonly used by UNIX operating systems due to 
the fact that it increases portability from one UNIX to 
another. 

• IPC contains three different communication 
mechanisms: 

− Messages: sends or receives messages to or from any 
process. 

− Semaphores: allows unrelated processes to synchronize their 
execution.  

− Shared memory: allows unrelated processes to share a 
memory area. 

• There are many similarities between these three IPC 
mechanisms. We will focus on these similar aspects 
before focusing on each IPC resource. 
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IPC Identifier and Key 

• Each IPC structure has an identifier associated to it: 

− Each IPC structure (message queue, semaphore or shared 
memory area) is referred to in the Kernel by an IPC 
identifier. This identifier is a large positive number stored as 
a 32-bit integer. This number is continually incremented as 
IPC resources are created and erased. 

− This identifier is all what we need in order to use the resource 
(message, semaphore or shared memory). For example, for 
sending or retrieving a message, all we need to know is the 
identifier of the message and the queue containing the 
message. 

− The Identifier needs to be a truly unique number representing 
an IPC structure in the Kernel. This number is assigned by 
the Kernel and cannot be repeated twice. In fact, the Kernel 
almost never recycles old identifiers. 

− Processes that want to communicate through an IPC structure 
refer to each other with the IPC identifier of the structure. 

• Each IPC structure also has a 32-bit bit integer that is 
called the key.  

− The programmer specifies this key in order to differentiate 
resources of the same type launched from a single process. 

− A key is not necessarily unique within the system, since the 
programmer specifies them. If several instances of the same 
program are running on the system, chances are that the same 
key number is used in each independent process. 
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IPC Structure Creation 

• IPC structures are generated by calling the function 
associated with the structure we want to create: 

− The semget() function is used to create a semaphore 
structure. 

− The msgget() function is used to create a message queue. 

− The shmget() function is used to create a shared memory 
segment. 

• These three “get” functions all have two similar 
arguments: a key and a flag. 

− The key is of type key_t and is defined by the programmer. 
The key will be associated with an identifier by the Kernel. If 
IPC_PRIVATE is defined as the key, a new IPC structure 
will be created (instead of referencing an existing one). 

− The flag parameter is an integer in which we usually place 
predefined values. IPC_CREAT means that the IPC resource 
must be created. IPC_EXCL indicates that the “get” function 
must return an error if the structure already exists and the 
IPC_CREAT is also set. 

 



Linux Internals 

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-18 
 All Rights Reserved 

IPC Permission Structure 

• Each IPC structure (message queue, semaphore or 
shared memory area) has a permission structure 
called ipc_perm associated with it. This structure 
contains the following information: 

− The owner’s group and user ID 

− The creator’s group and user ID 

− Access modes (permission bit mask) 

− Slot usage sequence number 

− Key number 

• All fields (except seq) in the permission data structure 
are initialized when the IPC structure is created. 

• The creator of the IPC structure or the superuser 
may modify the user ID, group ID and access mode 
fields by calling msgctl(), semctl() or shmctl() (for the 
message queue, semaphore or shared memory area 
respectively). These functions also allow us to retrieve 
some information about an IPC structure. 

• Note that the ipc_perm structure is defined as 
ipc_perm in /usr/include/bits/ipc.h (libc includes) and 
as ipc64_perm in the include/asm-i386/ipcbuf.h 
(Kernel sources). 
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IPC System Call 

• When programs running in User space call a function 
like msgget(), the program actually calls a libc library 
function (a wrapper) that invokes the ipc system call. 

• Due to historical design decisions, each IPC function 
in User space is converted to the ipc system call. This 
was considered a better decision than implementing 
separate system calls for each one of the IPC 
functions. 

• The sys_ipc Kernel function (the implementation of 
the ipc system call) determines which function called 
the system call and invokes the corresponding Kernel 
function. 

• In fact, some implementations of Linux on other 
architectures (the Alpha for example) provide 
separate system calls for each single IPC function 
called by User space programs.  

• The implementation of sys_ipc can be found in 
arch/i386/kernel/sys_i386.h. The comments included 
in the code should give you an idea of how ugly this 
system call is perceived by Linux Kernel developers. 
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IPC: Messages 

• Processes can send and receive messages by using 
IPC messages. A message is sent by a process to an 
IPC message queue, where it can be retrieved by 
another process for reading. 

• The msgsnd() function is used to send a message. Its 
parameters include: 

− The IPC identifier of the message queue where the message 
should be sent 

− The size of the message in bytes 

− The address of a message buffer in User space that contains 
the message type and the message (in clear text) itself. 

• The msgrcv() function does the corresponding 
operation of receiving a message which is waiting in 
the message queue, and it must include the following 
parameters: 

− The IPC identifier of the message queue from which the 
message is received. 

− The address of a buffer where the message will be stored. 

− The size of the buffer 

− A value t describing which message should be retrieved. If 
this value is 0, the first message in the queue will be selected. 
If it is a positive number, the first message that contains a 
matching type value will be selected. 
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IPC: Messages (Cont’d) 

• A message resource is described by the msqid_ds data 
structure, defined in /include/asm-i386/msgbuf.h. 
This structure contains the following information: 

− Permissions 

− Last time a message was received and sent 

− Last time the structure was changed 

− Number of bytes and messages in the queue 

− Maximum number of bytes in the queue 

− PID of the last process which received and sent a message 

• The message queue is described by the msg_queue 
data structure. It carries the following information: 

− The message queue contains the same information as the 
msqid_ds data structure. 

− It also contains pointers to the actual messages; q_messages 
is a doubly linked list of messages (each node contains a next 
and prev pointer that refers to a msg_msg structure). 

• The messages are contained in msg_msg (one data 
structure for each message). It contains: 

− Pointers to next and previous msg_msg structures in the list 

− Message type and size 

− The actual message 



Linux Internals 

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-22 
 All Rights Reserved 

IPC: Semaphores 

• Semaphores are not similar to the conventional 
interprocess communication mechanisms that we are 
used to see. A semaphore is basically a counter that 
provides access for two or more processes to a shared 
object. 

• The value of the semaphore determines if a process 
can access the data or not: 

− The semaphore value is positive if the data is available. In 
this case, the process that needs access to the data has to 
decrement the value of the semaphore before accessing the 
data. 

− Its value is negative or 0 if the data is already being access by 
another process, and therefore unavailable. In this case, the 
process has to wait until it becomes positive. 

− When a process that was using the data stops using it, it 
increments the value of the semaphore so that the other 
processes that were waiting for it could wake up and take 
control of the data. 

• The process of testing the semaphore value must be 
atomic, so they are implemented in the Kernel 
(implementing it in User space could not make it 
absolutely atomic). 
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IPC: Semaphores (Cont’d) 

• In order to access a shared object controlled by a 
semaphore, a process has to go through the following 
steps: 

− Call the semget() function with the IPC key of the semaphore 
and the number of necessary semaphores as the arguments. 
The process will then be able to acquire the semaphore 
identifier. If the semaphore does not already exist, the 
IPC_CREATE flag must be set, so that a new structure is 
created.  

− The semop() function is invoked to test and decrement the 
semaphore specified in the arguments. 

− The process accesses the shared resource. 

− The function semop() is invoked for the second time, now to 
increment the semaphore involved in the operation and let 
other processes access it if necessary. 

− The function semctl() can optionally be called in order to 
remove a semaphore from the Kernel. 
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IPC: semid_ds and sem 

• The semget() function can create, with the flag 
argument properly set, a new semaphore. The 
created structure is in fact an array of counters 
(called primitive semaphores, their number is 
specified as a semget argument) inside the 
semaphore. The semaphore array is described by the 
semid_ds data structure, which contains the following 
fields: 

− Permissions 

− Last semop() time 

− Last time the semaphore was modified 

− Number of semaphores in the array 

• Each primitive semaphore is described internally by 
the sem data structure, which contains: 

− The current value of the primitive semaphore 

− The PID of the last process which accessed the semaphore 
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IPC: Shared Memory 

• The IPC shared memory is arguably the most 
popular IPC mechanism. It allows processes to access 
some common data structures by making them 
available in a shared memory segment. 

− This is often the fastest method for exchanging data between 
processes. Since there is no need to copy the information 
between the processes, the Kernel has less work to do and 
can operate more quickly. 

− The most important issue raised with shared memory is 
synchronization. The shared memory area must be managed 
so that a process cannot write this area when another one 
reads it. Semaphore can therefore be used to protect those 
memory areas. 

• Definitions and data structures associated with 
shared memory can be found in include/linux/shm.h. 

• The shmget() function must be invoked to obtain a 
shared memory identifier. The following arguments 
are needed: 

− The key field identifies the memory region in the program. 

− The size value is the minimum length of the shared segment. 
For an existing segment we can take the value 0. 

− The flags IPC_CREATE and/or IPC_EXCL, along with the 
access mode bits. 

− The shared memory ID is returned if there was no error. 
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IPC: shmat Function 

• After a shared memory region has been created with 
the shmget() function, the process needs to attach it to 
its own address space by invoking the shmat() 
function. 

− The ID number that was returned from shmget() is the first 
argument of shmat(). 

− The address in the process memory space at which the newly 
shared memory region is attached must be defined by the 
second argument. This is usually equal to 0, since this value 
lets the Kernel decide where to place the new memory 
segment. Other values may bring errors if the program is 
ported to other architectures. 

− The third argument is the flag field. We could, for example, 
specify the SHM_RDONLY so that the process only gets 
read-only access to the memory region. 

− The returned value of shmat() is the address where the shared 
memory region is shared. 

• The shmdt() function is called in order to detach the 
memory region from the current process. A single 
argument is needed in this case, which is the memory 
address of the shared memory region (this address 
was returned by the first call to shmat ).  



Linux Internals 

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-27 
 All Rights Reserved 

IPC: Shared Memory Data Structures 

• Note that the mechanism used to keep track of the 
shared memory areas in the Kernel is quite different 
in the Kernel 2.4.x if we compare with the older 
versions, so don’t expect to find the same mechanisms 
in 2.2.x. 

• A shmid_kernel data structure describes the memory 
area that is shared among two or more processes. 
This memory is calculated in terms of shared page 
frames. 

• A set of pages is linked to this descriptor. This is the 
actual shared memory region. 

• A linked list of vm_area_struct data structures 
represents the memory areas associated with the 
shared memory for each process. If two processes are 
sharing the same memory region, this list will contain 
two vm_area_struct elements. 

− The implementation of this data structure can be found in 
include/linux/mm.h. 
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Sockets 

• Processes may communicate together by using socket-
based mechanisms (also known as BSD sockets). 
There are two main types of socket addressing 
formats: 

− AF_INET are sockets that use Internet addresses (four bytes 
numbers written as four decimal numbers separated by 
periods) as their addressing format. Combined with the use of 
port numbers, this addressing scheme allows more than one 
AF_INET socket on a given machine and more than one 
machine to communicate. 

− AF_UNIX are sockets that may only be used on the current 
local machine. They use UNIX pathnames as the addressing 
scheme and are very useful for communication between 
processes running on the same machine. 

• This section will focus on AF_UNIX sockets, also 
called UNIX domain sockets. AF_INET sockets will 
be discussed in Chapter 10, which deals with 
networking internals. 

• The implementation of the AF_UNIX can be found in 
net/unix/af_unix.c. 

• BSD sockets may be either anonymous (which is the 
case when they are created by the socketpair() 
function) or linked with a socket entry in the 
filesystem, in which case the socket would be subject 
to the associated filesystem permission checks. 
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Sockets (Cont’d) 

• The socket() function returns a socket descriptor, 
which acts similarly to file descriptors returned by 
the open() function. 

− Each descriptor number represents an open file, a socket, or 
neither. A descriptor number never represents both a socket 
and a file. 

− Many system calls (such as the close function) accept both 
socket and file descriptors. 

• The socket() function needs the address format as its 
first argument. All subsequent operations on the 
returned socket will be interpreted accordingly to the 
specified address format (in our case AF_UNIX). 

• A socket does not initially have a name (or address) 
associated with it. Since two processes need to access 
the same socket, they must be able to recognize it: 

− The bind() function is used bind the socket descriptor to an 
address.  

− A socket does not have a name (thus, it cannot be used by 
any other process) until an address is assigned to it with the 
bind() system call. 

− The bind() function takes the socket descriptor, the address 
(of type sockaddr) and the length of the address in bytes are 
the argument of the bind() function. 

• Socket internals will be discussed in Chapter 10. 
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Questions 

7. What are the two elements common to every IPC mechanism? 

8. What is the advantage of grouping all IPC-related functions 
that are called from User space in a single system call named 
sys_ipc? 

9. How can a client and a server agree on a common IPC 
structure in order to communicate together? 

10. Why are IPC and UNIX sockets considered reliable compared 
to network sockets? 

11. What is the fastest form of IPC, and why? 

12. What are race conditions? 
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Summary 

• Pipes and FIFOs are easily used for interprocess 
communication in UNIX programs and can usually 
be ported to other UNIX flavors without too much 
effort. 

• The IPC standard allows three communication 
mechanisms: messages, semaphores and shared 
memory areas. 

• Using the IPC standard is advantageous because all 
three mechanisms are used in a similar fashion and 
can be quite easily ported across other UNIX flavors. 

• Socket-based interprocess communication can be 
more complex to use, but interprocess local 
communications may be easily converted to 
interprocess network communications for an 
application using a client-server model. 
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Chapter 12 

Boot Process 
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Boot Process 

Objectives 

 After completing this unit you will be able to: 

• Explain what happens when a PC is turned on and 
boots the Linux Kernel. 

• Identify what functionality is expected from a boot 
loader such as LILO. 

• Identify where every component of the Linux Kernel 
is initialized. 

• Configure, install and troubleshoot LILO, the Linux 
Boot Loader. 
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Booting Process – Introduction 

• The booting process is architecture specific. Booting a 
Sun SPARC machine, for example, will involve a 
totally different process from booting an Intel 
machine. 

• The booting process for a PC under Linux can be 
separated in five different steps: 

− System startup, during which the boot device and boot sector 
are selected by the BIOS. 

− The boot sector loads the setup code, decompression routines 
and compressed kernel images. 

− The kernel is decompressed in protected mode. 

− Low-level initialization is performed. 

− High-level C initialization of the Kernel is completed. 

• We will describe each one of these steps in the 
following pages. 
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Step One : System Startup 

• In this stage the system’s hardware devices, including 
RAM, are in a random, inconsistent state. 

− The RESET pin on the CPU is asserted.  

− Some registers on the processor are set to fixed values; ds, es, 
fs, gs and ss are all set to 0. 

− The code at the physical memory address 0xfffffff0 is 
executed. This memory location corresponds to a read-only 
memory chip (ROM) that contains a suite of programs 
traditionally called BIOS (Basic Input/Output System). This 
checks the system devices in order to make sure they work 
properly and initializes the interrupt vector at physical 
address 0. 

− The BIOS invokes its bootstrap loader function, which copies 
the first sector of the bootable device (usually the floppy 
drive or the hard disk, as determined by the BIOS settings) at 
physical address 0x00007C00, then executes the code at this 
address. 

− The BIOS also provides several functions for handling low-
level devices’ input and output. Some operating systems, 
such as MS-DOS, make fairly extensive use of these 
functions. However, the Linux Kernel provides its own 
mechanisms for handling these low-level tasks. This is due to 
the fact that the Kernel executes its operations in protected 
mode, whereas the BIOS works in real mode. It is thus 
impossible to share the BIOS functions with the Linux 
Kernel. 
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Step Two : Boot Loader 

• At this point, the BIOS is executing the boot loader 
located at physical address 0x00007C00. 

− The boot loader is a program invoked by the BIOS to load 
the image of the operating system Kernel into RAM. 

• For a PC system booting Linux, the boot loader may 
be either: 

− The Linux boot sector, which is coded in 
arch/i386/boot/bootsect.S and is automatically included with 
any Kernel image. 

− LILO (Linux Loader), which is a program allowing the user 
to select which operating system will be launched on the 
system, in cases there are more than one. 

− No boot loader is also a possible option. In this case, a 
program such as LOADLIN may be used. 

• The boot process at this stage is heavily dependent on 
the media being used to boot Linux. 

− Booting from a floppy disk will only involve copying the 
first sector to RAM and executing it. 

− Booting from a hard disk will involve copying the Master 
Boot Record (MBR), which includes the partition table and a 
program that loads the first sector of the partition containing 
the OS (which is the active partition if MS-DOS is used). In 
this case, Linux replaces this program by another one (like 
LILO) that is more versatile than the original one supplied 
with MS-DOS or other similar operating systems. 



Linux Internals 

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-6 
 All Rights Reserved 

Linux Boot Sector 

• The first option that is offered in order to load Linux 
involves using the Linux boot sector, and is often used 
on bootable floppy disks. 

− The Linux boot sector is always included in Kernel images. 

− When a new Kernel is compiled, the assembly code located 
in the arch/i386/boot/bootsect.S is automatically copied at the 
beginning of the Kernel image file. 

− Thus, the first few kilobytes of code in the Linux Kernel 
image are not the Kernel itself, but a totally different program 
that is used to load the Kernel. 

• Typically, we can make a floppy boot disk by using 
the following command: 
dd if=bzImage of=/dev/fd0 

 

• This command will dump the Kernel image on the 
floppy disk. 

− The beginning of the Kernel image will correspond to the 
first sector of the floppy disk. 

− When the BIOS loads the first sector of the floppy disk, the 
beginning of the Kernel (the code of the Linux boot sector) is 
actually the part that is loaded into RAM.  
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Linux Boot Sector (Cont’d) 

• The Linux boot sector goes through the following 
steps when it is invoked by the BIOS: 

− It first moves itself from physical address 0x00007C00 
(where it was copied by the BIOS) to physical address 
0x00090000. These addresses are defined by the BOOTSEG 
and INITSEG variables in bootsect.S. 

− The real mode stack is initialized at address 0x00003FF4. 

− The disk parameter table is set up. This is used by the BIOS 
in order to use the floppy device driver. 

− A BIOS function displaying the “Loading…” message is 
invoked. 

− A BIOS function is executed that will load the setup() 
function of the Kernel image in RAM, precisely at address 
0x00090200 (defined by DEF_SETUPSEG). Note that the 
setup function is not executed at this point. 

− Another BIOS procedure is invoked to load the whole Kernel 
image in RAM at physical address 0x00010000 if the Kernel 
was compiled with “make zImage” or at physical address 
0x00100000 if it was built with “make bzImage”. These two 
options are often referred to as the Kernel being loaded low 
or high.  

− The setup() function is now executed. 
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Linux Loader (LILO) 

• Linux is generally loaded from a hard disk, where the 
most commonly used boot loader is LILO. 

• LILO may be located either on the Master Boot 
Record or in the boot sector of a disk partition. 

− If it is placed on the MBR, it will replace the small program 
that was originally placed at this location. 

− If it is placed on the boot sector of a disk partition, this 
partition must usually be made active so that the boot loader 
of the MBR can properly switch to it. 

• LILO is divided into two components. Otherwise, 
making it fit into the MBR would be impossible due 
to the relatively large size of this program. 

− The MBR or partition boot sector contains the smallest part 
of LILO. 

− When it is executed, this smaller part moves itself to 
0x0009A00. 

− The read mode stack is initialized. 

− The second component of LILO is loaded into RAM at 
0x0009B00. When executed, this part reads a list of available 
OS and asks the user to choose among one of them. 

− LILO then loads the corresponding boot sector into RAM. If 
this is a Linux operating system, LILO essentially executes 
the same steps as the ones we described for the Linux boot 
sector. The setup() function is finally executed. 
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Setup Function 

• The setup function is coded in assembly language and 
is located in Setup.S. 

• This function initializes various hardware devices 
and sets up the environment for the execution of the 
Kernel. 

− It first finds the amount of RAM available. 

− Even though the BIOS already initialized most devices 
running on the system, Linux does not rely on it and uses its 
own initialization procedures. This is done to enhance 
portability and avoid problems in case of a defective BIOS. 

− Parameters concerning the hard disk, mouse controller and 
APM support are fetched from the hardware. 

− The compressed Kernel image is moved to the physical 
address 0x10000. 

− The interrupt descriptor table (IDT) and global descriptor 
table (GDT) are set up. 

− The PIC (Programmable Interrupt Controller) is 
reprogrammed to map 16 hardware interrupts from vector 32 
to 47. 

− The CPU is switched from real mode to protected mode by 
setting a bit on the cr0 status register located on the CPU. 

− The startup_32() function, located at physical address 
0x00100000 (if the Kernel is loaded high) is executed. 
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Step Three: Kernel decompression 

• The startup_32() function, located in 
arch/i386/boot/compressed/head.S, is executed in this 
step. 

• The decompress_kernel() function is invoked, first 
displaying the “Uncompressing Linux…” message. 

− The Kernel image is decompressed and placed at physical 
address 0x00100000 if it was originally loaded low. 

− The decompression code comes from 
boot/compressed/misc.c. It includes the gzip algorithms used 
for uncompressing the zImage or bzImage, which are both 
compressed with gzip. 

Note that the difference between 'zImage' files and 
'bzImage' files is that 'bzImage' uses a different 
layout and a different loading algorithm, and 
therefore has a larger capacity. Contrarily to 
common belief among Linux users, both files use 
gzip compression. The 'bz' in 'bzImage' stands for 
'big zImage', not for 'bzip'! 
 

− If the Kernel image was loaded high, its decompressed code 
is placed just after the location of the compressed image. It is 
then moved to address 0x00100000. 

• The code at address 0x00100000 (the location of the 
decompressed Kernel image) is then executed. This 
actually starts the Linux Kernel. 
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Step Four: Low-level initialization 

• The first part of the Kernel image is located in 
arch/i386/kernel/head.S and is also called the 
startup_32() function. 

− This function is totally different from the one we described in 
step two, even if they use the same name. Besides confusing 
Kernel programmers, having the same name for both 
functions does not create any problem. 

• This second startup_32() function prepares the 
operating system environment to start the first 
process. The following steps are performed: 

− Segmentation registers and page tables are initialized. 

− The Kernel mode stack is set for the first process (process 0). 

− The setup_idt() function is called in order to fill the IDT with 
null interrupt handlers. 

− Parameters of the system obtained from the BIOS and the 
user are stored in the first page frame. 

− Information about the current processor is gathered. 

− The address of the GDT and IDT are stored in the gdtr and 
idtr CPU registers. 

− The start_kernel() function is executed. In case the system 
contains multiple cpus, only the first one calls this function. 
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Step Five: High-level initialization 

• The start_kernel() function is the last step in Kernel 
startup.  

− This function is coded in C, and is located in init/main.c. 

− It is architecture-independent, so no operation included in 
this function should involve hardware-specific elements. 

• When invoked, start_kernel() goes through the 
following steps: 

− It asks for a global Kernel lock, so that only one processor 
can execute the initialization code. 

− It prints the Linux "banner" containing the version number, 
compiler used to build it, the date at which it was compiled, 
etc. This is taken from the variable linux_banner defined in 
init/version.c and can be retrieved in /proc/version. 

− The command line options passed by LILO are parsed and 
processed. 

− Traps and IRQs are initialized by trap_init() and init_IRQ(). 
This constitutes the final initialization of the IDT. 

− Data required by the scheduler is initialized by sched_init(). 

− The system date and time are set up by time_init(). 

− The software IRQ subsystem is initialized by softirq_init(). 

− The console is initialized by console_init(), so that a remote 
serial console will start receiving the Kernel output. 
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High-level initialization (Cont’d) 

• The following steps are also executed in start_kernel() 
but some of them are invoked only if they were 
compiled in the Kernel: 

− The dynamic module loading mechanisms are initialized by 
the init_modules() function. 

− Most of the slab allocator is initialized by 
kmem_cache_init(). The remaining part will be set by 
kmem_cache_sizes_init(). 

− Interrupts are enabled by set(). 

− The BogoMips value corresponding to the current CPU is 
calculated by calibrate_delay(). 

− The mem_init() function initializes page descriptors. 

− Data structures used by the /proc filesystem are set up by 
proc_root_init(). 

− The fork_init() function initializes the maximum number of 
threads and processes based on the amount of memory 
available on the system. 

− Caches for the Virtual File System are initialized in 
vfs_caches_init(), based on the number of pages available on 
the system. 

− The IPC subsystem and quota support are set up. 

− check_bugs() check the CPU for known hardware bugs. 

− A kernel thread starts executing the init() function. 
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High-level initialization (Cont’d) 

• Now that the basic components of the Linux Kernel 
are up and running, the init() thread will start 
invoking the initialization function for the higher-
level elements of the Kernel. 

• At this point, the CPU, memory and process 
management mechanisms are running. The 
do_basic_setup() function is called by the thread and 
executes the following steps: 

− Bus-related elements are first initialized by calling pci_init(), 
sbus_init(), mca_init(), isapnp_init() and other similar 
functions. 

− do_initcalls() is invoked, which goes through the list of 
functions registered by means of __initcall or module_init() 
macros and executes them.  

− Various filesystems are initialized, along with the PCMCIA 
subsystem if it is available on this system. 

− The root filesystem is mounted, so that the Kernel may 
access files located on it. 
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The Init Thread 

• After do_basic_setup() has finished, the Kernel 
returns to the init() thread in order to continue the 
system initialization: 

− The free_initmem() function is executed, which frees the 
initialization code that we no longer need. If you recall, 
various functions in the Kernel were registered with the 
__init macro. These functions are simply removed from 
memory at this point since the Kernel will never call them 
again (typically, an initialization function is called only once, 
when the system is started). Note that this is architecture-
specific, so it might be unavailable for some processors. 

− The console is opened in read-write mode, so that the user 
may input some commands. 

• The first running process is finally started. 

− If the “init=” option was passed to the Kernel by the loader, 
the program specified as the argument will be executed. This 
allows the local user to specify any program located on the 
root partition that should replace init. 

− If no init option was specified in the loader, the Kernel tries 
to execute, in order, /sbin/init, /etc/init, /bin/init and /bin/sh. 

− If none of these files are found on the root partition, the “ No 
init found.  Try passing init= option to kernel.” Message is 
printed on the console. In this case, the system is completely 
unusable since no user can log in and daemons cannot be 
started. 
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LILO: The Linux Loader 

• LILO, the Linux boot loader, is primarily known as a 
tool that allows multiple operating systems to share 
one or more hard drives on a PC.  

• However, LILO could also be used for other 
purposes. 

− In our specific case, LILO allows Kernel developers to 
interactively specify from which Kernel they want to boot 
their computer. If a development Kernel proves to be 
unstable, the developer may just reboot the machine and 
specify another Kernel image that boots properly. 

− LILO is also very effective for passing parameters to the 
Kernel. For example, if you want to modify which program 
will be used as the init process, you may enter the following 
line at the LILO prompt: 

LILO: linux init=/sbin/init_test 
 

• We will describe in the following pages the basic 
structure upon which LILO is built and how it fits in 
the MBR, the files associated with it, its parameters, 
and finally its startup and error messages. 
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LILO-Related Files 

• The map installer is usually located in /sbin/lilo. This 
program installs LILO on the computer it is executed 
on. 

− Whenever the Kernel is modified and copied in /boot (this is 
the default location for Kernel images), the lilo executable 
should be run in order to refresh the MBR or the boot sector 
of the partition on which LILO is installed. 

− This program puts all files belonging to LILO at their 
appropriate place and stores information about the location of 
data needed at boot time, such as the Kernel images. 

• The /etc/lilo.conf is the LILO configuration file, 
which contains various settings and configurations 
concerning the way LILO operates on the current 
system. 

• The boot loader is located in /boot/boot.b.  

− It is the part of LILO that is loaded by the BIOS and that 
loads the kernel or the boot sector of other operating systems 
handled by LILO.  

− It also provides a simple command-line interface to 
interactively select the item to boot and to add boot options. 

• The map file, which is located in /boot. 

• Kernel images, usually located in /boot (although this 
is not a requirement) are accessed by the map 
installer. 
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LILO Structure In The MBR 

• The most commonly used configuration of LILO 
involves the boot loader being installed in the Master 
Boot Record (MBR). 

− In this configuration, LILO takes control of the entire boot 
procedure. It may have to decide, for example, whether 
Linux or DOS should be loaded. 

− This has one drawback: the old version of the MBR is 
completely erased by the map installer in order to install 
LILO. Thus, the old version needs to be saved if we might 
need to reinstall it later. 

Note: The MBR may be saved with the dd command: 
dd if=/dev/hda of=/mnt/fd/MBR bs=512 count=1 

 

• The MBR always contains the following fields, 
independent of the booting technique that is used: 

− The first 446 bytes of the MBR contain the loader program. 
This is often referred to as the first stage loader in LILO. 

− The next field is the partition table, which is 64-byte long. 

− The last two bytes contain a magic number, which is used to 
check if a given sector is a boot sector. 

• LILO cannot be stored at the following places: 

− Boot sector of a non-Linux partition or floppy-disk 

− On a Swap partition or the second hard disk 

− Boot sector of a logical partition 
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LILO Startup Messages 

• When the computer boots, the “LILO” message is 
sent to the console. This message is also used to 
diagnose malfunctions in the boot process. 

− Each letter is sent to the console after a specific step has been 
executed in the boot process. 

• The following sequence corresponds to the described 
errors: 

− No parts of LILO have been loaded if nothing is printed. This 
means that LILO is not loaded, or the partition on which it is 
installed is not active. 

− If “L” followed by a number are sent to the console, then the 
first boot loader has been executed but it cannot, for some 
reasons, load the second boot loader. The number after the 
“L” indicates what type of error has occurred. 

− An “LI” message means that the two boot loaders were 
loaded, but the second one failed to execute. This may be 
caused by a disk geometry error. 

− “LIL” indicates that the second boot loader has been 
executed, but it cannot load the descriptor table from the map 
file (/boot/map). 

− “LIL?” means that the second loader is loaded at a wrong 
address due to a geometry mismatch. 

− “LIL-“ indicates that the descriptor table is corrupted. 

− “LILO” indicates that every stage was completed 
successfully. 
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LILO Startup Error Numbers 

• As we have seen previously, an “L” followed by one 
of the following numbers indicates a disk error: 

− 0x00 refers to an internal error. A file may be corrupted. 

− 0x01 indicates that the disk is not supported by the BIOS. 

− 0x02 means that the disk is experiencing some problems. 

− 0x03 indicates that write operations failed due to a read-only 
disk. 

− 0x04 refers to a geometry mismatch because the sector was 
not found. 

− 0x06 is usually a temporary flaw. Reboot and try again. 

− 0x07 indicates that the device controller was not properly 
initialized. 

− 0x0C indicates a media error. Reboot and try again. 

− 0x10 refers to a CRC error. This could be serious if rebooting 
again does not solve the problem. 

− 0x80 indicates a disk time-out, which means that the disk is 
not ready.  

− 0x80 means that the BIOS returned an error. 

• If the error occurred during a write operation, the 
number will be prefixed with a “W”. 

• Look at the LILO documentation for other, less 
common errors that you may encounter. 
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LILO Error Messages 

• Some error messages may be presented to the user 
when executing the /sbin/lilo command. We will 
describe the most important ones. 

• Boot sector of hda doesn't have a [boot or LILO] 
signature. 

− This indicates that the sector from which the user tried to 
uninstall LILO does not appear as a LILO boot sector. 

• Can't put the boot sector on logical partition 1, 

− This error message means that the map installer made an 
attempt at installing LILO on the current root partition, which 
is also a logical partition. This is a common problem when 
installing LILO on a logical partition, and we should try 
whenever possible to install it on a primary partition. 

• Checksum error 

− Indicates that the descriptor table in the /boot/map file has an 
invalid checksum. The file is therefore inconsistent. 

• Device 0x01: Configured as inaccessible. 

− Means that the corresponding device is not accessible from 
the BIOS. 

• Device 0x01: Got bad geometry <sec>/<hd>/<cyl> 

− The corresponding SCSI device driver does not support 
automatic disk geometry, so it should be specified manually 
in the lilo.conf file. 
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LILO Error Messages (Cont’d) 

• /dev/tape-d is not a valid partition device 

− The device is not identified as a valid one for installing 
LILO. 

• Duplicate entry in partition table 

− The partition table is inconsistent because it contains the 
same entry twice. 

• First sector of hdc doesn't have a valid boot signature 

− The boot device specified does not have a valid boot sector, 
probably because the wrong device was specified in lilo.conf. 

• geo_comp_addr: Cylinder number is too big (1248 > 
1023) 

− This indicates that LILO is trying to access a file that goes 
beyond the 1024th cylinder of the partition. Note that this 
error no longer exists for newer versions of LILO, since files 
located after the 1024th cylinder are now supported. 

• Kernel is too big 

− This could occur when Kernels located bellow 0x10000 are 
larger 512 KB. A simple solution to this problem is to 
compile the kernel as a “big zImage” (bzImage), which will 
load the Kernel on a higher memory address (0x100000). If 
this is not possible, the only way to resolve the problem is to 
take out some components of the Kernel. 
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LILO Error Messages (Cont’d) 

• Partition entry not found 

− This indicates that the partition entry from which another OS 
was supposed to be booted does not exist in the partition 
table. 

• write <item>: <error_reason> 

− The disk on which lilo tried to write the new boot sector is 
mounted as read-only or does not have any space left. 
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Questions 

1. Explain why using a password for the root user is not really 
efficient for protecting a computer against malicious access if 
physical access is not properly controlled.   

2. How could we modify the Kernel to fix at least this particular 
security problem? 

3. What compression algorithm is used to compress Kernel 
images? What would we have to do in order to modify this 
algorithm or replace it with a more efficient one? 

4. Why is LILO separated in two parts during the boot process? 

5. What is the difference between loading the Kernel “high” and 
loading it “low”? 

6. The number of BogoMIPS associated with the current machine 
is calculated during the boot process. What does the resulting 
number mean? By looking at the algorithm used in main.c, is 
the BogoMIPS value reliable? 
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Summary 

• Loading a PC running Linux involves five steps: 

− System startup 

− Code loading by the boot sector 

− Kernel decompression 

− Low-level initialization 

− High-level C initialization 

• At the end of these five steps, the init process takes 
control of the system boot process and executes the 
remaining stages of the system boot process. 

• LILO is the most commonly used program for 
booting Linux system. 

• LILO replaces the code in the boot sector by its own, 
and allows the user to select which OS the computer 
should boot. 
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