
ers.

bly

MA

.

d the

r the
ral
k
ng
e.

ions

truc-
 loca-
Using Inline Assembly With gcc

Clark L. Coleman (plagiarist/researcher)

1.0 Overview

This is a compilation in FrameMaker of three public domain documents written by oth
There is no original content added by myself. The three documents are:

1. A portion of the gcc info page for gcc 2.8.1, dealing with the subject of inline assem
language.

2. A tutorial by Brennan Underwood.

3. A tutorial by colin@nyx.net.

2.0 Information from the gcc info pages

2.1 General and Copyright Information

This is Info file gcc.info, produced by Makeinfo-1.55 from the input file gcc.texi.

 This file documents the use and the internals of the GNU compiler.

 Published by the Free Software Foundation 59 Temple Place - Suite 330 Boston,
02111-1307 USA

 Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc

Permission is granted to make and distribute verbatim copies of this manual provide
copyright notice and this permission notice are preserved on all copies.

 Permission is granted to copy and distribute modified versions of this manual unde
conditions for verbatim copying, provided also that the sections entitled “GNU Gene
Public License,” “Funding for Free Software,” and “Protect Your Freedom--Fight ‘Loo
And Feel’” are included exactly as in the original, and provided that the entire resulti
derived work is distributed under the terms of a permission notice identical to this on

File: gcc.info, Node: Extended Asm, Next: Asm Labels, Prev: Inline, Up: C Extens

2.2 Assembler Instructions with C Expression Operands

In an assembler instruction using ‘asm’, you can now specify the operands of the ins
tion using C expressions. This means no more guessing which registers or memory
tions will contain the data you want to use.
Using Inline Assembly With gcc January 11, 2000 1

ut
r is
con-
escrip-

ssion
rand,
parate
 or to
ion,

 two

put
e data
ssem-
bler

he
ssed
CC
utput.

hese
 does

racter

 only
rate

tween
en the
rent

ar’
 You must specify an assembler instruction template much like what appears in a
machine description, plus an operand constraint string for each operand.

 For example, here is how to use the 68881’s ‘fsinx’ instruction:

asm (“fsinx %1,%0” : “=f” (result) : “f” (angle));

Here ‘angle’ is the C expression for the input operand while ‘result’ is that of the outp
operand. Each has ‘”f”’ as its operand constraint, saying that a floating point registe
required. The ‘=’ in ‘=f’ indicates that the operand is an output; all output operands’
straints must use ‘=’. The constraints use the same language used in the machine d
tion (*note Constraints::.).

Each operand is described by an operand-constraint string followed by the C expre
in parentheses. A colon separates the assembler template from the first output ope
and another separates the last output operand from the first input, if any. Commas se
output operands and separate inputs. The total number of operands is limited to ten
the maximum number of operands in any instruction pattern in the machine descript
whichever is greater.

 If there are no output operands, and there are input operands, then there must be
consecutive colons surrounding the place where the output operands would go.

 Output operand expressions must be lvalues; the compiler can check this. The in
operands need not be lvalues. The compiler cannot check whether the operands hav
types that are reasonable for the instruction being executed. It does not parse the a
bler instruction template and does not know what it means, or whether it is valid assem
input. The extended ‘asm’ feature is most often used for machine instructions that t
compiler itself does not know exist. If the output expression cannot be directly addre
(for example, it is a bit field), your constraint must allow a register. In that case, GNU
will use the register as the output of the ‘asm’, and then store that register into the o

 The output operands must be write-only; GNU CC will assume that the values in t
operands before the instruction are dead and need not be generated. Extended asm
not support input-output or read-write operands. For this reason, the constraint cha
‘+’, which indicates such an operand, may not be used.

 When the assembler instruction has a read-write operand, or an operand in which
some of the bits are to be changed, you must logically split its function into two sepa
operands, one input operand and one write-only output operand. The connection be
them is expressed by constraints which say they need to be in the same location wh
instruction executes. You can use the same C expression for both operands, or diffe
expressions. For example, here we write the (fictitious) ‘combine’ instruction with ‘b
as its read-only source operand and ‘foo’ as its read-write destination:

 asm (“combine %2,%0”
 : “=r” (foo)
 : “0” (foo), “g” (bar));
Using Inline Assembly With gcc January 11, 2000 2

d 0.
t

ce as
ntee
ould

egis-
opy
oper-
nce
ill not

lon
n as

ll
er’s
one

st of
 a spe-
ition

r

em-
ues

pa-
uch
 to do
nd nei-
isters
The constraint ‘”0”’ for operand 1 says that it must occupy the same location as operan
A digit in constraint is allowed only in an input operand, and it must refer to an outpu
operand.

Only a digit in the constraint can guarantee that one operand will be in the same pla
another. The mere fact that ‘foo’ is the value of both operands is not enough to guara
that they will be in the same place in the generated assembler code. The following w
not work:

 asm (“combine %2,%0”
 : “=r” (foo)
 : “r” (foo), “g” (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different r
ters; GNU CC knows no reason not to do so. For example, the compiler might find a c
of the value of ‘foo’ in one register and use it for operand 1, but generate the output
and 0 in a different register (copying it afterward to ‘foo’’s own address). Of course, si
the register for operand 1 is not even mentioned in the assembler code, the result w
work, but GNU CC can’t tell that.

 Some instructions clobber specific hard registers. To describe this, write a third co
after the input operands, followed by the names of the clobbered hard registers (give
strings). Here is a realistic example for the Vax:

 asm volatile (“movc3 %0,%1,%2”
 : /* no outputs */
 : “g” (from), “g” (to), “g” (count)

: “r0”, “r1”, “r2”, “r3”, “r4”, “r5”);

 If you refer to a particular hardware register from the assembler code, then you wi
probably have to list the register after the third colon to tell the compiler that the regist
value is modified. In many assemblers, the register names begin with ‘%’; to produce
‘%’ in the assembler code, you must write ‘%%’ in the input.

 If your assembler instruction can alter the condition code register, add ‘cc’ to the li
clobbered registers. GNU CC on some machines represents the condition codes as
cific hardware register; ‘cc’ serves to name this register. On other machines, the cond
code is handled differently, and specifying ‘cc’ has no effect. But it is valid no matte
what the machine.

 If your assembler instruction modifies memory in an unpredictable fashion, add ‘m
ory’ to the list of clobbered registers. This will cause GNU CC to not keep memory val
cached in registers across the assembler instruction.

 You can put multiple assembler instructions together in a single ‘asm’ template, se
rated either with newlines (written as ‘\n’) or with semicolons if the assembler allows s
semicolons. The GNU assembler allows semicolons and all Unix assemblers seem
so. The input operands are guaranteed not to use any of the clobbered registers, a
ther will the output operands’ addresses, so you can read and write the clobbered reg
Using Inline Assembly With gcc January 11, 2000 3

; it

the
con-
bler
 out-

ust

st Unix

iler’s
them

 them

per
ly to

se a
re
int’
ri-
ts it.

 the
t mean
 the
f
our
as many times as you like. Here is an example of multiple instructions in a template
assumes that the subroutine ‘_foo’ accepts arguments in registers 9 and 10:

asm (“movl %0,r9;movl %1,r10;call _foo”
 : /* no outputs */
 : “g” (from), “g” (to)
 : “r9”, “r10”);

Unless an output operand has the ‘&’ constraint modifier, GNU CC may allocate it in
same register as an unrelated input operand, on the assumption that the inputs are
sumed before the outputs are produced. This assumption may be false if the assem
code actually consists of more than one instruction. In such a case, use ‘&’ for each
put operand that may not overlap an input. *Note Modifiers::.

 If you want to test the condition code produced by an assembler instruction, you m
include a branch and a label in the ‘asm’ construct, as follows:

 asm (“clr %0;frob %1;beq 0f;mov #1,%0;0:”
 : “g” (result)
 : “g” (input));

This assumes your assembler supports local labels, as the GNU assembler and mo
assemblers do.

 Speaking of labels, jumps from one ‘asm’ to another are not supported. The comp
optimizers do not know about these jumps, and therefore they cannot take account of
when deciding how to optimize.

 Usually the most convenient way to use these ‘asm’ instructions is to encapsulate
in macros that look like functions. For example,

 #define sin(x) \
 ({ double __value, __arg = (x); \
 asm (“fsinx %1,%0” \
 : “=f” (__value) \
 : “f” (__arg)); \
 __value; })

Here the variable ‘__arg’ is used to make sure that the instruction operates on a pro
‘double’ value, and to accept only those arguments ‘x’ which can convert automatical
a ‘double’.

 Another way to make sure the instruction operates on the correct data type is to u
cast in the ‘asm’. This is different from using a variable ‘__arg’ in that it converts mo
different types. For example, if the desired type were ‘int’, casting the argument to ‘
would accept a pointer with no complaint, while assigning the argument to an ‘int’ va
able named ‘__arg’ would warn about using a pointer unless the caller explicitly cas

 If an ‘asm’ has output operands, GNU CC assumes for optimization purposes that
instruction has no side effects except to change the output operands. This does no
that instructions with a side effect cannot be used, but you must be careful, because
compiler may eliminate them if the output operands aren’t used, or move them out o
loops, or replace two with one if they constitute a common subexpression. Also, if y
Using Inline Assembly With gcc January 11, 2000 4

e, the

m-

ard-

nifi-
of vol-
ut,

way
hich

lem
any
instruction does have a side effect on a variable that otherwise appears not to chang
old value of the variable may be reused later if it happens to be found in a register.

 You can prevent an ‘asm’ instruction from being deleted, moved significantly, or co
bined, by writing the keyword ‘volatile’ after the ‘asm’. For example:

 #define set_priority(x) \
 asm volatile (“set_priority %0” \
 : /* no outputs */ \
 : “g” (x))

An instruction without output operands will not be deleted or moved significantly, reg
less, unless it is unreachable.

 Note that even a volatile ‘asm’ instruction can be moved in ways that appear insig
cant to the compiler, such as across jump instructions. You can’t expect a sequence
atile ‘asm’ instructions to remain perfectly consecutive. If you want consecutive outp
use a single ‘asm’.

 It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no
to make it work reliably. The problem is that output operands might need reloading, w
would result in additional following “store” instructions. On most machines, these
instructions would alter the condition code before there was time to test it. This prob
doesn’t arise for ordinary “test” and “compare” instructions because they don’t have
output operands.

 If you are writing a header file that should be includable in ANSI C programs, write
‘__asm__’ instead of ‘asm’. *Note Alternate Keywords::.
Using Inline Assembly With gcc January 11, 2000 5

based
line
it,

ut

)

lues

this,
ss
3.0 Brennan’s Guide to Inline Assembly

 by Brennan “Bas” Underwood
Document version 1.1.2.2

3.1 Introduction

Ok. This is meant to be an introduction to inline assembly under DJGPP. DJGPP is
on GCC, so it uses the AT&T/UNIX syntax and has a somewhat unique method of in
assembly. I spent many hours figuring some of this stuff out and told Info that I hate
many times.

Hopefully if you already know Intel syntax, the examples will be helpful to you. I’ve p
variable names, register names and other literals in bold type.

3.2 The Syntax

So, DJGPP uses the AT&T assembly syntax. What does that mean to you?

 * Register naming: Register names are prefixed with “%”. To reference eax:

 AT&T: %eax Intel:eax

* Source/Destination Ordering: In AT&T syntax (which is the UNIX standard, BTW
the source is always on the left, and the destination is always on the right. So let’s loadebx
with the value ineax:

 AT&T: movl %eax, %ebx Intel:mov ebx, eax

* Constant value/immediate value format: You must prefix all constant/immediate va
with “$”. Let’s loadeax with the address of the “C” variablebooga, which is static.

 AT&T: movl $_booga, %eax Intel:mov eax, _booga

 Now let’s loadebx with 0xd00d:

 AT&T: movl $0xd00d, %ebx Intel:mov ebx, d00dh

 * Operator size specification: You must suffix the instruction with one of b, w, or l to
specify the width of the destination register as a byte, word or longword. If you omit
GAS (GNU assembler) will attempt to guess. You don’t want GAS to guess, and gue
wrong! Don’t forget it.

 AT&T: movw %ax, %bx Intel:mov bx, ax

 The equivalent forms for Intel isbyte ptr, word ptr , anddword ptr , but that is for
when you are...
Using Inline Assembly With gcc January 11, 2000 6

t real-
eg-

pose
me-

d32,
le

sem-
have
* Referencing memory: DJGPP uses 386-protected mode, so you can forget all tha
mode addressing junk, including the restrictions on which register has what default s
ment, which registers can be base or index pointers. Now, we just get 6 general pur
registers. (if you use ebp, but be sure to restore it yourself or compile with -fomit-fra
pointer.) Here is the canonical format for 32-bit addressing:

 AT&T: immed32(basepointer,indexpointer,indexscale)

 Intel: [basepointer + indexpointer*indexscale + immed32]

 You could think of the formula to calculate the address as:

 immed32 + basepointer + indexpointer * indexscale

 You don’t have to use all those fields, but you do have to have at least 1 of imme
basepointer and you MUST add the size suffix to the operator! Let’s see some simp
forms of memory addressing:

 o Addressing a particular C variable:

 AT&T: _booga Intel: [_booga]

 Note: the underscore (“_”) is how you get at static (global) C variables from as
bler. This only works with global variables. Otherwise, you can use extended asm to
variables preloaded into registers for you. I address that farther down.

 o Addressing what a register points to:

 AT&T: (%eax) Intel: [eax]

 o Addressing a variable offset by a value in a register:

 AT&T:_variable(%eax) Intel: [eax + _variable]

 o Addressing a value in an array of integers (scaling up by 4):

 AT&T: _array(,%eax,4) Intel: [eax*4 + array]

 o You can also do offsets with the immediate value:

 C code:*(p+1) where p is a char *

 AT&T: 1(%eax) whereeax has the value ofp

 Intel: [eax + 1]

 o You can do some simple math on the immediate value:

 AT&T:_struct_pointer+8
Using Inline Assembly With gcc January 11, 2000 7

the
rd.

can

.

ush

es out

told
 I assume you can do that with Intel format as well.

o Addressing a particular char in an array of 8-character records: eax holds
number of the record desired. ebx has the wanted char’s offset within the reco

 AT&T: _array(%ebx,%eax,8) Intel: [ebx + eax*8 + _array]

 Whew. Hopefully that covers all the addressing you’ll need to do. As a note, you
putesp into the address, but only as the base register.

3.3 Basic inline assembly

The format for basic inline assembly is very simple, and much like Borland’s method

asm (“statements”);

Pretty simple, no? So

asm (“nop”);

will do nothing of course, and

asm (“cli”);

will stop interrupts, with

asm (“sti”);

of course enabling them. You can use__asm__ instead ofasm if the keywordasm con-
flicts with something in your program.

When it comes to simple stuff like this, basic inline assembly is fine. You can even p
your registers onto the stack, use them, and put them back.

asm (“pushl %eax\n\t” “movl $0, %eax\n\t” “popl %eax”);

(The \n’s and \t’s are there so the .s file that GCC generates and hands to GAS com
right when you’ve got multiple statements perasm.) It’s really meant for issuing instruc-
tions for which there is no equivalent in C and don’t touch the registers.

But if you do touch the registers, and don’t fix things at the end of yourasm statement,
like so:

asm (“movl %eax, %ebx”); asm (“xorl %ebx, %edx”); asm (“movl $0, _booga”);

then your program will probably blow things to hell. This is because GCC hasn’t been
that yourasm statement clobberedebx andedx andbooga, which it might have been
keeping in a register, and might plan on using later. For that, you need:
Using Inline Assembly With gcc January 11, 2000 8

-like

g to

le to
-

aded
he

t
code
ti-
3.4 Extended inline assembly

The basic format of the inline assembly stays much the same, but now gets Watcom
extensions to allow input arguments and output arguments.

Here is the basic format:

asm (“statements” : output_registers : input_registers : clobbered_registers);

Let’s just jump straight to a nifty example, which I’ll then explain:

asm (“cld\n\t” “rep\n\t” “stosl” : /* no output registers */ : “c” (count), “a”
(fill_value), “D” (dest) : “%ecx”, “%edi”);

The above stores the value infill_value count times to the pointerdest.

Let’s look at this bit by bit.

asm (“cld\n\t”

We are clearing the direction bit of the flags register. You never know what this is goin
be left at, and it costs you all of 1 or 2 cycles.

 “rep\n\t” “stosl”

Notice that GAS requires the rep prefix to occupy a line of its own. Notice also thatstos
has thel suffix to make it move longwords.

 : /* no output registers */

Well, there aren’t any in this function.

 : “c” (count), “a” (fill_value), “D” (dest)

Here we loadecx with count, eax with fill_value, andedi with dest. Why make GCC do
it instead of doing it ourselves? Because GCC, in its register allocating, might be ab
arrange for, say,fill_value to already be ineax. If this is in a loop, it might be able to pre
serveeax thru the loop, and save amovl once per loop.

 : “%ecx”, “%edi”);

And here’s where we specify to GCC, “you can no longer count on the values you lo
into ecxor edi to be valid.” This doesn’t mean they will be reloaded for certain. This is t
clobberlist.

Seem funky? Well, it really helps when optimizing, when GCC can know exactly wha
you’re doing with the registers before and after. It folds your assembly code into the
it generates (whose rules for generation look remarkably like the above) and then op
mizes. It’s even smart enough to know that if you tell it to put (x+1) in a register, then if
Using Inline Assembly With gcc January 11, 2000 9

r

1)
e in

an

heses.

e to
rote
egis-

y,
ving
:

ill be

rgu-

,

t

you don’t clobber it, and later C code refers to (x+1), and it was able to keep that registe
free, it will reuse the computation. Whew.

Here’s the list of register loading codes that you’ll be likely to use:

a eax b ebx c ecx d edx S esi D edi I constant value (0 to 3
q,r dynamically allocated register (see below) g eax, ebx, ecx, edx or variabl
memory A eax and edx combined into a 64-bit integer (use long longs)

Note that you can’t directly refer to the byte registers (ah, al, etc.) or the word registers
(ax, bx, etc.) when you’re loading this way. Once you’ve got it in there, though, you c
specifyax or whatever all you like.

The codes have to be in quotes, and the expressions to load in have to be in parent

When you do the clobber list, you specify the registers as above with the %. If you writ
a variable, you must include “memory” as one of The Clobbered. This is in case you w
to a variable that GCC thought it had in a register. This is the same as clobbering all r
ters. While I’ve never run into a problem with it, you might also want to add “cc” as a
clobber if you change the condition codes (the bits in the flags register thejnz, je, etc.
operators look at.)

Now, that’s all fine and good for loading specific registers. But what if you specify, sa
ebx, andecx, and GCC can’t arrange for the values to be in those registers without ha
to stash the previous values. It’s possible to let GCC pick the register(s). You do this

asm (“ leal (%1,%1,4), %0” : “=r” (x) : “0” (x));

The above example multipliesx by 5 really quickly (1 cycle on the Pentium). Now, we
could have specified, sayeax. But unless we really need a specific register (like when
usingrep movsl or rep stosl, which are hardcoded to useecx, edi, andesi), why not let
GCC pick an available one? So when GCC generates the output code for GAS, %0 w
replaced by the register it picked.

And where did “q” and “r” come from? Well, “q” causes GCC to allocate fromeax, ebx,
ecx, andedx. “r” lets GCC also consideresi andedi. So make sure, if you use “r” that it
would be possible to useesi or edi in that instruction. If not, use “q”.

Now, you might wonder, how to determine how the %n tokens get allocated to the a
ments. It’s a straightforward first-come-first-served, left-to-right thing, mapping to the
“q”’s and “r”’s. But if you want to reuse a register allocated with a “q” or “r”, you use “0”
“1”, “2”... etc.

You don’t need to put a GCC-allocated register on the clobberlist as GCC knows tha
you’re messing with it.

Now for output registers.
Using Inline Assembly With gcc January 11, 2000 10

ant
allo-

.
 inter-

t not

 the

timi-
asm (“ leal (%1,%1,4), %0” : “=r” (x_times_5) : “r” (x));

Note the use of = to specify an output register. You just have to do it that way. If you w
1 variable to stay in 1 register for both in and out, you have to respecify the register
cated to it on the way in with the “0” type codes as mentioned above.

asm (“ leal (%0,%0,4), %0” : “=r” (x) : “0” (x));

This also works, by the way:

asm (“ leal (%%ebx,%%ebx,4), %%ebx” : “=b” (x) : “b” (x));

2 things here:

 * Note that we don’t have to putebx on the clobberlist, GCC knows it goes intox.
Therefore, since it can know the value ofebx, it isn’t considered clobbered.

 * Notice that in extended asm, you must prefix registers with %% instead of just %
Why, you ask? Because as GCC parses along for %0’s and %1’s and so on, it would
pret %edx as a %e parameter, see that that’s non-existent, and ignore it. Then it would
bitch about finding a symbol nameddx, which isn’t valid because it’s not prefixed with %
and it’s not the one you meant anyway.

Important note: If your assembly statement must execute where you put it, (i.e. mus
be moved out of a loop as an optimization), put the keywordvolatile afterasmand before
the ()’s. To be ultra-careful, use

__asm__ __volatile__ (...whatever...);

However, I would like to point out that if your assembly’s only purpose is to calculate
output registers, with no other side effects, you should leave off thevolatile keyword so
your statement will be processed into GCC’s common subexpression elimination op
zation.

3.5 Some useful examples
#define disable () __asm__ __volatile__ (“ cli ”);
#define enable () __asm__ __volatile__ (“ sti ”);
Using Inline Assembly With gcc January 11, 2000 11

’re

e
d a
Of course, libc has these defined too.

#define times3 (arg1, arg2) \
__asm__ (\

 “ leal (%0,%0,2),%0” \
 : “=r” (arg2) \
 : “0” (arg1));

#define times5 (arg1, arg2) \
__asm__ (\

 “ leal (%0,%0,4),%0” \
 : “=r” (arg2) \
 : “0” (arg1));

#define times9 (arg1, arg2) \
__asm__ (\

 “ leal (%0,%0,8),%0” \
 : “=r” (arg2) \
 : “0” (arg1));

These multiply arg1 by 3, 5, or 9 and put them in arg2. You should be ok to do:

times5(x,x);

as well.

#define rep_movsl (src, dest, numwords) \
__asm__ __volatile__ (\

 “ cld \n\t” \
 “ rep \n\t” \
 “ movsl ” \
 : : “S” (src), “D” (dest), “c” (numwords) \
 : “% ecx ”, “% esi ”, “% edi ”)

Helpful Hint: If you saymemcpy() with a constant length parameter, GCC will inline it to
a rep movsl like above. But if you need a variable length version that inlines and you
always moving dwords, there ya go.

#define rep_stosl (value, dest, numwords) \
__asm__ __volatile__ (\

 “ cld \n\t” \
 “ rep \n\t” \
 “ stosl ” \
 : : “a” (value), “D” (dest), “c” (numwords) \
 : “% ecx ”, “% edi ”)

Same as above but formemset(), which doesn’t get inlined no matter what (for now.)

#define RDTSC (llptr) ({ \
__asm__ __volatile__ (\

 “. byte 0x0f ; . byte 0x31 ” \
 : “=A” (llptr) \
 : : “ eax ”, “ edx ”); })

Reads the TimeStampCounter on the Pentium and puts the 64 bit result into llptr.

3.6 The End

“The End”?! Yah, I guess so.

If you’re wondering, I personally am a big fan of AT&T/UNIX syntax now. (It might hav
helped that I cut my teeth on SPARC assembly. Of course, that machine actually ha
Using Inline Assembly With gcc January 11, 2000 12

ore

on,
llo-
nch

--
e
d.
decent number of general registers.) It might seem weird to you at first, but it’s really m
logical than Intel format, and has no ambiguities.

If I still haven’t answered a question of yours, look in the Info pages for more informati
particularly on the input/output registers. You can do some funky stuff like use “A” to a
cate two registers at once for 64-bit math or “m” for static memory locations, and a bu
more that aren’t really used as much as “q” and “r”.

Alternately, mail me, and I’ll see what I can do. (If you find any errors in the above,
please, e-mail me and tell me about it! It’s frustrating enough to learn without buggy
docs!) Or heck, mail me to say “boogabooga.”

It’s the least you can do.

--

Related Usenet posts:

 * local labels * fixed point multiplies

-- Thanks to Eric J. Korpela
<korpela@ssl.Berkeley.EDU> for some corrections. --
-------------------------------- Have you seen the DJGPP2+Games Page? Probably. Pag
written and provided by Brennan Underwood. Copyright © 1996 Brennan Underwoo
Share and enjoy! Page created with vi, God’s own editor.
Using Inline Assembly With gcc January 11, 2000 13

ess or
pect

n be
his

truc-

t has
r’s

-S

nto
e that

For
ed in.

u-
4.0 A Brief Tutorial on GCC inline asm (x86 biased)

colin@nyx.net, 20 April 1998

I am a great fan of GCC’s inline asm feature, because there is no need to second-gu
outsmart the compiler. You can tell the compiler what you are doing and what you ex
of it, and it can work with it and optimize your code.

However, on a convoluted processor like the x86, describing just what is going on ca
quite a complex job. In the interest of a faster kernel through appropriate usage of t
powerful tool, here is an introduction to its use.

4.1 Extended asm, an introduction.

In a nice clean register-register RISC architecture, accessing an occasional “foo” ins
tion is quite simple. You just write:

asm(“foo %1,%2,%0”
 : “=r” (output)
 : “r” (input1), “r” (input2));

The part before the first colon is very much line the semi-standard asm() feature tha
been in many C compilers since the K&R days. The string is pasted into the compile
assembly output at the current location.

However, GCC is rather cleverer. What will actually appear in the output of “gcc -O
foo.c” (a file named “foo.s”) is:

#APP foo r17,r5,r9 #NO_APP

The “#APP” and “#NO_APP” parts are instructions to the assembler that briefly put it i
normal operating mode, as opposed to the special high-speed “compiler output” mod
turns off every feature that the compiler doesn’t use as well as a lot of error-checking.
our purposes, it’s convenient becuase it highlights the part of the code we’re interest

Between, you will see that the “%1” and so forth have turned into registers. This is
because GCC replaced “%0”, “%1” and “%2” with registers holding the first three arg
ments after the colon.

That is, r17 holds input1, r5 holds input2, and r9 holds output.

It’s perfectly legal to use more complex expressions like:

 asm(“foo %1,%2,%0”
 : “=r” (ptr->vtable[3](a,b,c)->foo.bar[baz])
 :
 : “r” (gcc(is) + really(damn->cool)), “r” (42));
Using Inline Assembly With gcc January 11, 2000 14

e no
ends
ch is
\t”.

sep-

rand

lue).
an

ys
ve to
t it,

an you

iate
r
le”,
ffset-
, or
rt a

ge.
e. If
uld
GCC will treat this just like:

register int t0, t1, t2;
t1 = gcc(is) + really(damn->cool);
t2 = 42;
asm(“foo %1,%2,%0”
 : “=r” (t0)
 : “r” (t1), “r” (t2));
ptr->vtable[3](a,b,c)->foo.bar[baz] = t0;

The general form of an asm() is

 asm(“code” : outputs : inputs : clobbers);

Within the “code”, %0 refers to the first argument (usually an output, unless there ar
outputs), %1 to the second, and so forth. It only goes up to %9. Note that GCC prep
a tab and appends a newline to the code, so if you want to include multi-line asm (whi
legal) and you want it to look nice in the asm output, you should separate lines with “\n
(You’ll see lots of examples of this in the Linux source.) It’s also legal to use “;” as a
arator to put more than one asm statement on a line.

There are option letters that you can put between the % and the digit to print the ope
specially; more on this later.

Each output or input in the comma-separated list has two parts, “constraints” and (va
The (value) part is pretty straightforward. It’s an expression. For outputs, it must be
lvalue, i.e. something that is legal to have on the left side of an assignment.

The constraints are more interesting. All outputs must be marked with “=”, which sa
that this operand is assigned to. I’m not sure why this is necessary, since you also ha
divide up outputs and inputs with the colon, but I’m not inclined to make a fuss abou
since it’s easy to do once you know.

The letters that come after that give permitted operands. There are more choices th
might think. Some depend on the processor, but there are a few that are generic.

“r”, as example “rm” means a register or memory. “ri” means a register or an immed
value. “g” is “general”; it can be anything at all. It’s usually equivalent to “rim”, but you
processor may have even more options that are included. “o” is like “m”, but “offsettab
meaning that you can add a small offset to it. On the x86, all memory operands are o
table, but some machines don’t support indexing and displacement at the same time
have something like the 680x0’s autoincrement addressing mode that doesn’t suppo
displacement.

Capital letters starting with “I” are usually assigned to immediate values in a certain ran
For example, a lot of RISC machines allow either a register or a short immediate valu
our machine is like the DEC Alpha, and allows a register or a 16-bit immediate, you co
write

 asm(“foo %1,%2,%0”
 : “=r” (output)
 : “r” (input1), “rI” (input2));
Using Inline Assembly With gcc January 11, 2000 15

truc-

 are
 not

sn’t
ed to
eed.

r’s

nt
ctu-

y.
.

%
dge
od

on’t

.
rit-

n-
.
iate
and if input2 were, say, 42, the compiler would use an immediate constant in the ins
tion.

The x86-specific constraints are defined later.

4.2 A few notes about inputs

An input may be a temporary copy, but it may not be. Unless you tell GCC that you
going to modify that location (described later in “equivalence constraints”), you must
alter any inputs.

GCC may, however, elect to place an output in the same register as an input if it doe
need the input value any more. You must not make assumptions either way. If you ne
have it one way or the other, there are ways (described later) to tell GCC what you n

The rule in GCC’s inline asm is, say what you need and then get out of the optimize
way.

4.3 x86 assembly code

The GNU tools used in Linux use an AT&T-developed assembly syntax that is differe
from the Intel-developed one that you see in a lot of example code. It’s a lot simpler, a
ally. It doesn’t have any of the DWORD PTR stuff that the Intel syntax requires.

The most significant difference, however, is a major one and easy to get confused b
While Intel uses “op dest,src”, AT&T syntax uses “op src,dest”. DON’T FORGET THIS
If you’re used to Intel syntax, this can take quite a while to get used to.

The easy way to know which flavour of asm syntax you’re reading is to look for all the
synbols. AT&T names the registers %eax, %ebx, etc. This avoids the need for a klu
like putting _ in front of all the function and variable names to avoid using perfectly go
C names like esp. It’s easy enough to read, but don’t forget it when writing.

The other major difference is that the operand size is clear from the instruction. You d
have just “inc”, you have “incb”, “incw” and “incl” to increment 8, 16 or 32 bits. If the
size is clear from the operands, you can just write “inc”, (e.g. “inc %eax”), but if it’s a
memory operand, rather than writing “inc DWORD PTR foo” you just wrote “incl foo”
“inc foo” is an error; the assembler doesn’t try to keep track of the type of anything. W
ing “incl %al” is an error which the assembler catches.

Immediate values are written with a leading $. Thus, “movl foo,%eax” copies the co
tents of memory location foo into %eax. “movl $foo,%eax” copies the address of foo
“movl 42,%eax” is a fetch from an absolute address. “movel $42,%eax” is an immed
load.
Using Inline Assembly With gcc January 11, 2000 16

 irrel-

ame

same

ame

mon
t use-

 man-

, ebx,

edi-

 spe-
ing a
Addressing modes are written offset(base,index,scale). You may leave out anything
evant. So (%ebx) is legal, as is -44(%ebx,%eax), which is equivalent to -
44(%ebx,%eax,1). Legal scales are 1, 2 4 and 8.

4.4 Equivalence constraints

Sometimes, especially on two-address machines like the x86, you need to use the s
register for output and for input. Although if you look into the GCC documentation,
you’ll see a useful-looking “+” constraint character, this isn’t available to inline asm.
What you have to do instead is to use a special constraint like “0”:

 asm(“foo %1,%0”
 : “=r” (output)
 : “r” (input1), “0” (input2));

This says that input2 has to go in the same place as the output, so %2 and %0 are the
thing. (Which is why %2 isn’t actually mentioned anywhere.) Note that it is perfectly
legal to have different variables for input and output even though they both use the s
register. GCC will do any necessary copying to temporary registers for you.

4.5 Constraints on the x86

The i386 has *lots* of register classes, designed for anything remotely useful. Com
ones are defined in the “constraints” section of the GCC manual. Here are the mos
ful:

g - general effective address m - memory effective address r - register i - immediate value,
0..0xffffffff n - immediate value known at compile time. (“i” would allow an address
known only at link time)

But there are some i386-specific ones described in the processor-specific part of the
ual and in more detail in GCC’s i386.h:

q - byte-addressible register (eax, ebx, ecx, edx) A - eax or edx a, b, c, d, S, D - eax
..., esi, edi only

I - immediate 0..31 J - immediate 0..63 K - immediate 255 L - immediate 65535 M -
immediate 0..3 (shifts that can be done with lea) N - immediate 0..255 (one-byte imm
ate value) O - immedaite 0..32

There are some more for floating-point registers, but I won’t go into those. The very
cial cases like “K” are mostly used inside GCC in alternative code sequences, provid
special-case way to do something like ANDing with 255.

But something like “I” is useful, for example the x86 rotate left:

 asm(“roll %1,%0”
 : “=g” (result)
 : “cI” (rotate), “0” (input));
Using Inline Assembly With gcc January 11, 2000 17

.)

 on
ints

 in

ience;
but
 a
e),

ame
86
. So

is
e in

the
ne

m-
or

must
input
t is
ou
(See the section on “x86 assembly syntax” if you wonder why the extra “l” is on “rol”

4.6 Advanced constraints

In the GCC manual, constraints and so on are described in most detail in the section
writing machine descriptions for ports. GCC, not surprisingly, uses the same consta
mechanism internally to compile C code. Here’s a summary.

= has already been discussed, to mark an output. No, I don’t know why it’s needed
inline asm, but it’s not worth “fixing”.

+ is described in the gcc manual, but is not legal in inline asm. Sorry.

% says that this operand and the next one may be switched at the compiler’s conven
the arguments are commutative. Many operations (+, *, &, |, ^) have this property,
the options permitted in the instruction set may not be as general. For example, on
RISC machine which lets the second operand be an immediate value (in the “I” rang
you could specify an add instruction like:

 asm(“add %1,%2,%0”
 : “=r” (output)
 : “%r” (input1), “rI” (input2));

, separates a list of alternative constraints. Each input and output must have the s
length list of alternatives, and one element of the list is chosen. For example, the x
permits register-memory and memory-register operations, but not memory-memory
an add could be written as:

 asm(“add %1,%0”
 : “=r,rm” (output)
 : “%g,ri” (input1), “0,0” (input2));

 This says that if the output is a register, input1 may be anything, but if the output
memory, the input may only be a register or an immediate value. And input2 must b
the same place as the output, although you can swap things and place input1 there
instead.

If there are multiple options listed and the compiler has no preference, it will choose
first one. Thus, if there’s a minor difference in timing or some such, list the faster o
first.

? in one alternative says that an alternative is discouraged. This is important for co
piler-writers who want to encourage the fastest code, but is getting pretty esoteric f
inline asm.

& says that an output operand is written to before the inputs are read, so this output
not be the same register as any input. Without this, gcc may place an output and an
in the same register even if not required by a “0” constraint. This is very useful, bu
mentioned here because it’s specific to an alternative. Unlike = and %, but like ?, y
have to include it with each alternative to which it applies.
Using Inline Assembly With gcc January 11, 2000 18

ay
ut”.

the
tion,

ive

ing

ore
race-

xam-
s

r the
f reg-

his
che
ld
cc

the
s

d let
CC
class
 Note that there is no way to encode more complex information, like “this output m
not be in the same place as *that* input, but may share a ragiater with that *other* inp
Each output either may share a register with any input, or with none.

In inline asm, you usually specify this with every alternative, since you can’t chnage
order of operations depending on the option selected. In GCC’s internal code genera
there are provisions for producing different code depending on the register alternat
chosen, but you can’t do that with inline asm.

 One place you might use it is when you have the possibility of the output overlapp
with input two, but not input one. E.g.

 asm(“foo %1,%0; bar %2,%0”
 : “=r,&r” (out)
 : “r,r” (in1), “0,r” (in2));

This says that either in2 is in the same register as out, or nothing is. However, with m
operands, the number of possibilities quickly mushrooms and GCC doesn’t cope g
fully with large numbers of alternatives.

4.7 Clobbers

Sometimes an instruction knocks out certain specific registers. The most common e
ple of this is a function call, where the called function is allowed to do whatever it like
with some registers.

If this is the case, you can list specific registers that get clobbered by an operation afte
inputs. The syntax is not like constraints, you just provide a comma-separated list o
isters in string form. On the 80x86, they’re “ax”, “bx”, “si” “di”, etc.

There are two special cases for clobbered values. One is “memory”, meaning that t
instruction writes to some memory (other than a listed output) and GCC shouldn’t ca
memory values in registers across this asm. An asm memcpy() implementation wou
need this. You do *not* need to list “memory” just because outputs are in memory; g
understands that.

The second is “cc”. It’s not necessary on all machines, and I havem’t figured it out for
x86 (I don’t think it is), but it’s always legal to specify, and means that the instruction
mess up the condition codes.

Note that GCC will not use a clobbered register for inputs or outputs. GCC 2.7 woul
you do it anyway, specifying an input in class “a” and saying that “ax” is clobbered. G
2.8 and egcs are getting pickeri, and complaining that there are no free registers in
“a” available. This is not the way to do it. If you corrput an input register, include a
dummy output in the same register, the value of which is never used. E.g.

 int dummy;
 asm(“munge %0”
 : “=r” (dummy)
 : “0” (input));
Using Inline Assembly With gcc January 11, 2000 19

way is
ap
t

 key-
ch.

em

ts, and
of
ut is
.

. If

.

4.8 Temporary registers

People also sometimes erroneously use clobbers for temporary registers. The right
to make up a dummy output, and use “=r” or “=&r” depending on the permitted overl
with the inputs. GCC allocates a register for the dummy value. The difference is tha
GCC can pick a convenient register, so it has more flexibility.

4.9 const and volatile

There are two optimization hints that you can give to an asm statement.

asm volatile(...) statements may not be deleted or significantly reordered; the volatile
word says that they do something magic that the compiler shouldn’t play with too mu

GCC will delete ordinary asm() blocks if the outputs are not used, and will reorder th
slightly to be convenient to where the outputs are. (asm blocks with no outputs are
assumed to be volatile by default.)

asm const() statements are assumed to produce outputs that depend only on the inpu
thus can be subject to common subexpression optimization and can be hoisted out
loops. The most common example of an output that does *not* depend only on an inp
a pointer that is fetched. *p may change from time to time even if p does not change
Thus, an asm block that fetches from a pointer should not include a const.

An example of something that is good is a coprocessor instruction to compute sin(x)
GCC knows that two calls have the same value of x, it can compute sin(x) only once

For example, compare:

int foo(int x); {
 int i, y, total;
 total = 0;
 for (i = 0; i < 100; i++) {
 asm volatile(“foo %1,%0”
 : “=r” (y)
 : “g” (x));
 total += y;
 }
 return total;
}

Using Inline Assembly With gcc January 11, 2000 20

ad

when

 exam-

his-
then try changing that to “const” after the asm. The code (on an x86) looks like:

func1:
xorl %ecx,%ecx
pushl %ebx
movl %ecx,%edx
movl 8(%esp),%ebx
.align 4

.L7:
#APP

foo %ebx,%eax
#NO_APP

addl %eax,%ecx
incl %edx
cmpl $99,%edx
jle .L7
movl %ecx,%eax
popl %ebx
ret

which then changes to (in the const case):

func2:
xorl %edx,%edx

#APP
foo 4(%esp),%ecx

#NO_APP
movl %edx,%eax
.align 4

.L13:
addl %ecx,%edx
incl %eax
cmpl $99,%eax
jle .L13
movl %edx,%eax
ret

I’m still not completely thrilled with the code (why put the loop counter in %eax inste
of total, which gets returned), but you can see how it improves.

4.10 Alternate keywords

__asm__() is a legal alias for asm(), and it is legal (and produces no warnings) even
in strict-ANSI mode or when warning about non-portable constructs. Otherwise, it is
equivalent.

4.11 Output substitutions

Sometimes you want to include a value in an asm statement in an unusual way. For
ple, you could use the lea instruction to do something hairy like

asm(“lea %1(%2,%3,1<<%4),%0”
 : “=r” (out)

: “%i” (in1), “r” (in2), “r” (in3), “M”(logscale));

this looks like a way to generate a legal lea instruction with all the possible bells and w
tles. There’s only one problem. When GCC substitutes the immedaites “in1” and
“logscale”, it’s going to produce something like:

lea $-44(%ebx,%eax,1<<$2),%ecx
Using Inline Assembly With gcc January 11, 2000 21

e are
he

bsti-

n
high
nd

E.g.

tes to

o dif-
piler
which is a syntax error. The $ on the constants are not useful in this context. So ther
modifier characters. The one applicable in this context is “c”, which means to omit t
usual immediate value information. The correct asm is

asm(“lea %c1(%2,%3,1<<%c4),%0”
 : “=r” (out)

: “%i” (in1), “r” (in2), “r” (in3), “M”(logscale));

which will produce

lea -44(%ebx,%eax,1<<2),%ecx

as desired. There are a few others mentioned in the GCC manual as generic:

%c0 substitutes the immediate value %0, but without the immediate syntax. %n0 su
tutes like %c0, but the negated value. %l0 substitutes lile %c0, but with the syntax
expected of a jump target. (This is usually the same as %c0.)

And then there are the x86-specific ones. These are, unfortunately, only listed in the
i386.h header file in the GCC source (config/i386/i386.h), so you havr to dig a bit for
them.

%k0 prints the 32-bit form of an operand. %eax, etc. %w0 prints the 16-bit form of a
operand. %ax, etc. %b0 prints the 8-bit form of an operand. %al, etc. %h0 prints the
8-bit form of a register. %ah, etc. %z0 print opcode suffix coresponding to the opera
type, b, w or l.

By default, when %0 prints a register in the form corresponding to the argument size.
asm(“inc %0” : “=r” (out) : “0” (in)) will print as “inc %al”, “inc %ax” or “inc %eax”
depending on the type of “out”.

For example, byte-swapping on a non-486:

asm(“xchg %b0,%h0; roll $16,%0; xchg %b0,%h0”
 : “=q” (x)
 : “=” (x));

This says that x must be in a byte-addressible register and proceeds to swap the by
big-endian form.

It’s legal to use the %w and %b forms on objects that aren’t registers, it just makes n
ference. Using %b and %h on non-byte addressible registers tends to make the com
abort, so don’t do that.
Using Inline Assembly With gcc January 11, 2000 22

h just

ich

e it is
.

%z is rather cool. For example, consider the following code:

#define xchg(m, in, out) \
asm(“xchg%z0 %2,%0” \
 : “=g” (*(m)), “=r” (out) \
 : “1” (in))

int bar(void *m, int x) {
 xchg((char *)m, (char)x, x);
 xchg((short *)m, (short)x, x);
 xchg((int *)m, (int)x, x);
 return x;
}

This produces, as assembly output,

.globl bar
.type bar,@function

bar:
movl 4(%esp),%eax
movb 8(%esp),%dl

#APP
xchgb %dl,(%eax)

 xchgw %dx,(%eax)
 xchgl %edx,(%eax)
#NO_APP

movl %edx,%eax
 ret

(Re-using x is a way to make sure that nothing got optimized away.)

It’s not really needed here because the size of the %2 register lets you get away wit
“xchg”, but there are situations where it’s nice to have an operand size.

4.12 Extra % patterns

Some % substitutions don’t specify an argument. The most common one is %%, wh
comes out as a single %.

The second is %=, which generates a unique number for each asm() block. (Each tim
used if inlined or used in a macro.) This can be used for temporary labels and so on

4.13 Examples

Some code that was in include/asm-i386/system.h:

#define _set_tssldt_desc(n,addr,limit,type) \
 __asm__ __volatile__ (“movw %3,0(%2)\n\t” \

“movw %%ax,2(%2)\n\t” \
“rorl $16,%%eax\n\t” \
“movb %%al,4(%2)\n\t” \
“movb %4,5(%2)\n\t” \
“movb $0,6(%2)\n\t” \
“movb %%ah,7(%2)\n\t” \
“rorl $16,%%eax” \

 : “=m”(*(n)) \
 : “a” (addr), “r”(n), “ri”(limit), “i”(type))
Using Inline Assembly With gcc January 11, 2000 23

dly
reg-

ctu-
e need

ss. If
ut if
e

will

it
ry, but
ode.
It’s obvious that the writer didn’t know how to take optimal advantage of this (admitte
complex, but x86 addressing *is* complex) facility. This could be rewritten to use any
ister instead of %eax:

#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ (“movw %w3,0(%2)\n\t” \

“movw %w1,2(%2)\n\t” \
“rorl $16,%1\n\t” \
“movb %b1,4(%2)\n\t” \
“movb %4,5(%2)\n\t” \
“movb $0,6(%2)\n\t” \
“movb %h1,7(%2)\n\t” \
“rorl $16,%1” \
: “=m”(*(n))
: “q” (addr), “r”(n), “ri”(limit), “ri”(type))

You notice here that *n is listed as an output, so GCC knows that it’s modified, but a
ally addressing it is done relative to n as an input register everywhere because of th
to compute an offset.

The problem is that there is no syntactic way to encode an offset from a given addre
the address is “40(%eax)” then an offset of 2 can be made by prepending “2+” to it. B
the address is “(%eax)” then “2+(%eax)” is not valid. Tricks like “2+0” fall flat becaus
“040” is taken as octal and gets translated into 32.

BUT THERE’S NEWS (19 April 1998): gas will actually Do The Right Thing with
“2+(%eax)”, just emit a warning. Having seen this, a gas maintainer (Alan Modra)
decided to make the warning go away in this case, so in some near future version you
be able to do it.

With this fix (or putting up with the warning), you could write the above as:

#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ (“movw %w2,%0\n\t” \

“movw %w1,2+%0\n\t” \
“rorl $16,%1\n\t” \
“movb %b1,4+%0\n\t” \
“movb %3,5+%0\n\t” \
“movb $0,6+%0\n\t” \
“movb %h1,7+%0\n\t” \
“rorl $16,%1” \
: “=o”(*(n))
: “q” (addr), “ri”(limit), “i”(type))

The “o” constraint is just like “m”, except that it’s “offstable”; adding a small value to
leaves a valid address. On the x86, there is no distinction, so it’s not really necessa
on the 68000, for example, you can’t add an offset to a postincrement addressing m
Using Inline Assembly With gcc January 11, 2000 24

dif-

rks

l bec-
t.

piler
If neither the warning nor waiting is acceptable, a fix is to list each possible offset as a
ferent output (here we’re using the fact that n is a char *):

__asm__ __volatile__ (“movw %w7,%0\n\t” \
“movw %w6,%1\n\t” \
“rorl $16,%6\n\t” \
“movb %b6,%2\n\t” \
“movb %b8,%3\n\t” \
“movb $0,%4\n\t” \
“movb %h6,%5\n\t” \
“rorl $16,%6” \
: “=m”(*(n)), \
 “=m”((n)[2]), \
 “=m”((n)[4]), \
 “=m”((n)[5]), \
 “=m”((n)[6]), \
 “=m”((n)[7]) \
: “q” (addr), “g”(limit), “iqm”(type))

Although, as you can see, this gets a bit ugly when you have lots of offsets, but it wo
just the same.

4.14 Conclusion

I hope this has been of use to some folks. GCC’s inline asm features are really coo
uase you can just do the little bit that you want and let the compiler optimize the res

This has the unfortunate side effect that you have to learn how to explain to the com
what’s going on. But it’s worth it, really!
Using Inline Assembly With gcc January 11, 2000 25

	Using Inline Assembly With gcc
	Clark L. Coleman (plagiarist/researcher)
	1.0 Overview
	1. A portion of the gcc info page for gcc 2.8.1, dealing with the subject of inline assembly lang...
	2. A tutorial by Brennan Underwood.
	3. A tutorial by colin@nyx.net.

	2.0 Information from the gcc info pages
	2.1 General and Copyright Information
	2.2 Assembler Instructions with C Expression Operands

	3.0 Brennan’s Guide to Inline Assembly

	by Brennan “Bas” Underwood
	Document version 1.1.2.2
	3.1 Introduction
	3.2 The Syntax
	3.3 Basic inline assembly
	3.4 Extended inline assembly
	3.5 Some useful examples
	3.6 The End
	4.0 A Brief Tutorial on GCC inline asm (x86 biased)

	colin@nyx.net, 20 April 1998
	4.1 Extended asm, an introduction.
	4.2 A few notes about inputs
	4.3 x86 assembly code
	4.4 Equivalence constraints
	4.5 Constraints on the x86
	4.6 Advanced constraints
	4.7 Clobbers
	4.8 Temporary registers
	4.9 const and volatile
	4.10 Alternate keywords
	4.11 Output substitutions
	4.12 Extra % patterns
	4.13 Examples
	4.14 Conclusion

