

 Object Innovations Course 310

Dominic Duval

Student Guide
Revision 1.3

Linux Internals

Rev. 1.3 Copyright ©2002 Object Innovations, Inc. ii
 All Rights Reserved

Linux Internals

Student Guide

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of
their respective owners.

Copyright ©2002 Object Innovations, Inc. All rights reserved.

Object Innovations, Inc.
420 Boston Turnpike
Shrewsbury, MA 01545
781-272-3860
www.ObjectInnovations.com

Printed in the United States of America.

Rev. 1.3 Copyright ©2002 Object Innovations, Inc. iii
 All Rights Reserved

Table of Contents

Chapter 1 Introduction to Linux Internals
Chapter 2 Kernel Overview
Chapter 3 Memory Management
Chapter 4 Inter-Process Communication
Chapter 5 File System
Chapter 6 System Calls
Chapter 7 Kernel-Related Commands
Chapter 8 Device Drivers
Chapter 9 Module Management
Chapter 10 Networking
Chapter 11 SCSI Subsystem
Chapter 12 Boot Process
Chapter 13 Debugging Tools

Appendix A Learning Resources
Appendix B Data Structures
Appendix C Labs

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-1
 All Rights Reserved

Chapter 4

Inter-Process Communication

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-2
 All Rights Reserved

Inter-process Communication

Objectives

 After completing this unit you will be able to:

• Understand why User mode processes need to
synchronize themselves and exchange data.

• Identify the main mechanisms that UNIX makes
available for inter-process communication.

• Identify the three elements of the Sys V IPC
communication standard.

• Make decisions regarding the type of interprocess
communication that would best fit in a particular
software design.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-3
 All Rights Reserved

Interprocess Communications

• Interprocess communication refers to the exchange of
data between two different processes running on a
single system. The primary interprocess
communication mechanisms that will be discussed in
this chapter are the following:

− Pipes

− FIFOs

− IPC communications

− Sys V Socket based communications

• Note that UNIX signals are often used for
interprocess communication, but they will not be
described in the current chapter since this topic was
discussed in Chapter 2.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-4
 All Rights Reserved

Communication via Files

• The two simplest process communication mechanisms
are arguably pipes and FIFOs.

• Both of these mechanisms involve file objects in the
Kernel. They are handled in a first-in, first-out order
(FIFO).

• Since the data flow is handled sequentially, no file
positioning is allowed with pipes and FIFOs.

• As we will see, the major difference between pipes
and FIFOs is that communication channels related to
pipes are anonymous, whereas channels associated
with a FIFO have a name.

• The next few pages will focus on those two
communication mechanisms so that you can identify
where to use pipes instead of FIFOs, and vice versa.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-5
 All Rights Reserved

Pipes

• Pipes are known as the oldest communication
mechanism under UNIX. They can be used on all
UNIX operating systems, so there are usually very
few portability problems involved with this method.

• Pipes only provide half-duplex communication, so
information flows only one way. Another
disadvantage is that they can only be used by
processes that have a common ancestor.

• In UNIX/Linux, a pipe is used when we execute the
following command:
ls | more

• In the previous example, the two executed processes
are linked together by a pipe. The standard output of
the first process is sent to the pipe, which sends the
data to the input of the second process. Other shell
commands involving the “<,>,>>” characters also
work in a similar fashion.

• In a shell, pipes are made possible since the shell is
the common ancestor of the two processes. The shell
is forked the first time for the “ls” command and a
second time for the “more” command.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-6
 All Rights Reserved

Programming With Pipes

• A pipe is created by calling the pipe() function in the
following way:

Int fd[2];
if (pipe(fd) < 0)
 printf(“Error!\n”);

• Using a pipe involves the following aspects:

− An array for two file descriptors must first be created.

− The pipe() function is invoked. This returns two valid file
descriptors in the array given as the argument. The input of
the first file descriptor (fd[0]) is the output of the second file
descriptor (fd[1]).

− Test the return value of the pipe() function. A negative value
indicates an error.

− Close the file descriptors before the end of the process.

User Process

Fd[0] Fd[1]

Kernel

Pipe

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-7
 All Rights Reserved

Programming With Pipes

• A pipe like the one that we have just created in the
previous example is useless. In order to do be
significantly usable, a fork() must be invoked after
the pipe() function has been called. This allows two
processes to communicate together.

• After a fork, the pipe would look like the following:

• The pipe is really made possible by the Kernel. It can
be viewed as a mechanism existing inside the Kernel
and providing access points (file descriptors).

• The resulting file descriptors may be read and
written as we usually do for a normal file descriptor.

Parent User Process

Fd[0] Fd[1]

Kernel

Pipe

Child User Process

Fd[0] Fd[1]

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-8
 All Rights Reserved

Pipe Data Structures

• Since the Kernel is the element making pipes possible,
some Kernel data structures are associated with this
type of operation.

− Since the read() and write() functions have access to the file
descriptors returned by the pipe() function, the Linux Kernel
must create an inode object associated with the pipe.

− The inode data structure has a field named i_pipe, which is a
pointer to a data structure pipe_inode_info. Needless to say,
this structure is only usable in a context where a pipe is used.
It contains the address of a page frame acting as a buffer
containing data written to the pipe, a lock flag, a wait queue,
and flags used by processes reading from or writing to the
pipe.

− Two file objects (one for the read access and the other for the
write access) must be created as well. Each file object points
to the same inode object.

• Note that the i_size field in the inode object contains
the number of bytes currently stored in the pipe
buffer. This is also known as the pipe size.

• The Kernel does not allow two accesses to the pipe
buffer at the same time.

− This measure is taken in order to avoid race conditions.

− Pipe operations must also be atomic (POSIX standard).

− Write operation cannot be executed when the buffer is full.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-9
 All Rights Reserved

Pipe Kernel Implementation

• A pipe is implemented in the Linux Kernel as a
Virtual File System object (we will see in the next
chapter what is a VFS object). A VFS object
representing a pipe does not have any data associated
to it on the physical disk.

• The pipe() function that we have seen previously is a
libc stub for the system call associated with the
sys_pipe() Kernel function.

− We can take a look at the implementation of the sys_pipe()
function in arch/i386/kernel/sys_i386.c.

• The sys_pipe() function calls the do_pipe() Kernel
function:

− do_pipe() is the function that allocated the file objects and
file descriptors for the read and write channel of the pipe.

− It calls the get_pipe_inode() function in order to associate an
inode object to the current pipe. This also associates a page
frame for pipe buffering, and it stores its address in the base
field of the pipe_inode_info structure.

− A dentry object is allocated in order to tie together the two
file objects and the inode object.

• If no errors occurred during the sys_pipe() function,
the two file descriptors are returned to the User mode
process. Notice that this is accomplished with the
copy_to_user() Kernel function.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-10
 All Rights Reserved

FIFOs

• Pipes have the drawback of being only usable with
two processes that come from a common ancestor.
There is no way two unrelated processes might
communicate together by using a pipe.

• This is a major issue for applications designed under
the client-server model. In this case, a client
application that has just been started by the user
would not be able to connect to the server, unless the
server was started at the same time, from the same
parent process.

• FIFOs are the answer to this problem. They operate
with the following aspects:

− FIFOs are a special file type under UNIX operating systems.

− They have a disk inode but they don’t take space on disks.

− Any process can access them, since it appears on the
directory tree as a file with a specific filename.

− Just like pipes, data written to a FIFO is stored in a buffer
located in memory. This fast temporary storage is therefore
much more efficient than storing data on temporary disk
files.

− Client-server designs are much more easily implemented
with this mechanism. A client can use the input FIFO of the
server in order to issue requests, and the server writes the
resulting data in the input FIFO of each client.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-11
 All Rights Reserved

Programming With FIFOs

• From the perspective of User space programs, FIFOs
are usually created with the mkfifo() function. This
function, in conformity with the POSIX standard,
invokes the mknod() system call in order to
communicate with the Kernel.

• The arguments of this system call are the path and
name of the file to create or use as the FIFO, along
with the value S_IFIFO and the file permissions in
the flag field.

• After it is created, the FIFO can be accessed with the
same functions as pipes, namely the open(), read(),
write() and close() calls.

− The VFS Kernel subsystem determines if these functions are
called in the context of a FIFO.

− The VFS adapts file operations so that they can make sense
on a FIFO. Otherwise, the file would be treated as a normal
file located on the filesystem, and errors would result. When
the FIFO is opened, the i_op field (which describes the
possible operations on the current file) is set to the address of
the fifo_inode_operations table.

− A process may open a FIFO for reading, writing, or both at
the same time.

• FIFOs use the same data structures as pipes.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-12
 All Rights Reserved

Programming With FIFOs

• FIFOs may be used under a client-server model as in
the following:

Server

FIFO made
available

by the
server

FIFO made
available
by second

client

FIFO made
available
by first
client

First client Second client

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-13
 All Rights Reserved

File Operations on Pipes and FIFOs

• The file and inode objects contain a field called f_op
and i_op, respectively, which determines which file
operations can be executed on the associated object.

• For pipes, this field f_op is modified (at the file object
level) so that it now points to new operations:

− The f_op field of the read channel is replaced with the
address of the read_pipe_fops table.

− The f_op field of the write channel is replaced with the
address of the write_pipe_fops table.

• For FIFOs, the associated file operations are modified
at the inode object level:

− The i_op field of the inode object now points to the
fifo_inode_operations table.

− File objects associated with FIFOs are initialized with the file
operations defined in the inode i_op field.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-14
 All Rights Reserved

Questions

1. What restriction is imposed on pipes concerning the number and
the type of processes that can use them?

2. Why do we need an array of two file descriptors when we create
a pipe with the pipe() function?

3. What function does the program usually call once the pipes are
created? What happens if we don’t call this function?

4. What other name do we often give to FIFOs?

5. What is the main advantage of FIFOs over pipes?

6. Multiple processes may simultaneously write to a given FIFO.
What problem could then result?

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-15
 All Rights Reserved

System V IPC

• IPC stands for “Inter Process Communications”.
This standard, which officially appeared for the first
time in UNIX System V release (in 1983), is
commonly used by UNIX operating systems due to
the fact that it increases portability from one UNIX to
another.

• IPC contains three different communication
mechanisms:

− Messages: sends or receives messages to or from any
process.

− Semaphores: allows unrelated processes to synchronize their
execution.

− Shared memory: allows unrelated processes to share a
memory area.

• There are many similarities between these three IPC
mechanisms. We will focus on these similar aspects
before focusing on each IPC resource.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-16
 All Rights Reserved

IPC Identifier and Key

• Each IPC structure has an identifier associated to it:

− Each IPC structure (message queue, semaphore or shared
memory area) is referred to in the Kernel by an IPC
identifier. This identifier is a large positive number stored as
a 32-bit integer. This number is continually incremented as
IPC resources are created and erased.

− This identifier is all what we need in order to use the resource
(message, semaphore or shared memory). For example, for
sending or retrieving a message, all we need to know is the
identifier of the message and the queue containing the
message.

− The Identifier needs to be a truly unique number representing
an IPC structure in the Kernel. This number is assigned by
the Kernel and cannot be repeated twice. In fact, the Kernel
almost never recycles old identifiers.

− Processes that want to communicate through an IPC structure
refer to each other with the IPC identifier of the structure.

• Each IPC structure also has a 32-bit bit integer that is
called the key.

− The programmer specifies this key in order to differentiate
resources of the same type launched from a single process.

− A key is not necessarily unique within the system, since the
programmer specifies them. If several instances of the same
program are running on the system, chances are that the same
key number is used in each independent process.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-17
 All Rights Reserved

IPC Structure Creation

• IPC structures are generated by calling the function
associated with the structure we want to create:

− The semget() function is used to create a semaphore
structure.

− The msgget() function is used to create a message queue.

− The shmget() function is used to create a shared memory
segment.

• These three “get” functions all have two similar
arguments: a key and a flag.

− The key is of type key_t and is defined by the programmer.
The key will be associated with an identifier by the Kernel. If
IPC_PRIVATE is defined as the key, a new IPC structure
will be created (instead of referencing an existing one).

− The flag parameter is an integer in which we usually place
predefined values. IPC_CREAT means that the IPC resource
must be created. IPC_EXCL indicates that the “get” function
must return an error if the structure already exists and the
IPC_CREAT is also set.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-18
 All Rights Reserved

IPC Permission Structure

• Each IPC structure (message queue, semaphore or
shared memory area) has a permission structure
called ipc_perm associated with it. This structure
contains the following information:

− The owner’s group and user ID

− The creator’s group and user ID

− Access modes (permission bit mask)

− Slot usage sequence number

− Key number

• All fields (except seq) in the permission data structure
are initialized when the IPC structure is created.

• The creator of the IPC structure or the superuser
may modify the user ID, group ID and access mode
fields by calling msgctl(), semctl() or shmctl() (for the
message queue, semaphore or shared memory area
respectively). These functions also allow us to retrieve
some information about an IPC structure.

• Note that the ipc_perm structure is defined as
ipc_perm in /usr/include/bits/ipc.h (libc includes) and
as ipc64_perm in the include/asm-i386/ipcbuf.h
(Kernel sources).

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-19
 All Rights Reserved

IPC System Call

• When programs running in User space call a function
like msgget(), the program actually calls a libc library
function (a wrapper) that invokes the ipc system call.

• Due to historical design decisions, each IPC function
in User space is converted to the ipc system call. This
was considered a better decision than implementing
separate system calls for each one of the IPC
functions.

• The sys_ipc Kernel function (the implementation of
the ipc system call) determines which function called
the system call and invokes the corresponding Kernel
function.

• In fact, some implementations of Linux on other
architectures (the Alpha for example) provide
separate system calls for each single IPC function
called by User space programs.

• The implementation of sys_ipc can be found in
arch/i386/kernel/sys_i386.h. The comments included
in the code should give you an idea of how ugly this
system call is perceived by Linux Kernel developers.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-20
 All Rights Reserved

IPC: Messages

• Processes can send and receive messages by using
IPC messages. A message is sent by a process to an
IPC message queue, where it can be retrieved by
another process for reading.

• The msgsnd() function is used to send a message. Its
parameters include:

− The IPC identifier of the message queue where the message
should be sent

− The size of the message in bytes

− The address of a message buffer in User space that contains
the message type and the message (in clear text) itself.

• The msgrcv() function does the corresponding
operation of receiving a message which is waiting in
the message queue, and it must include the following
parameters:

− The IPC identifier of the message queue from which the
message is received.

− The address of a buffer where the message will be stored.

− The size of the buffer

− A value t describing which message should be retrieved. If
this value is 0, the first message in the queue will be selected.
If it is a positive number, the first message that contains a
matching type value will be selected.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-21
 All Rights Reserved

IPC: Messages (Cont’d)

• A message resource is described by the msqid_ds data
structure, defined in /include/asm-i386/msgbuf.h.
This structure contains the following information:

− Permissions

− Last time a message was received and sent

− Last time the structure was changed

− Number of bytes and messages in the queue

− Maximum number of bytes in the queue

− PID of the last process which received and sent a message

• The message queue is described by the msg_queue
data structure. It carries the following information:

− The message queue contains the same information as the
msqid_ds data structure.

− It also contains pointers to the actual messages; q_messages
is a doubly linked list of messages (each node contains a next
and prev pointer that refers to a msg_msg structure).

• The messages are contained in msg_msg (one data
structure for each message). It contains:

− Pointers to next and previous msg_msg structures in the list

− Message type and size

− The actual message

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-22
 All Rights Reserved

IPC: Semaphores

• Semaphores are not similar to the conventional
interprocess communication mechanisms that we are
used to see. A semaphore is basically a counter that
provides access for two or more processes to a shared
object.

• The value of the semaphore determines if a process
can access the data or not:

− The semaphore value is positive if the data is available. In
this case, the process that needs access to the data has to
decrement the value of the semaphore before accessing the
data.

− Its value is negative or 0 if the data is already being access by
another process, and therefore unavailable. In this case, the
process has to wait until it becomes positive.

− When a process that was using the data stops using it, it
increments the value of the semaphore so that the other
processes that were waiting for it could wake up and take
control of the data.

• The process of testing the semaphore value must be
atomic, so they are implemented in the Kernel
(implementing it in User space could not make it
absolutely atomic).

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-23
 All Rights Reserved

IPC: Semaphores (Cont’d)

• In order to access a shared object controlled by a
semaphore, a process has to go through the following
steps:

− Call the semget() function with the IPC key of the semaphore
and the number of necessary semaphores as the arguments.
The process will then be able to acquire the semaphore
identifier. If the semaphore does not already exist, the
IPC_CREATE flag must be set, so that a new structure is
created.

− The semop() function is invoked to test and decrement the
semaphore specified in the arguments.

− The process accesses the shared resource.

− The function semop() is invoked for the second time, now to
increment the semaphore involved in the operation and let
other processes access it if necessary.

− The function semctl() can optionally be called in order to
remove a semaphore from the Kernel.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-24
 All Rights Reserved

IPC: semid_ds and sem

• The semget() function can create, with the flag
argument properly set, a new semaphore. The
created structure is in fact an array of counters
(called primitive semaphores, their number is
specified as a semget argument) inside the
semaphore. The semaphore array is described by the
semid_ds data structure, which contains the following
fields:

− Permissions

− Last semop() time

− Last time the semaphore was modified

− Number of semaphores in the array

• Each primitive semaphore is described internally by
the sem data structure, which contains:

− The current value of the primitive semaphore

− The PID of the last process which accessed the semaphore

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-25
 All Rights Reserved

IPC: Shared Memory

• The IPC shared memory is arguably the most
popular IPC mechanism. It allows processes to access
some common data structures by making them
available in a shared memory segment.

− This is often the fastest method for exchanging data between
processes. Since there is no need to copy the information
between the processes, the Kernel has less work to do and
can operate more quickly.

− The most important issue raised with shared memory is
synchronization. The shared memory area must be managed
so that a process cannot write this area when another one
reads it. Semaphore can therefore be used to protect those
memory areas.

• Definitions and data structures associated with
shared memory can be found in include/linux/shm.h.

• The shmget() function must be invoked to obtain a
shared memory identifier. The following arguments
are needed:

− The key field identifies the memory region in the program.

− The size value is the minimum length of the shared segment.
For an existing segment we can take the value 0.

− The flags IPC_CREATE and/or IPC_EXCL, along with the
access mode bits.

− The shared memory ID is returned if there was no error.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-26
 All Rights Reserved

IPC: shmat Function

• After a shared memory region has been created with
the shmget() function, the process needs to attach it to
its own address space by invoking the shmat()
function.

− The ID number that was returned from shmget() is the first
argument of shmat().

− The address in the process memory space at which the newly
shared memory region is attached must be defined by the
second argument. This is usually equal to 0, since this value
lets the Kernel decide where to place the new memory
segment. Other values may bring errors if the program is
ported to other architectures.

− The third argument is the flag field. We could, for example,
specify the SHM_RDONLY so that the process only gets
read-only access to the memory region.

− The returned value of shmat() is the address where the shared
memory region is shared.

• The shmdt() function is called in order to detach the
memory region from the current process. A single
argument is needed in this case, which is the memory
address of the shared memory region (this address
was returned by the first call to shmat).

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-27
 All Rights Reserved

IPC: Shared Memory Data Structures

• Note that the mechanism used to keep track of the
shared memory areas in the Kernel is quite different
in the Kernel 2.4.x if we compare with the older
versions, so don’t expect to find the same mechanisms
in 2.2.x.

• A shmid_kernel data structure describes the memory
area that is shared among two or more processes.
This memory is calculated in terms of shared page
frames.

• A set of pages is linked to this descriptor. This is the
actual shared memory region.

• A linked list of vm_area_struct data structures
represents the memory areas associated with the
shared memory for each process. If two processes are
sharing the same memory region, this list will contain
two vm_area_struct elements.

− The implementation of this data structure can be found in
include/linux/mm.h.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-28
 All Rights Reserved

Sockets

• Processes may communicate together by using socket-
based mechanisms (also known as BSD sockets).
There are two main types of socket addressing
formats:

− AF_INET are sockets that use Internet addresses (four bytes
numbers written as four decimal numbers separated by
periods) as their addressing format. Combined with the use of
port numbers, this addressing scheme allows more than one
AF_INET socket on a given machine and more than one
machine to communicate.

− AF_UNIX are sockets that may only be used on the current
local machine. They use UNIX pathnames as the addressing
scheme and are very useful for communication between
processes running on the same machine.

• This section will focus on AF_UNIX sockets, also
called UNIX domain sockets. AF_INET sockets will
be discussed in Chapter 10, which deals with
networking internals.

• The implementation of the AF_UNIX can be found in
net/unix/af_unix.c.

• BSD sockets may be either anonymous (which is the
case when they are created by the socketpair()
function) or linked with a socket entry in the
filesystem, in which case the socket would be subject
to the associated filesystem permission checks.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-29
 All Rights Reserved

Sockets (Cont’d)

• The socket() function returns a socket descriptor,
which acts similarly to file descriptors returned by
the open() function.

− Each descriptor number represents an open file, a socket, or
neither. A descriptor number never represents both a socket
and a file.

− Many system calls (such as the close function) accept both
socket and file descriptors.

• The socket() function needs the address format as its
first argument. All subsequent operations on the
returned socket will be interpreted accordingly to the
specified address format (in our case AF_UNIX).

• A socket does not initially have a name (or address)
associated with it. Since two processes need to access
the same socket, they must be able to recognize it:

− The bind() function is used bind the socket descriptor to an
address.

− A socket does not have a name (thus, it cannot be used by
any other process) until an address is assigned to it with the
bind() system call.

− The bind() function takes the socket descriptor, the address
(of type sockaddr) and the length of the address in bytes are
the argument of the bind() function.

• Socket internals will be discussed in Chapter 10.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-30
 All Rights Reserved

Questions

7. What are the two elements common to every IPC mechanism?

8. What is the advantage of grouping all IPC-related functions
that are called from User space in a single system call named
sys_ipc?

9. How can a client and a server agree on a common IPC
structure in order to communicate together?

10. Why are IPC and UNIX sockets considered reliable compared
to network sockets?

11. What is the fastest form of IPC, and why?

12. What are race conditions?

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 4-31
 All Rights Reserved

Summary

• Pipes and FIFOs are easily used for interprocess
communication in UNIX programs and can usually
be ported to other UNIX flavors without too much
effort.

• The IPC standard allows three communication
mechanisms: messages, semaphores and shared
memory areas.

• Using the IPC standard is advantageous because all
three mechanisms are used in a similar fashion and
can be quite easily ported across other UNIX flavors.

• Socket-based interprocess communication can be
more complex to use, but interprocess local
communications may be easily converted to
interprocess network communications for an
application using a client-server model.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-1
 All Rights Reserved

Chapter 12

Boot Process

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-2
 All Rights Reserved

Boot Process

Objectives

 After completing this unit you will be able to:

• Explain what happens when a PC is turned on and
boots the Linux Kernel.

• Identify what functionality is expected from a boot
loader such as LILO.

• Identify where every component of the Linux Kernel
is initialized.

• Configure, install and troubleshoot LILO, the Linux
Boot Loader.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-3
 All Rights Reserved

Booting Process – Introduction

• The booting process is architecture specific. Booting a
Sun SPARC machine, for example, will involve a
totally different process from booting an Intel
machine.

• The booting process for a PC under Linux can be
separated in five different steps:

− System startup, during which the boot device and boot sector
are selected by the BIOS.

− The boot sector loads the setup code, decompression routines
and compressed kernel images.

− The kernel is decompressed in protected mode.

− Low-level initialization is performed.

− High-level C initialization of the Kernel is completed.

• We will describe each one of these steps in the
following pages.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-4
 All Rights Reserved

Step One : System Startup

• In this stage the system’s hardware devices, including
RAM, are in a random, inconsistent state.

− The RESET pin on the CPU is asserted.

− Some registers on the processor are set to fixed values; ds, es,
fs, gs and ss are all set to 0.

− The code at the physical memory address 0xfffffff0 is
executed. This memory location corresponds to a read-only
memory chip (ROM) that contains a suite of programs
traditionally called BIOS (Basic Input/Output System). This
checks the system devices in order to make sure they work
properly and initializes the interrupt vector at physical
address 0.

− The BIOS invokes its bootstrap loader function, which copies
the first sector of the bootable device (usually the floppy
drive or the hard disk, as determined by the BIOS settings) at
physical address 0x00007C00, then executes the code at this
address.

− The BIOS also provides several functions for handling low-
level devices’ input and output. Some operating systems,
such as MS-DOS, make fairly extensive use of these
functions. However, the Linux Kernel provides its own
mechanisms for handling these low-level tasks. This is due to
the fact that the Kernel executes its operations in protected
mode, whereas the BIOS works in real mode. It is thus
impossible to share the BIOS functions with the Linux
Kernel.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-5
 All Rights Reserved

Step Two : Boot Loader

• At this point, the BIOS is executing the boot loader
located at physical address 0x00007C00.

− The boot loader is a program invoked by the BIOS to load
the image of the operating system Kernel into RAM.

• For a PC system booting Linux, the boot loader may
be either:

− The Linux boot sector, which is coded in
arch/i386/boot/bootsect.S and is automatically included with
any Kernel image.

− LILO (Linux Loader), which is a program allowing the user
to select which operating system will be launched on the
system, in cases there are more than one.

− No boot loader is also a possible option. In this case, a
program such as LOADLIN may be used.

• The boot process at this stage is heavily dependent on
the media being used to boot Linux.

− Booting from a floppy disk will only involve copying the
first sector to RAM and executing it.

− Booting from a hard disk will involve copying the Master
Boot Record (MBR), which includes the partition table and a
program that loads the first sector of the partition containing
the OS (which is the active partition if MS-DOS is used). In
this case, Linux replaces this program by another one (like
LILO) that is more versatile than the original one supplied
with MS-DOS or other similar operating systems.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-6
 All Rights Reserved

Linux Boot Sector

• The first option that is offered in order to load Linux
involves using the Linux boot sector, and is often used
on bootable floppy disks.

− The Linux boot sector is always included in Kernel images.

− When a new Kernel is compiled, the assembly code located
in the arch/i386/boot/bootsect.S is automatically copied at the
beginning of the Kernel image file.

− Thus, the first few kilobytes of code in the Linux Kernel
image are not the Kernel itself, but a totally different program
that is used to load the Kernel.

• Typically, we can make a floppy boot disk by using
the following command:
dd if=bzImage of=/dev/fd0

• This command will dump the Kernel image on the
floppy disk.

− The beginning of the Kernel image will correspond to the
first sector of the floppy disk.

− When the BIOS loads the first sector of the floppy disk, the
beginning of the Kernel (the code of the Linux boot sector) is
actually the part that is loaded into RAM.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-7
 All Rights Reserved

Linux Boot Sector (Cont’d)

• The Linux boot sector goes through the following
steps when it is invoked by the BIOS:

− It first moves itself from physical address 0x00007C00
(where it was copied by the BIOS) to physical address
0x00090000. These addresses are defined by the BOOTSEG
and INITSEG variables in bootsect.S.

− The real mode stack is initialized at address 0x00003FF4.

− The disk parameter table is set up. This is used by the BIOS
in order to use the floppy device driver.

− A BIOS function displaying the “Loading…” message is
invoked.

− A BIOS function is executed that will load the setup()
function of the Kernel image in RAM, precisely at address
0x00090200 (defined by DEF_SETUPSEG). Note that the
setup function is not executed at this point.

− Another BIOS procedure is invoked to load the whole Kernel
image in RAM at physical address 0x00010000 if the Kernel
was compiled with “make zImage” or at physical address
0x00100000 if it was built with “make bzImage”. These two
options are often referred to as the Kernel being loaded low
or high.

− The setup() function is now executed.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-8
 All Rights Reserved

Linux Loader (LILO)

• Linux is generally loaded from a hard disk, where the
most commonly used boot loader is LILO.

• LILO may be located either on the Master Boot
Record or in the boot sector of a disk partition.

− If it is placed on the MBR, it will replace the small program
that was originally placed at this location.

− If it is placed on the boot sector of a disk partition, this
partition must usually be made active so that the boot loader
of the MBR can properly switch to it.

• LILO is divided into two components. Otherwise,
making it fit into the MBR would be impossible due
to the relatively large size of this program.

− The MBR or partition boot sector contains the smallest part
of LILO.

− When it is executed, this smaller part moves itself to
0x0009A00.

− The read mode stack is initialized.

− The second component of LILO is loaded into RAM at
0x0009B00. When executed, this part reads a list of available
OS and asks the user to choose among one of them.

− LILO then loads the corresponding boot sector into RAM. If
this is a Linux operating system, LILO essentially executes
the same steps as the ones we described for the Linux boot
sector. The setup() function is finally executed.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-9
 All Rights Reserved

Setup Function

• The setup function is coded in assembly language and
is located in Setup.S.

• This function initializes various hardware devices
and sets up the environment for the execution of the
Kernel.

− It first finds the amount of RAM available.

− Even though the BIOS already initialized most devices
running on the system, Linux does not rely on it and uses its
own initialization procedures. This is done to enhance
portability and avoid problems in case of a defective BIOS.

− Parameters concerning the hard disk, mouse controller and
APM support are fetched from the hardware.

− The compressed Kernel image is moved to the physical
address 0x10000.

− The interrupt descriptor table (IDT) and global descriptor
table (GDT) are set up.

− The PIC (Programmable Interrupt Controller) is
reprogrammed to map 16 hardware interrupts from vector 32
to 47.

− The CPU is switched from real mode to protected mode by
setting a bit on the cr0 status register located on the CPU.

− The startup_32() function, located at physical address
0x00100000 (if the Kernel is loaded high) is executed.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-10
 All Rights Reserved

Step Three: Kernel decompression

• The startup_32() function, located in
arch/i386/boot/compressed/head.S, is executed in this
step.

• The decompress_kernel() function is invoked, first
displaying the “Uncompressing Linux…” message.

− The Kernel image is decompressed and placed at physical
address 0x00100000 if it was originally loaded low.

− The decompression code comes from
boot/compressed/misc.c. It includes the gzip algorithms used
for uncompressing the zImage or bzImage, which are both
compressed with gzip.

Note that the difference between 'zImage' files and
'bzImage' files is that 'bzImage' uses a different
layout and a different loading algorithm, and
therefore has a larger capacity. Contrarily to
common belief among Linux users, both files use
gzip compression. The 'bz' in 'bzImage' stands for
'big zImage', not for 'bzip'!

− If the Kernel image was loaded high, its decompressed code
is placed just after the location of the compressed image. It is
then moved to address 0x00100000.

• The code at address 0x00100000 (the location of the
decompressed Kernel image) is then executed. This
actually starts the Linux Kernel.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-11
 All Rights Reserved

Step Four: Low-level initialization

• The first part of the Kernel image is located in
arch/i386/kernel/head.S and is also called the
startup_32() function.

− This function is totally different from the one we described in
step two, even if they use the same name. Besides confusing
Kernel programmers, having the same name for both
functions does not create any problem.

• This second startup_32() function prepares the
operating system environment to start the first
process. The following steps are performed:

− Segmentation registers and page tables are initialized.

− The Kernel mode stack is set for the first process (process 0).

− The setup_idt() function is called in order to fill the IDT with
null interrupt handlers.

− Parameters of the system obtained from the BIOS and the
user are stored in the first page frame.

− Information about the current processor is gathered.

− The address of the GDT and IDT are stored in the gdtr and
idtr CPU registers.

− The start_kernel() function is executed. In case the system
contains multiple cpus, only the first one calls this function.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-12
 All Rights Reserved

Step Five: High-level initialization

• The start_kernel() function is the last step in Kernel
startup.

− This function is coded in C, and is located in init/main.c.

− It is architecture-independent, so no operation included in
this function should involve hardware-specific elements.

• When invoked, start_kernel() goes through the
following steps:

− It asks for a global Kernel lock, so that only one processor
can execute the initialization code.

− It prints the Linux "banner" containing the version number,
compiler used to build it, the date at which it was compiled,
etc. This is taken from the variable linux_banner defined in
init/version.c and can be retrieved in /proc/version.

− The command line options passed by LILO are parsed and
processed.

− Traps and IRQs are initialized by trap_init() and init_IRQ().
This constitutes the final initialization of the IDT.

− Data required by the scheduler is initialized by sched_init().

− The system date and time are set up by time_init().

− The software IRQ subsystem is initialized by softirq_init().

− The console is initialized by console_init(), so that a remote
serial console will start receiving the Kernel output.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-13
 All Rights Reserved

High-level initialization (Cont’d)

• The following steps are also executed in start_kernel()
but some of them are invoked only if they were
compiled in the Kernel:

− The dynamic module loading mechanisms are initialized by
the init_modules() function.

− Most of the slab allocator is initialized by
kmem_cache_init(). The remaining part will be set by
kmem_cache_sizes_init().

− Interrupts are enabled by set().

− The BogoMips value corresponding to the current CPU is
calculated by calibrate_delay().

− The mem_init() function initializes page descriptors.

− Data structures used by the /proc filesystem are set up by
proc_root_init().

− The fork_init() function initializes the maximum number of
threads and processes based on the amount of memory
available on the system.

− Caches for the Virtual File System are initialized in
vfs_caches_init(), based on the number of pages available on
the system.

− The IPC subsystem and quota support are set up.

− check_bugs() check the CPU for known hardware bugs.

− A kernel thread starts executing the init() function.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-14
 All Rights Reserved

High-level initialization (Cont’d)

• Now that the basic components of the Linux Kernel
are up and running, the init() thread will start
invoking the initialization function for the higher-
level elements of the Kernel.

• At this point, the CPU, memory and process
management mechanisms are running. The
do_basic_setup() function is called by the thread and
executes the following steps:

− Bus-related elements are first initialized by calling pci_init(),
sbus_init(), mca_init(), isapnp_init() and other similar
functions.

− do_initcalls() is invoked, which goes through the list of
functions registered by means of __initcall or module_init()
macros and executes them.

− Various filesystems are initialized, along with the PCMCIA
subsystem if it is available on this system.

− The root filesystem is mounted, so that the Kernel may
access files located on it.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-15
 All Rights Reserved

The Init Thread

• After do_basic_setup() has finished, the Kernel
returns to the init() thread in order to continue the
system initialization:

− The free_initmem() function is executed, which frees the
initialization code that we no longer need. If you recall,
various functions in the Kernel were registered with the
__init macro. These functions are simply removed from
memory at this point since the Kernel will never call them
again (typically, an initialization function is called only once,
when the system is started). Note that this is architecture-
specific, so it might be unavailable for some processors.

− The console is opened in read-write mode, so that the user
may input some commands.

• The first running process is finally started.

− If the “init=” option was passed to the Kernel by the loader,
the program specified as the argument will be executed. This
allows the local user to specify any program located on the
root partition that should replace init.

− If no init option was specified in the loader, the Kernel tries
to execute, in order, /sbin/init, /etc/init, /bin/init and /bin/sh.

− If none of these files are found on the root partition, the “ No
init found. Try passing init= option to kernel.” Message is
printed on the console. In this case, the system is completely
unusable since no user can log in and daemons cannot be
started.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-16
 All Rights Reserved

LILO: The Linux Loader

• LILO, the Linux boot loader, is primarily known as a
tool that allows multiple operating systems to share
one or more hard drives on a PC.

• However, LILO could also be used for other
purposes.

− In our specific case, LILO allows Kernel developers to
interactively specify from which Kernel they want to boot
their computer. If a development Kernel proves to be
unstable, the developer may just reboot the machine and
specify another Kernel image that boots properly.

− LILO is also very effective for passing parameters to the
Kernel. For example, if you want to modify which program
will be used as the init process, you may enter the following
line at the LILO prompt:

LILO: linux init=/sbin/init_test

• We will describe in the following pages the basic
structure upon which LILO is built and how it fits in
the MBR, the files associated with it, its parameters,
and finally its startup and error messages.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-17
 All Rights Reserved

LILO-Related Files

• The map installer is usually located in /sbin/lilo. This
program installs LILO on the computer it is executed
on.

− Whenever the Kernel is modified and copied in /boot (this is
the default location for Kernel images), the lilo executable
should be run in order to refresh the MBR or the boot sector
of the partition on which LILO is installed.

− This program puts all files belonging to LILO at their
appropriate place and stores information about the location of
data needed at boot time, such as the Kernel images.

• The /etc/lilo.conf is the LILO configuration file,
which contains various settings and configurations
concerning the way LILO operates on the current
system.

• The boot loader is located in /boot/boot.b.

− It is the part of LILO that is loaded by the BIOS and that
loads the kernel or the boot sector of other operating systems
handled by LILO.

− It also provides a simple command-line interface to
interactively select the item to boot and to add boot options.

• The map file, which is located in /boot.

• Kernel images, usually located in /boot (although this
is not a requirement) are accessed by the map
installer.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-18
 All Rights Reserved

LILO Structure In The MBR

• The most commonly used configuration of LILO
involves the boot loader being installed in the Master
Boot Record (MBR).

− In this configuration, LILO takes control of the entire boot
procedure. It may have to decide, for example, whether
Linux or DOS should be loaded.

− This has one drawback: the old version of the MBR is
completely erased by the map installer in order to install
LILO. Thus, the old version needs to be saved if we might
need to reinstall it later.

Note: The MBR may be saved with the dd command:
dd if=/dev/hda of=/mnt/fd/MBR bs=512 count=1

• The MBR always contains the following fields,
independent of the booting technique that is used:

− The first 446 bytes of the MBR contain the loader program.
This is often referred to as the first stage loader in LILO.

− The next field is the partition table, which is 64-byte long.

− The last two bytes contain a magic number, which is used to
check if a given sector is a boot sector.

• LILO cannot be stored at the following places:

− Boot sector of a non-Linux partition or floppy-disk

− On a Swap partition or the second hard disk

− Boot sector of a logical partition

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-19
 All Rights Reserved

LILO Startup Messages

• When the computer boots, the “LILO” message is
sent to the console. This message is also used to
diagnose malfunctions in the boot process.

− Each letter is sent to the console after a specific step has been
executed in the boot process.

• The following sequence corresponds to the described
errors:

− No parts of LILO have been loaded if nothing is printed. This
means that LILO is not loaded, or the partition on which it is
installed is not active.

− If “L” followed by a number are sent to the console, then the
first boot loader has been executed but it cannot, for some
reasons, load the second boot loader. The number after the
“L” indicates what type of error has occurred.

− An “LI” message means that the two boot loaders were
loaded, but the second one failed to execute. This may be
caused by a disk geometry error.

− “LIL” indicates that the second boot loader has been
executed, but it cannot load the descriptor table from the map
file (/boot/map).

− “LIL?” means that the second loader is loaded at a wrong
address due to a geometry mismatch.

− “LIL-“ indicates that the descriptor table is corrupted.

− “LILO” indicates that every stage was completed
successfully.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-20
 All Rights Reserved

LILO Startup Error Numbers

• As we have seen previously, an “L” followed by one
of the following numbers indicates a disk error:

− 0x00 refers to an internal error. A file may be corrupted.

− 0x01 indicates that the disk is not supported by the BIOS.

− 0x02 means that the disk is experiencing some problems.

− 0x03 indicates that write operations failed due to a read-only
disk.

− 0x04 refers to a geometry mismatch because the sector was
not found.

− 0x06 is usually a temporary flaw. Reboot and try again.

− 0x07 indicates that the device controller was not properly
initialized.

− 0x0C indicates a media error. Reboot and try again.

− 0x10 refers to a CRC error. This could be serious if rebooting
again does not solve the problem.

− 0x80 indicates a disk time-out, which means that the disk is
not ready.

− 0x80 means that the BIOS returned an error.

• If the error occurred during a write operation, the
number will be prefixed with a “W”.

• Look at the LILO documentation for other, less
common errors that you may encounter.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-21
 All Rights Reserved

LILO Error Messages

• Some error messages may be presented to the user
when executing the /sbin/lilo command. We will
describe the most important ones.

• Boot sector of hda doesn't have a [boot or LILO]
signature.

− This indicates that the sector from which the user tried to
uninstall LILO does not appear as a LILO boot sector.

• Can't put the boot sector on logical partition 1,

− This error message means that the map installer made an
attempt at installing LILO on the current root partition, which
is also a logical partition. This is a common problem when
installing LILO on a logical partition, and we should try
whenever possible to install it on a primary partition.

• Checksum error

− Indicates that the descriptor table in the /boot/map file has an
invalid checksum. The file is therefore inconsistent.

• Device 0x01: Configured as inaccessible.

− Means that the corresponding device is not accessible from
the BIOS.

• Device 0x01: Got bad geometry <sec>/<hd>/<cyl>

− The corresponding SCSI device driver does not support
automatic disk geometry, so it should be specified manually
in the lilo.conf file.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-22
 All Rights Reserved

LILO Error Messages (Cont’d)

• /dev/tape-d is not a valid partition device

− The device is not identified as a valid one for installing
LILO.

• Duplicate entry in partition table

− The partition table is inconsistent because it contains the
same entry twice.

• First sector of hdc doesn't have a valid boot signature

− The boot device specified does not have a valid boot sector,
probably because the wrong device was specified in lilo.conf.

• geo_comp_addr: Cylinder number is too big (1248 >
1023)

− This indicates that LILO is trying to access a file that goes
beyond the 1024th cylinder of the partition. Note that this
error no longer exists for newer versions of LILO, since files
located after the 1024th cylinder are now supported.

• Kernel is too big

− This could occur when Kernels located bellow 0x10000 are
larger 512 KB. A simple solution to this problem is to
compile the kernel as a “big zImage” (bzImage), which will
load the Kernel on a higher memory address (0x100000). If
this is not possible, the only way to resolve the problem is to
take out some components of the Kernel.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-23
 All Rights Reserved

LILO Error Messages (Cont’d)

• Partition entry not found

− This indicates that the partition entry from which another OS
was supposed to be booted does not exist in the partition
table.

• write <item>: <error_reason>

− The disk on which lilo tried to write the new boot sector is
mounted as read-only or does not have any space left.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-24
 All Rights Reserved

Questions

1. Explain why using a password for the root user is not really
efficient for protecting a computer against malicious access if
physical access is not properly controlled.

2. How could we modify the Kernel to fix at least this particular
security problem?

3. What compression algorithm is used to compress Kernel
images? What would we have to do in order to modify this
algorithm or replace it with a more efficient one?

4. Why is LILO separated in two parts during the boot process?

5. What is the difference between loading the Kernel “high” and
loading it “low”?

6. The number of BogoMIPS associated with the current machine
is calculated during the boot process. What does the resulting
number mean? By looking at the algorithm used in main.c, is
the BogoMIPS value reliable?

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-25
 All Rights Reserved

Summary

• Loading a PC running Linux involves five steps:

− System startup

− Code loading by the boot sector

− Kernel decompression

− Low-level initialization

− High-level C initialization

• At the end of these five steps, the init process takes
control of the system boot process and executes the
remaining stages of the system boot process.

• LILO is the most commonly used program for
booting Linux system.

• LILO replaces the code in the boot sector by its own,
and allows the user to select which OS the computer
should boot.

Linux Internals

Rev. 1.3 Copyright © 2002 Object Innovations, Inc. 12-26
 All Rights Reserved

