MySQL Reference Manual

Copyright © 1997-2003 MySQL AB

Table of Contents

1 General Information 1
1.1 About This Manual 2
1.1.1 Conventions Used in This Manual................ 2
1.2 What Is MySQL? 3
1.2.1 History of MySQL 5
1.2.2 The Main Features of MySQL 5
1.2.3 How Stable Is MySQL? 7
1.2.4 How Big Can MySQL Tables Be? 9
1.2.5 Year 2000 Complianceooun.... 9
1.3 What Is MySQL AB? 11
1.3.1 The Business Model and Services of MySQL AB.. 12
1.3.1.1 Support............ ... 12
1.3.1.2 Training and Certification 12
1.3.1.3 Consulting 13
1.3.1.4 Commercial Licenses 13
1.3.1.5 Partnering................. 13
1.3.1.6 Advertising........................... 14
1.3.2 Contact Information........................... 14
1.4 MySQL Support and Licensing.......................... 15
1.4.1 Support Offered by MySQL AB................. 15
1.4.2 Copyrights and Licenses Used by MySQL........ 16
1.4.3 MySQL Licenses.coouuiieiiiiiina... 16
1.4.3.1 Using the MySQL Software Under a
Commercial License....................... 17
1.4.3.2 Using the MySQL Software for Free Under
GPL .. 17
1.4.4 MySQL AB Logos and Trademarks 18
1.4.4.1 The Original MySQL Logo............. 18
1.4.4.2 MySQL Logos that may be Used Without
Written Permission 19
1.4.4.3 When do you need a Written Permission to
use MySQL Logos? 19
1.4.4.4 MySQL AB Partnership Logos......... 19
1.4.4.5 Using the word MySQL in Printed Text or
Presentations............................. 19
1.4.4.6 Using the word MySQL in Company and
Product Names........................... 20
1.5 MySQL 4.0 In A Nutshell................ 20
1.5.1 Features Available in MySQL 4.0 20
1.5.2 Embedded MySQL Server...................... 21
1.6 MySQL 4.1 In A Nutshell............................... 22
1.6.1 Features Available in MySQL 4.1 22

1.6.2 Stepwise Rollout............................... 23

1.6.3 Ready for Immediate Development Use.......... 24
1.6.4 MySQL 5.0, The Next Development Release 24
1.7 MySQL Information Sources............................ 24
1.7.1 MySQL Mailing Lists 24
1.7.1.1 The MySQL Mailing Lists 24
1.7.1.2 Asking Questions or Reporting Bugs.... 27
1.7.1.3 How to Report Bugs or Problems 27
1.7.1.4 Guidelines for Answering Questions on the
Mailing List ... 32
1.7.2 MySQL Community Support on IRC (Internet Relay
Chat) . ..o 32
1.8 How Standards-compatible Is MySQL?................... 32
1.8.1 What Standards Does MySQL Follow? 33
1.8.2 Running MySQL in ANSI Mode 33
1.8.3 MySQL Extensions To The SQL-92 Standard.... 34
1.8.4 MySQL Differences Compared To SQL-92....... 36
1.8.4.1 Subqueries 37
1.8.4.2 SELECT INTOTABLE 38
1.8.4.3 Transactions and Atomic Operations ... 38
1.8.4.4 Stored Procedures and Triggers 41
1.8.4.5 Foreign Keys 41
1.84.6 Views........ooiiiininnina... 42
1.8.4.7 ‘== as the Start of a Comment......... 43
1.8.5 How MySQL deals with constraints 43
1.8.5.1 Constraint PRIMARY KEY / UNIQUE
... 44
1.8.5.2 Constraint NOT NULL and DEFAULT values
... 44
1.8.5.3 Constraint ENUM and SET 45
1.8.6 Known Errors and Design Deficiencies in MySQL
.. 45
1.8.6.1 Errors in 3.23 Fixed in a Later MySQL
Version.c.oooeviiinii i 45
1.8.6.2 Open Bugs / Design Deficiencies in MySQL
... 45
1.9 MySQL and The Future (The TODO) 50
1.9.1 New Features Planned For 4.1 50
1.9.2 New Features Planned For 5.0.................. 50
1.9.3 New Features Planned For 5.1 51
1.9.4 New Features Planned For The Near Future 52
1.9.5 New Features Planned For The Mid-Term Future
.. 55
1.9.6 New Features We Don’t Plan To Do 56
1.10 How MySQL Compares to Other Databases............. 56
1.10.1 How MySQL Compares tomSQL 56

1.10.1.1 How to Convert mSQL Tools for MySQL

ii

1.10.1.2 How mSQL and MySQL Client/Server

Communications Protocols Differ........... 59
1.10.1.3 How mSQL 2.0 SQL Syntax Differs from
MySQL ..o 60
1.10.2 How MySQL Compares to PostgreSQL......... 62
1.10.2.1 MySQL and PostgreSQL development
strategies....... i 62
1.10.2.2 Featurewise Comparison of MySQL and
PostgreSQL 63
1.10.2.3 Benchmarking MySQL and PostgreSQL
... 66
2 MySQL Installation....................... 71
2.1 Quick Standard Installation of MySQL................... 71
2.1.1 Installing MySQL on Linux..................... 71
2.1.2 Installing MySQL on Windows 73
2.1.2.1 Installing the Binaries................. 74
2.1.2.2 Preparing the Windows MySQL
Environment 74
2.1.2.3 Starting the Server for the First Time .. 76
2.1.3 Installing MySQL on Mac OS X 76
2.1.4 Installing MySQL on NetWare.................. 78
2.1.4.1 Installing the MySQL for NetWare Binaries
... 78
2.2 General Installation Issues.............................. 79
2.2.1 Howto Get MySQL 79
2.2.2 Verifying Package Integrity Using MD5 Checksums or
GRUPGo 79
2.2.3 Operating Systems Supported by MySQL 82
2.2.4 Which MySQL VersiontoUse 84
2.2.5 Installation Layouts............................ 86
2.2.6 How and When Updates Are Released........... 87
2.2.7 Release Philosophy - No Known Bugs in Releases
.. 88
2.2.8 MySQL Binaries Compiled by MySQL AB....... 89
2.2.9 Installing a MySQL Binary Distribution......... 94
2.3 Installing a MySQL Source Distribution.................. 97
2.3.1 Quick Installation Overview 98
2.3.2 Applying Patches................ 100
2.3.3 Typical configure Options 100
2.3.4 Installing from the Development Source Tree ... 103
2.3.5 Problems Compiling MySQL? 105
2.3.6 MIT-pthreads Notes.......................... 108
2.3.7 Windows Source Distribution.................. 110
2.4 Post-installation Setup and Testing..................... 110
2.4.1 Problems Running mysql_install db......... 114
2.4.2 Problems Starting the MySQL Server 116
2.4.3 Starting and Stopping MySQL Automatically ... 118

iii

2.5 Upgrading/Downgrading MySQL....................... 119
2.5.1 Upgrading From Version 4.0to4.1............. 119
2.5.1.1 Preparing to Upgrade From Version 4.0 to
A 120
2.5.1.2 What to do when upgrading from 4.0 to 4.1
.. 121
2.5.2 Upgrading From Version 3.23 to 4.0............ 122
2.5.3 Upgrading From Version 3.22 to 3.23........... 125
2.5.4 Upgrading from Version 3.21 to 3.22 126
2.5.5 Upgrading from Version 3.20 to 3.21 127
2.5.6 Upgrading to Another Architecture 128
2.5.7 Upgrading MySQL under Windows 129
2.6 Operating System Specific Notes 129
2.6.1 Linux Notes (All Linux Versions) 129
2.6.1.1 Linux Notes for Binary Distributions .. 133
2.6.1.2 Linux x86 Notes 134
2.6.1.3 Linux SPARC Notes 135
2.6.1.4 Linux Alpha Notes................... 135
2.6.1.5 Linux PowerPC Notes................ 136
2.6.1.6 Linux MIPS Notes................... 136
2.6.1.7 Linux [A-64 Notes 136
2.6.2 Windows Notes. 137
2.6.2.1 Starting MySQL on Windows 95, 98, or Me
.. 137
2.6.2.2 Starting MySQL on Windows NT, 2000, or
X 138
2.6.2.3 Running MySQL on Windows......... 139
2.6.2.4 Connecting to MySQL Remotely from
Windows with SSH 140
2.6.2.5 Distributing Data Across Different Disks on
Windows. ... 141
2.6.2.6 Compiling MySQL Clients on Windows
.. 141
2.6.2.7 MySQL for Windows Compared to Unix
MySQL ... 142
2.6.3 Solaris Notes......... ...t 144
2.6.3.1 Solaris 2.7/2.8 Notes 147
2.6.3.2 Solaris x86 Notes 148
2.6.4 BSD Notes.........ooviiiiniiiiiiin. 148
2.6.4.1 FreeBSD Notes 148
2.6.4.2 NetBSD Notes....................... 150
2.6.4.3 OpenBSD 2.5 Notes.................. 150
2.6.4.4 OpenBSD 2.8 Notes.................. 150
2.6.4.5 BSD/OS Version 2.x Notes 150
2.6.4.6 BSD/OS Version 3.x Notes 151
2.6.4.7 BSD/OS Version 4.x Notes 151
2.6.5 MacOS X Notes.........cooiviiiiiniii... 152

2651 MacOSX10x......ooiiino. .. 152

v

2.6.5.2 Mac OS X Server 1.2 (Rhapsody) 152

2.6.6 Other Unix Notes 152
2.6.6.1 HP-UX Notes for Binary Distributions
.. 152
2.6.6.2 HP-UX Version 10.20 Notes........... 153
2.6.6.3 HP-UX Version 11.x Notes............ 153
2.6.6.4 IBM-AIXnotes...................... 155
2.6.6.5 SunOS4 Notes...............con... 156
2.6.6.6 Alpha-DEC-UNIX Notes (Tru64)...... 157
2.6.6.7 Alpha-DEC-OSF/1 Notes............. 158
2.6.6.8 SGIIrix Notes....................... 159
2.6.6.9 SCONotes........oovviiiiiiiin.. 160
2.6.6.10 SCO UnixWare Version 7.1.x Notes .. 162
2.6.7 OS/2Notes.........ooiiiiiiiiiiiiiia.. 162
2.6.8 Novell NetWare Notes 163
2.6.9 BeOSNotes.......coviiiiiiiiii . 163
2.7 Perl Installation Comments 164
2.7.1 Installing Perl on Unix........................ 164
2.7.2 Installing ActiveState Perl on Windows 165
2.7.3 Installing the MySQL Perl Distribution on Windows
... 165
2.7.4 Problems Using the Perl DBI/DBD Interface 165
3 Tutorial Introduction 168
3.1 Connecting to and Disconnecting from the Server........ 168
3.2 Entering Queries....... ...t 169
3.3 Creating and Using a Database......................... 172
3.3.1 Creating and Selecting a Database............. 173
3.3.2 Creatinga Table 174
3.3.3 Loading Data into a Table 175
3.3.4 Retrieving Information from a Table 176
3.3.4.1 Selecting All Data 176
3.3.4.2 Selecting Particular Rows............. 177
3.3.4.3 Selecting Particular Columns 178
3.3.44 Sorting Rows........................ 180
3.3.4.5 Date Calculations.................... 181
3.3.4.6 Working with NULL Values............ 184
3.3.4.7 Pattern Matching 184
3.3.4.8 Counting Rows 187
3.3.4.9 Using More Than one Table 189
3.4 Getting Information About Databases and Tables 191
3.5 Examples of Common Queries.......................... 192
3.5.1 The Maximum Value for a Column 193
3.5.2 The Row Holding the Maximum of a Certain
Column.............o i, 193
3.5.3 Maximum of Column per Group 193
3.5.4 The Rows Holding the Group-wise Maximum of a

Certain Field 194

3.5.5 Using user variables........................... 195

3.5.6 Using Foreign Keys........................... 195
3.5.7 Searching on Two Keys 197
3.5.8 Calculating Visits Per Day 197
3.5.9 Using AUTO_INCREMENT........................ 198
3.6 Using mysql in Batch Mode............................ 199
3.7 Queries from Twin Project............................. 200
3.7.1 Find all Non-distributed Twins 201
3.7.2 Show a Table on Twin Pair Status............. 203
3.8 Using MySQL with Apache 204
4 Database Administration................. 205
4.1 Configuring MySQLo 205
4.1.1 mysqld Command-line Options 205
4.1.2 ‘my.cnf’ Option Files......................... 212

4.1.3 Running Multiple MySQL Servers on the Same
Machine 215

4.1.3.1 Running Multiple Servers on Windows
.. 216
4.1.3.2 Running Multiple Servers on Unix..... 219
4.1.3.3 Using Client Programs in a Multiple-Server
Environment 220

4.2 General Security Issues and the MySQL Access Privilege
SYStEIM . . oot 221
4.2.1 General Security Guidelines 221

4.2.2 How to Make MySQL Secure Against Crackers.. 224
4.2.3 Startup Options for mysqld Concerning Security

... 225
4.2.4 Security issues with LOAD DATA LOCAL 226
4.2.5 What the Privilege System Does............... 227
4.2.6 How the Privilege System Works............... 227
4.2.7 Privileges Provided by MySQL 230
4.2.8 Connecting to the MySQL Server.............. 233
4.2.9 Access Control, Stage 1: Connection Verification

... 234
4.2.10 Access Control, Stage 2: Request Verification .. 237
4.2.11 Password Hashing in MySQL 4.1 239
4.2.12 Causes of Access denied Errors.............. 243

4.3 MySQL User Account Management..................... 247
4.3.1 GRANT and REVOKE Syntax..................... 248
4.3.2 MySQL User Names and Passwords............ 252
4.3.3 When Privilege Changes Take Effect 253
4.3.4 Setting Up the Initial MySQL Privileges........ 253
4.3.5 Adding New Users to MySQL 255
4.3.6 Limiting user resources. 257
4.3.7 Setting Up Passwords......................... 258
4.3.8 Keeping Your Password Secure 259

4.3.9 Using Secure Connections 260

4391 Basics........oiiiiii 260
4.3.9.2 Requirements........................ 261
4.3.9.3 Setting Up SSL Certificates for MySQL
.. 261
4.3.9.4 GRANT Options....................... 265
4.4 Disaster Prevention and Recovery 267
4.4.1 Database Backups............................ 267
4.4.2 BACKUP TABLE Syntax..............cooevun.... 268
4.4.3 RESTORE TABLE Syntax........................ 268
4.44 CHECK TABLE Syntaxcovevinn... 269
4.4.5 REPAIR TABLE Syntaxc.cooveeuunnan.. 270
4.4.6 Using myisamchk for Table Maintenance and Crash
Recovery...... ... 271
4.4.6.1 myisamchk Invocation Syntax......... 272
4.4.6.2 General Options for myisamchk 273
4.4.6.3 Check Options for myisamchk......... 274
4.4.6.4 Repair Options for myisamchk 275
4.4.6.5 Other Options for myisamchk......... 276
4.4.6.6 myisamchk Memory Usage............ 276
4.4.6.7 Using myisamchk for Crash Recovery .. 277
4.4.6.8 How to Check Tables for Errors....... 278
4.4.6.9 How to Repair Tables 279
4.4.6.10 Table Optimisation 281
4.4.7 Setting Up a Table Maintenance Regimen 281
4.4.8 Getting Information About a Table............ 282
4.5 Database Administration Language Reference........... 287
4.5.1 OPTIMIZE TABLE Syntax................ccou.... 287
4.5.2 ANALYZE TABLE Syntax.................ooo.... 288
4.5.3 FLUSH SYNtax . ..oovvrneerineeiineeinennns 288
4.5.4 RESET SyNtax . ..vvvvnnneeenniiiaaaanee... 290
4.5.5 PURGE MASTER LOGS Syntax.................... 290
4.5.6 KILL Syntaxoouumeeinneeinnneennn... 290
4.5.7 SHOW Syntaxcouveiinneenneennn... 291
4.5.7.1 Retrieving information about Database,
Tables, Columns, and Indexes............. 291
4.5.7.2 SHOW TABLE STATUS 293
4.5.7.3 SHOW STATUS........cciiriinirnnn.... 293
4.5.7.4 SHOW VARIABLES 297
4.5.7.5 SHOW [BDB] LOGS..........covvuvn.... 307
4.5.7.6 SHOWPROCESSLIST.............oon... 307
4.5.7.7 SHOW GRANTS..........coiiirnrn.... 309
4.5.7.8 SHOW CREATETABLE 309
4.5.7.9 SHOW WARNINGS | ERRORS 309
4.5.7.10 SHOWTABLE TYPES 311
4.5.7.11 SHOWPRIVILEGES................... 312
4.6 MySQL Localisation and International Usage............ 312
4.6.1 The Character Set Used for Data and Sorting... 312

4.6.1.1 German characterset 313

vii

viii

4.6.2 Non-English Error Messages................... 313

4.6.3 Adding a New Character Set 314

4.6.4 The Character Definition Arrays............... 315

4.6.5 String Collating Support 316

4.6.6 Multi-byte Character Support 316

4.6.7 Problems With Character Sets................. 316

4.7 MySQL Server-Side Scripts and Utilities 317
4.7.1 Overview of the Server-Side Scripts and Utilities

... 317

4.7.2 mysqld_safe, The Wrapper Around mysqld.... 318
4.7.3 mysqld_multi, A Program for Managing Multiple

MySQL Servers. ... 319
4.7.4 myisampack, The MySQL Compressed Read-only
Table Generatoro, 323
4.7.5 mysqld-max, An Extended mysqld Server....... 329
4.8 MySQL Client-Side Scripts and Utilities 331
4.8.1 Overview of the Client-Side Scripts and Utilities
... 331
4.8.2 mysql, The Command-line Tool................ 332

4.8.3 mysqladmin, Administrating a MySQL Server .. 340
4.8.4 mysqlbinlog, Executing the queries from a binary
lOg . et 342
4.8.5 Using mysqlcheck for Table Maintenance and Crash
Recovery...... 343
4.8.6 mysqldump, Dumping Table Structure and Data

4.8.7 mysqlhotcopy, Copying MySQL Databases and

Tableso 349
4.8.8 mysqlimport, Importing Data from Text Files.. 350
4.8.9 mysqlshow, Showing Databases, Tables, and

Columns 353
4.8.10 mysql_config, Get compile options for compiling
clients ... 353
4.8.11 perror, Explaining Error Codes.............. 354
4.8.12 How to Run SQL Commands from a Text File.. 354
4.9 The MySQL Log Files........ i 355
491 The Error Log. ... 355
4.9.2 The General Query Log....................... 356
493 TheUpdateLog................iiiii... 356
494 TheBinary Log 357
4.9.5 The Slow Query Log.......................... 359
4.9.6 Log File Maintenance......................... 360
4.10 Replication in MySQL......... 360
4.10.1 Introduction, 361
4.10.2 Replication Implementation Overview......... 361
4.10.3 Replication Implementation Details........... 362
4.10.4 How To Set Up Replication 364

4.10.5 Replication Features and Known Problems 367

4.10.6 Replication Options in ‘my.cnf’ 369
4.10.7 SQL Commands Related to Replication 377
4.10.7.1 START SLAVE (slave)................. 378
4.10.7.2 STOP SLAVE (slave) 378
4.10.7.3 SET SQL_LOG_BIN=0|1 (master) 378
4.10.7.4 SET GLOBAL SQL_SLAVE_SKIP_COUNTER=n
(slave) ..o 378
4.10.7.5 RESET MASTER (master).............. 378
4.10.7.6 RESET SLAVE (slave)................. 378
4.10.7.7 LOAD TABLE tblname FROM MASTER (slave)
.. 379
4.10.7.8 LOAD DATA FROM MASTER (slave)....... 379
4.10.7.9 CHANGE MASTER TO master_def_list
(slave) ... 379
4.10.7.10 MASTER_POS_WAIT() (slave)......... 381
4.10.7.11 SHOW MASTER STATUS (master). 381
4.10.7.12 SHOW SLAVE HOSTS (master)......... 381
4.10.7.13 SHOW SLAVE STATUS (slave) 381
4.10.7.14 SHOW MASTER LOGS (master)......... 383
4.10.7.15 SHOW BINLOG EVENTS (master) 383
4.10.7.16 PURGE MASTER LOGS (master)........ 383
4.10.8 Replication FAQ 383
4.10.9 Troubleshooting Replication.................. 388
5 MySQL Optimisation 391
5.1 Optimisation Overviewcooiiuiinein. .. 391
5.1.1 MySQL Design Limitations/Tradeoffs 391
5.1.2 Portability 392
5.1.3 What Have We Used MySQL For?............. 393
5.1.4 The MySQL Benchmark Suite................. 394
5.1.5 Using Your Own Benchmarks.................. 395
5.2 Optimising SELECTs and Other Queries 395
5.2.1 EXPLAIN Syntax (Get Information About a SELECT)
... 396
5.2.2 Estimating Query Performance 402
5.2.3 Speed of SELECT Queries 403
5.2.4 How MySQL Optimises WHERE Clauses 403
5.2.5 How MySQL Optimises ISNULL............... 405
5.2.6 How MySQL Optimises DISTINCT.............. 406
5.2.7 How MySQL Optimises LEFT JOIN and RIGHT JOIN
... 406
5.2.8 How MySQL Optimises ORDERBY 407
5.2.9 How MySQL Optimises LIMIT................. 409
5.2.10 Speed of INSERT Queries 409
5.2.11 Speed of UPDATE Queries 411
5.2.12 Speed of DELETE Queries 411
5.2.13 Other Optimisation Tips..................... 411

5.3 Locking Issues 414

ix

5.3.1 How MySQL Locks Tables 414

5.3.2 Table Locking Issues.......................... 415
5.4 Optimising Database Structure......................... 416
5.4.1 Design Choices............coiiviiiiin... 416
5.4.2 Get Your Data as Small as Possible............ 417
5.4.3 How MySQL Uses Indexes 418
5.4.4 Column Indexes..................oiiiin... 420
5.4.5 Multiple-Column Indexes...................... 420
5.4.6 Why So Many Open tables?................... 421
5.4.7 How MySQL Opens and Closes Tables 422
5.4.8 Drawbacks to Creating Large Numbers of Tables in
the Same Database 423
5.5 Optimising the MySQL Server 423
5.5.1 System/Compile Time and Startup Parameter
Tuning. ... 423
5.5.2 Tuning Server Parameters..................... 424
5.5.3 How Compiling and Linking Affects the Speed of
MySQL ..o 426
5.5.4 How MySQL Uses Memory.................... 427
5.5.5 How MySQL uses DNS 428
5.5.6 SET Syntax.........eouuiiiinneiineaana.. 429
5.6 Disk ISSUES . ..o 432
5.6.1 Using Symbolic Links......................... 434
5.6.1.1 Using Symbolic Links for Databases ... 434
5.6.1.2 Using Symbolic Links for Tables 434
6 MySQL Language Reference 436
6.1 Language Structurec0oiiiniinennn... 436
6.1.1 Literals: How to Write Strings and Numbers. ... 436
6.1.1.1 Strings...........ooiiiiiiiiiii... 436
6.1.1.2 Numbers............................ 438
6.1.1.3 Hexadecimal Values.................. 438
6.1.1.4 NULL Values 438
6.1.2 Database, Table, Index, Column, and Alias Names
... 439
6.1.3 Case Sensitivity in Names..................... 440
6.1.4 User Variables................................ 440
6.1.5 System Variables............................. 441
6.1.6 Comment Syntax...............ccooviii... 445
6.1.7 Is MySQL Picky About Reserved Words?. 445
6.2 Column Types.......coooiiiiii ... 448
6.2.1 Numeric Types.......oooiiiiiii . 453
6.2.2 Date and Time Types......................... 455
6.2.2.1 Y2K Issues and Date Types........... 456
6.2.2.2 The DATETIME, DATE, and TIMESTAMP Types
.. 456
6.223 TheTIME Typecovveivinn .. 459

6.2.2.4 The YEAR Typecoooviiooo.. 460

6.2.3 String Types.......cocoiiiiiii... 461
6.2.3.1 The CHAR and VARCHAR Types......... 461
6.2.3.2 The BLOB and TEXT Types............ 462
6.2.3.3 The ENUM Typecovvvn.. 463
6.2.34 The SET Type ..., 464
6.2.4 Choosing the Right Type for a Column......... 465

6.2.5 Using Column Types from Other Database Engines
... 465
6.2.6 Column Type Storage Requirements 466
6.3 Functions for Use in SELECT and WHERE Clauses 467
6.3.1 Non-Type-Specific Operators and Functions 468
6.3.1.1 Parentheses.......................... 468
6.3.1.2 Comparison Operators 468
6.3.1.3 Logical Operators.................... 472
6.3.1.4 Control Flow Functions............... 473
6.3.2 String Functions................... 475
6.3.2.1 String Comparison Functions 482
6.3.2.2 Case-Sensitivity...................... 485
6.3.3 Numeric Functions............................ 485
6.3.3.1 Arithmetic Operations 485
6.3.3.2 Mathematical Functions.............. 486
6.3.4 Date and Time Functions 492
6.3.5 Cast Functions............................... 503
6.3.6 Other Functions.............................. 505
6.3.6.1 Bit Functions........................ 505
6.3.6.2 Miscellaneous Functions.............. 506

6.3.7 Functions and Modifiers for Use with GROUP BY

Clauses . ..o v e 513
6.3.7.1 GROUP BY Functions 513
6.3.7.2 GROUP BY Modifiers................... 516
6.4 Data Manipulation: SELECT, INSERT, UPDATE, DELETE.... 519
6.4.1 SELECT Syntaxoveeiuneeiinneennnann. 519
6.4.1.1 JOIN Syntax..........c.oovveeunnnan.. 524
6.4.1.2 UNION Syntax..........c.coeeuneeeeo... 526
6.4.2 HANDLER Syntaxcooeeiineeinnaan. 526
6.4.3 INSERT Syntaxeeeuneeeinnnennnnaann. 527
6.4.3.1 INSERT ... SELECT Syntax........... 530
6.4.4 INSERT DELAYED Syntax...........coveeunen... 530
6.4.5 UPDATE Syntaxooveeiieiuiinnnnneen... 532
6.4.6 DELETE Syntaxc.uoveiiiineeiuinnann. 533
6.4.7 TRUNCATE Syntaxoveeuuneeennneeennn.. 535
6.4.8 REPLACE Syntaxcoveeiinneeinnnaan. 535
6.4.9 LOAD DATA INFILE Syntax..................... 536
6.4.10 DO Syntax.........oorrmieeeenian.. 543
6.5 Data Definition: CREATE, DROP, ALTER 543
6.5.1 CREATE DATABASE Syntax...................... 543
6.5.2 DROP DATABASE Syntax.............cooevun.... 543

6.5.3 CREATE TABLE Syntaxc..covevenn... 544

xi

6.5.3.1 Silent Column Specification Changes .. 552

6.5.4 ALTER TABLE Syntaxc.oeeun... 953
6.5.5 RENAME TABLE Syntax 956
6.5.6 DROP TABLE Syntaxcovvuuno... 556
6.5.7 CREATE INDEX Syntaxcovevunn... 5957
6.5.8 DROP INDEX Syntaxooeeeuuneeennnann. 958
6.6 Basic MySQL User Utility Commands 558
6.6.1 USE Syntax.........couuieiinneeinnennnnna.. 558
6.6.2 DESCRIBE Syntax (Get Information About Columns)
... 558
6.7 MySQL Transactional and Locking Commands.......... 559
6.7.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
... 559
6.7.2 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
... 560
6.7.3 LOCK TABLES and UNLOCK TABLES Syntax 560
6.7.4 SET TRANSACTION Syntax..............oveun... 562
6.8 MySQL Full-text Search............................... 562
6.8.1 Full-text Restrictions 566
6.8.2 Fine-tuning MySQL Full-text Search........... 566
6.8.3 Full-text Search TODO 567
6.9 MySQL Query Cache............ 567
6.9.1 How The Query Cache Operates............... 568
6.9.2 Query Cache Configuration.................... 569
6.9.3 Query Cache Options in SELECT 570
6.9.4 Query Cache Status and Maintenance.......... 570
7 MySQL Table Types..................... 572
7.1 MyISAM Tables...........o .. 572
7.1.1 Space Needed for Keys........................ 575
7.1.2 MyISAM Table Formats........................ 975
7.1.2.1 Static (Fixed-length) Table Characteristics
.. 576
7.1.2.2 Dynamic Table Characteristics........ 576
7.1.2.3 Compressed Table Characteristics 577
7.1.3 MyISAM Table Problems....................... 77
7.1.3.1 Corrupted MyISAM Tables............. 578
7.1.3.2 Clients is using or hasn’t closed the table
properly..... ... 578
7.2 MERGE Tables o i, 579
7.2.1 MERGE Table Problems o81
7.3 ISAM Tables.........ouiii 582
7.4 HEAP Tables..... ..o 583
7.5 InnoDB Tables..............o ... 584
7.5.1 InnoDB Tables Overview...................... 584
7.5.2 InnoDB in MySQL Version 3.23 584
7.5.3 InnoDB Startup Options...................... 585

7.5.4 Creating InnoDB Tablespace 591

xii

7.5.5

7.5.10
7.5.11

7.5.12

7.5.13
7.5.14
7.5.15

7.5.4.1 If Something Goes Wrong in Database

Creation ..., 592
Creating InnoDB Tables 592
7.5.5.1 Converting MyISAM Tables to InnoDB

.. 593
7.5.5.2 Foreign Key Constraints.............. 593
Adding and Removing InnoDB Data and Log Files

.. 596
Backing up and Recovering an InnoDB Database
.. 596
7.5.7.1 Checkpoints 598
Moving an InnoDB Database to Another Machine
.. 598
InnoDB Transaction Model.................... 599
7.5.9.1 Consistent Read 600
7.5.9.2 LockingReads....................... 601
7.5.9.3 Next-key Locking: Avoiding the Phantom

Problem.......... 601
7.5.9.4 Locks Set by Different SQL Statements in

InnoDB. ..o 602
7.5.9.5 Deadlock Detection and Rollback...... 603
7.5.9.6 An Example of How the Consistent Read

Works in InnoDB. ..., 603
7.5.9.7 How to cope with deadlocks? 604
7.5.9.8 Performance Tuning Tips............. 605
7.5.9.9 The InnoDB Monitor 606

Implementation of Multi-versioning 609
Table and Index Structures................... 609
7.5.11.1 Physical Structure of an Index 610
7.5.11.2 Insert Buffering..................... 610
7.5.11.3 Adaptive Hash Indexes.............. 610
7.5.11.4 Physical Record Structure........... 611
7.5.11.5 How an Auto-increment Column Works in

InnoDB 611

File Space Management and Disk I/O......... 612
75121 DiskI/O ... 612
7.5.12.2 File Space Management 613
7.5.12.3 Defragmenting a Table 613
Error Handling 614
Restrictions on InnoDB Tables 614
InnoDB Change History...................... 615
7.5.15.1 MySQL/InnoDB-4.0.14, July 22, 2003

.. 615
7.5.15.2 MySQL/InnoDB-3.23.57, June 20, 2003

.. 616
7.5.15.3 MySQL/InnoDB-4.0.13, May 20, 2003

.. 617

7.5.15.4 MySQL/InnoDB-4.1.0, April 3, 2003.. 618

xiii

7.5.15.5 MySQL/InnoDB-3.23.56, March 17, 2003
75156 MySOL/laseDB.4.0.12, Masch 18, 2008
s T NSO DB 0L Febrers 25, 2003
P 51n VSOL D400, Febmers 43003
75155 MySOL/TancDB3.29.55, Tactary 54, 2003
1510 NIvSOL D409, Tarsiens T4 2003
751511 MySOUL/EaneDB4.08, Janiacs 7. 9008
.. 620

7.5.15.13 MySQL/InnoDB-4.0.6, December 19,
2002 . 621
7.5.15.14 MySQL/InnoDB-3.23.54, December 12,
2002 ... 621
7.5.15.15 MySQL/InnoDB-4.0.5, November 18,
2002 ... 621
7.5.15.16 MySQL/InnoDB-3.23.53, October 9, 2002
.. 622
7.5.15.17 MySQL/InnoDB-4.0.4, October 2, 2002
.. 623
7.5.15.18 MySQL/InnoDB-4.0.3, August 28, 2002
.. 624

7.5.15.20 MySQL/InnoDB-4.0.2, July 10, 2002
.. 626
7.5.15.21 MySQL/InnoDB-3.23.51, June 12, 2002
.. 626
7.5.15.22 MySQL/InnoDB-3.23.50, April 23, 2002
.. 626
7.5.15.23 MySQL/InnoDB-3.23.49, February 17,
2002 .. 627
7.5.15.24 MySQL/InnoDB-3.23.48, February 9,
2002 ... 627
7.5.15.25 MySQL/InnoDB-3.23.47, December 28,
2001 ... 628
7.5.15.26 MySQL/InnoDB-4.0.1, December 23,
2001 .. 628
7.5.15.27 MySQL/InnoDB-3.23.46, November 30,
2001 ... 629
7.5.15.28 MySQL/InnoDB-3.23.45, November 23,
2001 .o 629

Xiv

7.5.15.29 MySQL/InnoDB-3.23.44, November 2,

2001 ... 629
7.5.15.30 MySQL/InnoDB-3.23.43, October 4, 2001
.. 630
7.5.15.31 MySQL/InnoDB-3.23.42, September 9,
2001 ... 630
7.5.15.32 MySQL/InnoDB-3.23.41, August 13,
2001 ..o 630
7.5.15.33 MySQL/InnoDB-3.23.40, July 16, 2001
.. 630
7.5.15.34 MySQL/InnoDB-3.23.39, June 13, 2001
.. 630
7.5.15.35 MySQL/InnoDB-3.23.38, May 12, 2001
.. 631
7.5.16 InnoDB Contact Information.................. 631
7.6 BDB or BerkeleyDB Tables............................. 631
7.6.1 Overview of BDB Tables 631
7.6.2 Installing BDBcovvriineeninnnnnnnn.. 632
7.6.3 BDB startup options........................... 632
7.6.4 Characteristics of BDB tables: 633
7.6.5 Things we need to fix for BDB in the near future:
... 634
7.6.6 Operating systems supported by BDB........... 634
7.6.7 Restrictions on BDB Tables 635
7.6.8 Errors That May Occur When Using BDB Tables
... 635
8 National Character Sets and Unicode in
MYSQL 40w e veeee et 636
8.1 Character Sets and Collations in General................ 636
8.2 Character Sets and Collations in MySQL 637
8.3 Determining The Default Character Set And Collation ... 637
8.3.1 Server Character Set and Collation 637
8.3.2 Database Character Set and Collation.......... 638
8.3.3 Table Character Set and Collation 638
8.3.4 Column Character Set and Collation........... 639
8.3.5 Examples of Character Set and Collation Assignment
... 639
8.3.6 Connection Character Sets and Collations 641
8.3.7 Character String Literal Character Set and Collation
... 641
8.3.8 COLLATE Clause in Various Parts of an SQL Query
... 642
8.3.9 COLLATE Clause Precedence 643
8.3.10 BINARY Operatorcouvuveiinnan.. 643

8.3.11 Some Special Cases Where the Collation
Determination is Tricky 643

Xvi

8.3.12 Collations Must Be for the Right Character Set

... 644
8.3.13 An example of the Effect of Collation 644
8.4 Operations Affected by Character Set Support 645
8.4.1 Result Strings...............coiiiii.. 645
8.4.2 CONVERT()ovriie e 646
8.4.3 CAST() i 646
8.4.4 SHOW CHARACTER SET.........cvviinennnnnnn.. 646
8.4.5 SHOW COLLATION..........oovririeeennn.. 647
8.4.6 SHOW CREATEDATABASE..............cccvun... 647
8.4.7 SHOWFULLFIELDSovriiiiennanannnn.. 648
8.5 Unicode Support 648
8.6 UTFS8 for Metadata 649
8.7 Compatibility with Other DBMSs 649
8.8 New Character Set Configuration File format............ 650
8.9 National Character Set, 650
8.10 Upgrading from MySQL 4.0............. 650
8.10.1 4.0 Character Sets and Corresponding 4.1
Character Set/Collation Pairs.................... 651
8.11 The Character Sets and Collations that MySQL Supports
.. 652
8.11.1 The Unicode Character Sets.................. 653
8.11.2 Platform Specific Character Sets.............. 653
8.11.3 Character Sets for South Europe and Middle East
... 653
8.11.4 The Asian Character Sets.................... 653
8.11.5 The Baltic Character Sets.................... 654
8.11.6 The Cyrillic Character Sets................... 654
8.11.7 The Central European Character Sets......... 655
8.11.8 The West European Character Sets........... 656
9 MYSQL APTIS . - voeeeeeeeeeeeeeaanan 658
9.1 MySQL C API. 658
9.1.1 C API Datatypes..........oooiiiiinnneaa. .. 658
9.1.2 C API Function Overview..................... 661
9.1.3 C API Function Descriptions 665
9.1.3.1 mysql_affected_rows() 665
9.1.3.2 mysql_change user() 666
9.1.3.3 mysql_character_set_name()........ 667
9.1.3.4 mysql_close() 668
9.1.3.5 mysql_connect().................... 668
9.1.3.6 mysql_create_db().................. 669
9.1.3.7 mysql_data_seek().................. 670
9.1.3.8 mysql_debug() 670
9.1.3.9 mysql_drop_db().................... 671
9.1.3.10 mysql_dump_debug_info().......... 671
9.1.3.11 mysql_eof()couiuiunnnn... 672

9.1.3.12 mysql_errno() 673

xvii

9.1.3.13 mysql_error() 674
9.1.3.14 mysql_escape_string() 674
9.1.3.15 mysql_fetch_field() 674
9.1.3.16 mysql_fetch_fields() 675
9.1.3.17 mysql_fetch_field_direct()....... 676
9.1.3.18 mysql_fetch_lengths() 677
9.1.3.19 mysql_fetch_row() 678
9.1.3.20 mysql_field_count() 679
9.1.3.21 mysql_field_seek() 680
9.1.3.22 mysql_field_tell() 680
9.1.3.23 mysql_free_result() 681
9.1.3.24 mysql_get_client_info().......... 681
9.1.3.25 mysql_get_server_version()....... 682
9.1.3.26 mysql_get_host_info() 682
9.1.3.27 mysql_get_proto_info() 682
9.1.3.28 mysql_get_server_info().......... 683
9.1.3.29 mysql_info() 683
9.1.3.30 mysql_init(Q) 684
9.1.3.31 mysql_insert_id() 684
9.1.3.32 mysql_kill() 685
9.1.3.33 mysql_list_dbs().................. 686
9.1.3.34 mysql_list_fields() 686
9.1.3.35 mysql_list_processes() 687
9.1.3.36 mysql_list_tables() 688
9.1.3.37 mysql_num_fields() 688
9.1.3.38 mysql_num_rows().................. 690
9.1.3.39 mysql_options()................... 690
9.1.3.40 mysql_ping() 692
9.1.3.41 mysql_query() 693
9.1.3.42 mysql_real_connect() 693
9.1.3.43 mysql_real_escape_string()....... 696
9.1.3.44 mysql_real_query() 697
9.1.3.45 mysql_reload().................... 698
9.1.3.46 mysql_row_seek().................. 699
9.1.3.47 mysql_row_tell().................. 699
9.1.3.48 mysql_select_db() 699
9.1.3.49 mysql_sqlstate().................. 700
9.1.3.50 mysql_shutdown().................. 701
9.1.3.51 mysql_stat() 701
9.1.3.52 mysql_store_result() 702
9.1.3.53 mysql_thread_id() 703
9.1.3.54 mysql_use_result() 703
9.1.3.55 mysql_commit() 704
9.1.3.56 mysql_rollback().................. 705
9.1.3.57 mysql_autocommit() 705
9.1.3.58 mysql_more_results() 705
9.1.3.59 mysql_next_result() 706

9.1.4 C API Prepared Statements................... 706

9.1.5 C API Prepared Statement Datatypes.......... 706
9.1.6 C API Prepared Statement Function Overview.. 709
9.1.7 C API Prepared Statement Function Descriptions

... 711
9.1.7.1 mysql_prepare().................... 712
9.1.7.2 mysql_param_count() 713
9.1.7.3 mysql_prepare_result() 713
9.1.74 mysql_bind_param() 714
9.1.7.5 mysql_execute().................... 715
9.1.7.6 mysql_stmt_affected_rows()........ 719
9.1.7.7 mysql_bind_result() 720
9.1.7.8 mysql_stmt_store_result()......... 721
9.1.79 mysql_stmt_data_seek() 722
9.1.7.10 mysql_stmt_row_seek() 722
9.1.7.11 mysql_stmt_row_tell() 723
9.1.7.12 mysql_stmt_num_rows() 723
9.1.7.13 mysql_fetch()..................... 723
9.1.7.14 mysql_send_long data() 729
9.1.7.15 mysql_stmt_close() 731
9.1.7.16 mysql_stmt_errno() 731
9.1.7.17 mysql_stmt_error() 732
9.1.7.18 mysql_stmt_sqlstate() 732
9.1.8 C API Handling of Multiple Query Execution... 733
9.1.9 C API Handling of Date and Time Values...... 734
9.1.10 C API Threaded Function Descriptions 735
9.1.10.1 my_initQ) 735
9.1.10.2 mysql_thread_init() 735
9.1.10.3 mysql_thread_end() 736
9.1.10.4 mysql_thread_safe() 736

9.1.11 C API Embedded Server Function Descriptions
... 736
9.1.11.1 mysql_server_init() 736
9.1.11.2 mysql_server_end() 738

9.1.12 Common questions and problems when using the C
APL . 738

9.1.12.1 Why Is It that After mysql_query()
Returns Success, mysql_store_result ()

Sometimes Returns NULL? 738
9.1.12.2 What Results Can I Get From a Query?
.. 738
9.1.12.3 How Can I Get the Unique ID for the Last
Inserted Row? 739
9.1.12.4 Problems Linking with the C API.... 739
9.1.13 Building Client Programs 740
9.1.14 How to Make a Threaded Client 740
9.1.15 libmysqld, the Embedded MySQL Server Library

... 741

xviii

9.1.15.1 Overview of the Embedded MySQL Server
Library 741
9.1.15.2 Compiling Programs with 1ibmysqld

.. 742
9.1.15.3 Restrictions when using the Embedded
MySQL Server...................oo. 742
9.1.15.4 Using Option Files with the Embedded
SEIVET . o vttt 743
9.1.15.5 Things left to do in Embedded Server
(TODO) ..o 743
9.1.15.6 A Simple Embedded Server Example
.. 743
9.1.15.7 Licensing the Embedded Server...... 747
9.2 MySQL ODBC Supportoovivriineniina.. 747
9.2.1 How To Install MyODBC 747
9.2.2 How to Fill in the Various Fields in the ODBC
Administrator Program 748
9.2.3 Connect parameters for MyODBC 749
9.2.4 How to Report Problems with MyODBC 750
9.2.5 Programs Known to Work with MyODBC...... 750
9.2.6 How to Get the Value of an AUTO_INCREMENT
Column in ODBC.......... 755
9.2.7 Reporting Problems with MyODBC............ 756
9.3 MySQL Java Connectivity (JDBC)..................... 756
9.4 MySQL PHP API......., 757
9.4.1 Common Problems with MySQL and PHP 757
9.5 MySQL Perl APT 757
9.5.1 DBI withDBD::mysqlccvvvvrunnnn... 757
9.5.2 The DBI Interface.................ooiiii. ... 758
9.5.3 More DBI/DBD Information 764
9.6 MySQL C++ APT 764
9.6.1 Borland C++............ 764
9.7 MySQL Python APT 764
9.8 MySQL Tcl APL 764
9.9 MySQL Eiffel Wrapper i, 764
10 Error Handling in MySQL 766

10.1 Error Returns........ 766

Xix

11 Spatial Extensions in MySQL 773

11.1 Introduction........... ... 773
11.2 The OpenGIS Geometry Model 773
11.2.1 The Geometry Class Hierarchy 774
11.2.2 Class Geometry.......ovviiiunnnneeeneea.. 775
11.23 ClassPoint.......ooiiiiniiiinii .. 776
1124 Class Curveooveiinn i 776
11.2.5 Class LineStringccovineeeeeeennn... 7T
11.2.6 ClassSurface..........ooviieiiinneeinna.. e
11.2.7 Class POlygon............oviiiiiiiiin... T
11.2.8 Class GeometryCollection 778
11.2.9 Class MultiPointcovuveennnnao... 778
11.2.10 Class MultiCurvecovveirunnnn... 778
11.2.11 Class MultiLineString..................... 779
11.2.12 Class MultiSurfacecooviinan.. 779
11.2.13 Class MultiPolygonccouvvenn... 779
11.3 Supported Spatial Data Formats 780
11.3.1 Well-Known Text (WKT) Format............. 780
11.3.2 Well-Known Binary (WKB) Format........... 781
11.4 Creating a Spatially Enabled MySQL Database......... 781
11.4.1 MySQL Spatial Datatypes 782
11.4.2 Creating Spatial Values...................... 782
11.4.2.1 Creating Geometry Values Using WKT
Functions, 782
11.4.2.2 Creating Geometry Values Using WKB
Functions 783
11.4.2.3 Creating Geometry Values Using
MySQL-Specific Functions................ 784
11.4.3 Creating Spatial Columns 785
11.4.4 Populating Spatial Columns.................. 785
11.4.5 Fetching Spatial Data........................ 787
11.4.5.1 Fetching Spatial Data in Internal Format
.. 787
11.4.5.2 Fetching Spatial Data in WKT Format
.. 787
11.4.5.3 Fetching Spatial Data in WKB Format
.. 787
11.5 Analysing Spatial Information......................... 787
11.5.1 Functions To Convert Geometries Between Formats
... 788
11.5.2 Geometry Property Analysis Functions........ 788
11.5.2.1 General Geometry Property Analysis
Functions, 788

11.5.2.2 Point Property Analysis Functions... 790

11.5.2.3 LineString Property Analysis Functions
.. 790

11.5.2.4 MultilineString Property Analysis
Functions 792

11.5.2.5 Polygon Property Analysis Functions

.. 792
11.5.2.6 MultiPolygon Property Analysis
Functions 793
11.5.2.7 GeometryCollection Property Analysis
Functions 794
11.5.3 Functions That Create New Geometries From
Existing Ones 794
11.5.3.1 Geometry Functions That Produce New
Geometriesouiin 794
11.5.3.2 Spatial Operators................... 795
11.5.4 Functions For Testing Spatial Relations Between
Geometric Objects i 795
11.5.5 Relations On Geometry Minimal Bounding
Rectangles (MBRS) ..., 795
11.5.6 Functions That Test Spatial Relationships Between
GeOMELTIeS . . . oottt et 796
11.6 Optimising Spatial Analysis........................... 797
11.6.1 Creating Spatial Indexes 798
11.6.2 Using a Spatial Index........................ 799
11.7 MySQL Conformance And Compatibility 801
11.7.1 GIS Features That Are Not Yet Implemented .. 801
12 Extending MySQL...................... 802
121 MySQL Internals.coo o 802
12.1.1 MySQL Threads. ... 802
12.1.2 MySQL Test Suite........................... 802
12.1.2.1 Running the MySQL Test Suite. 803

12.1.2.2 Extending the MySQL Test Suite 803
12.1.2.3 Reporting Bugs in the MySQL Test Suite

.. 804
12.2 Adding New Functions to MySQL..................... 805
12.2.1 CREATE FUNCTION/DROP FUNCTION Syntax 805
12.2.2 Adding a New User-definable Function 806
12.2.2.1 UDF Calling Sequences for simple

functions.............. 808

12.2.2.2 UDF Calling Sequences for aggregate
functions.............. 809
12.2.2.3 Argument Processing................ 809

12.2.2.4 Return Values and Error Handling ... 811
12.2.2.5 Compiling and Installing User-definable

Functions, 812

12.2.3 Adding a New Native Function 813

12.3 Adding New Procedures to MySQL.................... 814
12.3.1 Procedure Analyse........................... 814

12.3.2 Writing a Procedure 815

poel

Appendix A Problems and Common Errors.. 816

Al
A2

A3

A4

A5

A6

A7

How to Determine What Is Causing Problems 816
Common Errors When Using MySQL 817
A.2.1 Accessdenied Error......................... 817
A.2.2 MySQL server has gone away Error............ 817
A.2.3 Can’t connect to [local] MySQL server Error
... 818
A.2.4 Client does not support authentication
ProtoCol €ITorot 820
A.25 Host ’...” is blocked Error................. 820
A.2.6 Too many connections Error 820
A.2.7 Some non-transactional changed tables
couldn’t be rolled back Error 821
A.2.8 Out of memory Error......................... 821
A.2.9 Packet toolarge Error................... ... 821
A.2.10 Communication Errors / Aborted Connection
... 822
A.2.11 The table is full Error.................... 823
A.2.12 Can’t create/write to file Error.......... 824
A.2.13 Commands out of sync Error in Client 824
A.2.14 Ignoringuser Error........................ 824
A.2.15 Table ’xxx’ doesn’t exist Error........... 825
A.2.16 Can’t initialize character set xxx error.. 825
A217 FileNot Found 825
Installation Related Issues............... 826
A.3.1 Problems When Linking with the MySQL Client
Library 826
A.3.2 How to Run MySQL As a Normal User........ 827
A.3.3 Problems with File Permissions 828
Administration Related Issues......................... 829
A.4.1 What To Do If MySQL Keeps Crashing. 829
A.4.2 How to Reset a Forgotten Root Password...... 831
A.4.3 How MySQL Handles a Full Disk.............. 832
A.4.4 Where MySQL Stores Temporary Files 832
A.4.5 How to Protect or Change the MySQL Socket File
/tmp/mysql.SoCK’ ... 833
A.4.6 Time Zone Problems 833
Query Related Issues., 834
A.5.1 Case-Sensitivity in Searches................... 834
A.5.2 Problems Using DATE Columns 834
A.5.3 Problems with NULL Values 835
A.5.4 Problems with alias......................... 836
A.5.5 Deleting Rows from Related Tables............ 837
A.5.6 Solving Problems with No Matching Rows 837
A.5.7 Problems with Floating-Point Comparison 838
Optimiser Related Issues............ 840
A.6.1 How to avoid table scan,,, 840
Table Definition Related Issues 841

xXx1i

A.7.1 Problems with ALTER TABLE................... 841

A.7.2 How To Change the Order of Columns in a Table
... 841
A.7.3 TEMPORARY TABLE problems 842
Appendix B Contributed Programs......... 843
Bl APIS. . 843
B.2 Convertersooiiiiiiiiii 845
B.3 Utilities. ... 847
Appendix C Credits...............covuu... 848
C.1 Developers at MySQL AB......... 848
C.2 Contributors to MySQL 851
C.3 Supporters to MySQL 857
Appendix D MySQL Change History........ 858
D.1 Changes in release 5.0.0 (Development)................. 858
D.2 Changes in release 4.1.x (Alpha)....................... 858
D.2.1 Changes in release 4.1.1 (not released yet) 859
D.2.2 Changes in release 4.1.0 (03 Apr 2003: Alpha).. 861
D.3 Changes in release 4.0.x (Production) 863
D.3.1 Changes in release 4.0.15 (not released yet) 864
D.3.2 Changes in release 4.0.14 (18 Jul 2003) 865
D.3.3 Changes in release 4.0.13 (16 May 2003) 869
D.3.4 Changes in release 4.0.12 (15 Mar 2003: Production)
... 872
D.3.5 Changes in release 4.0.11 (20 Feb 2003) 874
D.3.6 Changes in release 4.0.10 (29 Jan 2003)........ 875
D.3.7 Changes in release 4.0.9 (09 Jan 2003)......... 876
D.3.8 Changes in release 4.0.8 (07 Jan 2003) 876
D.3.9 Changes in release 4.0.7 (20 Dec 2002) 877

D.3.10 Changes in release 4.0.6 (14 Dec 2002: Gamma)
... 877
D.3.11 Changes in release 4.0.5 (13 Nov 2002) 879
D.3.12 Changes in release 4.0.4 (29 Sep 2002)........ 881
D.3.13 Changes in release 4.0.3 (26 Aug 2002: Beta).. 882
D.3.14 Changes in release 4.0.2 (01 Jul 2002) 884
D.3.15 Changes in release 4.0.1 (23 Dec 2001)........ 888
D.3.16 Changes in release 4.0.0 (Oct 2001: Alpha).... 8389
D.4 Changes in release 3.23.x (Recent; still supported)....... 890
D.4.1 Changes in release 3.23.58 (not released yet) ... 891
D.4.2 Changes in release 3.23.57 (06 Jun 2003)....... 891
D.4.3 Changes in release 3.23.56 (13 Mar 2003) 892
D.4.4 Changes in release 3.23.55 (23 Jan 2003)....... 893
D.4.5 Changes in release 3.23.54 (05 Dec 2002)....... 894
D.4.6 Changes in release 3.23.53 (09 Oct 2002)....... 895
D.4.7 Changes in release 3.23.52 (14 Aug 2002) 895

xx1il

D.4.8 Changes in release 3.23.51 (31 May 2002) 896
D.4.9 Changes in release 3.23.50 (21 Apr 2002)....... 897
D.4.10 Changes in release 3.23.49 898
D.4.11 Changes in release 3.23.48 (07 Feb 2002)...... 898
D.4.12 Changes in release 3.23.47 (27 Dec 2001)...... 899
D.4.13 Changes in release 3.23.46 (29 Nov 2001) 899
D.4.14 Changes in release 3.23.45 (22 Nov 2001) 899
D.4.15 Changes in release 3.23.44 (31 Oct 2001)...... 900
D.4.16 Changes in release 3.23.43 (04 Oct 2001)...... 901
D.4.17 Changes in release 3.23.42 (08 Sep 2001)...... 901
D.4.18 Changes in release 3.23.41 (11 Aug 2001) 902
D.4.19 Changes in release 3.23.40 903
D.4.20 Changes in release 3.23.39 (12 Jun 2001)...... 903
D.4.21 Changes in release 3.23.38 (09 May 2001) 904
D.4.22 Changes in release 3.23.37 (17 Apr 2001) 905
D.4.23 Changes in release 3.23.36 (27 Mar 2001) 905
D.4.24 Changes in release 3.23.35 (15 Mar 2001) 906
D.4.25 Changes in release 3.23.34a 906
D.4.26 Changes in release 3.23.34 (10 Mar 2001) 906
D.4.27 Changes in release 3.23.33 (09 Feb 2001)...... 907
D.4.28 Changes in release 3.23.32 (22 Jan 2001:
Production) 908
D.4.29 Changes in release 3.23.31 (17 Jan 2001)...... 909
D.4.30 Changes in release 3.23.30 (04 Jan 2001)...... 910
D.4.31 Changes in release 3.23.29 (16 Dec 2000).. 910
D.4.32 Changes in release 3.23.28 (22 Nov 2000: Gamma)
... 912
D.4.33 Changes in release 3.23.27 (24 Oct 2000)...... 914
D.4.34 Changes in release 3.23.26 (18 Oct 2000).. 914
D.4.35 Changes in release 3.23.25 (29 Sep 2000). 915
D.4.36 Changes in release 3.23.24 (08 Sep 2000)...... 916
D.4.37 Changes in release 3.23.23 (01 Sep 2000)...... 916
D.4.38 Changes in release 3.23.22 (31 Jul 2000) 918
D.4.39 Changes in release 3.23.21 918
D.4.40 Changes in release 3.23.20 919
D.4.41 Changes in release 3.23.19 919
D.4.42 Changes in release 3.23.18 919
D.4.43 Changes in release 3.23.17 920
D.4.44 Changes in release 3.23.16 920
D.4.45 Changes in release 3.23.15 (May 2000: Beta) .. 921
D.4.46 Changes in release 3.23.14 922
D.4.47 Changes in release 3.23.13 922
D.4.48 Changes in release 3.23.12 (07 Mar 2000) 923
D.4.49 Changes in release 3.23.11................... 923
D.4.50 Changes in release 3.23.10................... 924
D.4.51 Changes in release 3.23.9 924
D.4.52 Changes in release 3.23.8 (02 Jan 2000)....... 925

Changes in release 3.23.7 (10 Dec 1999)....... 925

XX1V

D.4.54 Changes in release 3.23.6 926
D.4.55 Changes in release 3.23.5 (20 Oct 1999)....... 927
D.4.56 Changes in release 3.23.4 (28 Sep 1999)....... 928
D.4.57 Changes in release 3.23.3 928
D.4.58 Changes in release 3.23.2 (09 Aug 1999) 929
D.4.59 Changes in release 3.23.1 930
D.4.60 Changes in release 3.23.0 (05 Aug 1999: Alpha)
... 930
D.5 Changes in release 3.22.x (Old; discontinued) 932
D.5.1 Changes in release 3.22.35 932
D.5.2 Changes in release 3.22.34 932
D.5.3 Changes in release 3.22.33 932
D.5.4 Changes in release 3.22.32 (14 Feb 2000)....... 932
D.5.5 Changes in release 3.22.31 932
D.5.6 Changes in release 3.22.30 932
D.5.7 Changes in release 3.22.29 (02 Jan 2000)....... 933
D.5.8 Changes in release 3.22.28 (20 Oct 1999)....... 933
D.5.9 Changes in release 3.22.27 933
D.5.10 Changes in release 3.22.26 (16 Sep 1999)...... 933
D.5.11 Changes in release 3.22.25 934
D.5.12 Changes in release 3.22.24 (05 Jul 1999) 934
D.5.13 Changes in release 3.22.23 (08 Jun 1999)...... 934
D.5.14 Changes in release 3.22.22 (30 Apr 1999) 934
D.5.15 Changes in release 3.22.21 935
D.5.16 Changes in release 3.22.20 (18 Mar 1999) 935
D.5.17 Changes in release 3.22.19 (Mar 1999: Production)
... 935
D.5.18 Changes in release 3.22.18 935
D.5.19 Changes in release 3.22.17 935
D.5.20 Changes in release 3.22.16 (Feb 1999: Gamma)
... 936
D.5.21 Changes in release 3.22.15................... 936
D.5.22 Changes in release 3.22.14 936
D.5.23 Changes in release 3.22.13 937
D.5.24 Changes in release 3.22.12 937
D.5.25 Changes in release 3.22.11 937
D.5.26 Changes in release 3.22.10 938
D.5.27 Changes in release 3.22.9 939
D.5.28 Changes in release 3.22.8 939
D.5.29 Changes in release 3.22.7 (Sep 1998: Beta).... 940
D.5.30 Changes in release 3.22.6 940
D.5.31 Changes in release 3.22.5 941
D.5.32 Changes in release 3.22.4 942
D.5.33 Changes in release 3.22.3 943
D.5.34 Changes in release 3.22.2 943
D.5.35 Changes in release 3.22.1 (Jun 1998: Alpha) .. 943
D.5.36 Changes in release 3.22.0 944

D.6 Changes inrelease 3.21.x ...t 945

XXV

D.6.1 Changes in release 3.21.33 946
D.6.2 Changes in release 3.21.32 946
D.6.3 Changes in release 3.21.31 946
D.6.4 Changes in release 3.21.30 946
D.6.5 Changes in release 3.21.29 947
D.6.6 Changes in release 3.21.28 947
D.6.7 Changes in release 3.21.27 947
D.6.8 Changes in release 3.21.26 948
D.6.9 Changes in release 3.21.25 948
D.6.10 Changes in release 3.21.24 948
D.6.11 Changes in release 3.21.23 949
D.6.12 Changes in release 3.21.22 949
D.6.13 Changes in release 3.21.21a.................. 950
D.6.14 Changes in release 3.21.21 950
D.6.15 Changes in release 3.21.20 950
D.6.16 Changes in release 3.21.19 950
D.6.17 Changes in release 3.21.18 951
D.6.18 Changes in release 3.21.17 951
D.6.19 Changes in release 3.21.16 951
D.6.20 Changes in release 3.21.15 952
D.6.21 Changes in release 3.21.14b.................. 953
D.6.22 Changes in release 3.21.14a 953
D.6.23 Changes in release 3.21.13 953
D.6.24 Changes in release 3.21.12 954
D.6.25 Changes in release 3.21.11 954
D.6.26 Changes in release 3.21.10 955
D.6.27 Changes in release 3.21.9 955
D.6.28 Changes in release 3.21.8 955
D.6.29 Changes in release 3.21.7 956
D.6.30 Changes in release 3.21.6 956
D.6.31 Changes in release 3.21.5 956
D.6.32 Changes in release 3.21.4 956
D.6.33 Changes in release 3.21.3 957
D.6.34 Changes in release 3.21.2 957
D.6.35 Changes in release 3.21.0 958
D.7 Changes in release 3.20.X. ..., 959
D.7.1 Changes in release 3.20.18 959
D.7.2 Changes in release 3.20.17 960
D.7.3 Changes in release 3.20.16 961
D.7.4 Changes in release 3.20.15 961
D.7.5 Changes in release 3.20.14 961
D.7.6 Changes in release 3.20.13 962
D.7.7 Changes in release 3.20.11 962
D.7.8 Changes in release 3.20.10 963
D.7.9 Changes in release 3.20.9 963
D.7.10 Changes in release 3.20.8 963
D.7.11 Changes in release 3.20.7 963
D.7.12 Changes in release 3.20.6 964

XXV1

D.7.13 Changes in release 3.20.3 965
D.7.14 Changes in release 3.20.0 965
D.8 Changes inrelease 3.19.X. ... 966
D.8.1 Changes in release 3.19.5 966
D.8.2 Changes in release 3.19.4 966
D.8.3 Changes in release 3.19.3 967
Appendix E Porting to Other Systems...... 968
E.1 Debugging a MySQL server............................ 969
E.1.1 Compiling MYSQL for Debugging 969
E.1.2 Creating Trace Files.......................... 970
E.1.3 Debugging mysqld under gdb 971
E.1.4 Using a Stack Trace 972

E.1.5 Using Log Files to Find Cause of Errors in mysqld
... 973

E.1.6 Making a Test Case If You Experience Table

Corruptiont 974
E.2 Debugging a MySQL client 974
E.3 The DBUG Package oo, 975
E.4 Locking methods, 976
E.5 Comments about RTS threads......................... 977
E.6 Differences between different thread packages 979
Appendix F Environment Variables......... 981

Appendix G MySQL Regular Expressions ... 982
Appendix H GNU General Public License ... 985

Appendix I GNU Lesser General Public License
....................................... 991

SQL command, type and function index..... 1000

Concept Index...............ovivnn... 1009

xXxXVvii

Chapter 1: General Information 1

1 General Information

The MySQL ® software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-
critical, heavy-load production systems as well as for embedding into mass-deployed soft-
ware. MySQL is a trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an
Open Source/Free Software product under the terms of the GNU General Public License
(http://www.gnu.org/licenses/) or can purchase a standard commercial license from
MySQL AB. See Section 1.4 [Licensing and Support], page 15.

The MySQL web site (http://www.mysql.com/) provides the latest information about the
MySQL software.

The following list describes some sections of particular interest in this manual:

e For information about the company behind the MySQL Database Server, see Section 1.3
[What is MySQL AB], page 11.

e For a discussion about the capabilities of the MySQL Database Server, see Section 1.2.2
[Features], page 5.

e For installation instructions, see Chapter 2 [Installing], page 71.

e For tips on porting the MySQL Database Software to new architectures or operating
systems, see Appendix E [Porting], page 968.

e For information about upgrading from a Version 4.0 release, see Section 2.5.1
[Upgrading-from-4.0], page 120.

e For information about upgrading from a Version 3.23 release, see Section 2.5.2
[Upgrading-from-3.23], page 122.

e For information about upgrading from a Version 3.22 release, see Section 2.5.3
[Upgrading-from-3.22], page 125.

e For a tutorial introduction to the MySQL Database Server, see Chapter 3 [Tutorial],
page 168.

e For examples of SQL and benchmarking information, see the benchmarking directory
(‘sql-bench’ in the distribution).

e For a history of new features and bug fixes, see Appendix D [News], page 858.

e For a list of currently known bugs and misfeatures, see Section 1.8.6 [Bugs|, page 45.

e For future plans, see Section 1.9 [TODO], page 50.

e For a list of all the contributors to this project, see Appendix C [Credits], page 848.

Important:

Reports of errors (often called bugs), as well as questions and comments, should be sent to
the mailing list at mysql@lists.mysql.com. See Section 1.7.1.3 [Bug reports|, page 27.

The mysqlbug script should be used to generate bug reports on Unix. (Windows distribu-
tions contain a file ‘mysqlbug.txt’ in the base directory that can be used as a template for
a bug report.)

For source distributions, the mysqlbug script can be found in the ‘scripts’ directory. For
binary distributions, mysqlbug can be found in the ‘bin’ directory (‘/usr/bin’ for the
MySQL-server RPM package).

2 MySQL Technical Reference for Version 4.1.1-alpha

If you have found a sensitive security bug in MySQL Server, you should send an e-mail to
security@mysql. com.

1.1 About This Manual

This is the MySQL reference manual; it documents MySQL up to Version 4.1.1-alpha. Func-
tional changes are always indicated with reference to the version, so this manual is also suit-
able if you are using an older version of the MySQL software (such as 3.23 or 4.0-production).
There are also references for version 5.0 (development).

Being a reference manual, it does not provide general instruction on SQL or relational
database concepts.

As the MySQL Database Software is under constant development, the manual is
also updated frequently. = The most recent version of this manual is available at
http://www.mysql.com/documentation/ in many different formats, including HTML,
PDF, and Windows HLP versions.

The primary document is the Texinfo file. The HTML version is produced automatically
using a modified version of texi2html. The plain text and Info versions are produced
with makeinfo. The PostScript version is produced using texi2dvi and dvips. The PDF
version is produced with pdftex.

If you have a hard time finding information in the manual, you can try our searchable
version at http://www.mysql.com/doc/.

If you have any suggestions concerning additions or corrections to this manual, please send
them to the documentation team at docs@mysql.com.

This manual was initially written by David Axmark and Michael (Monty) Widenius. It is
currently maintained by Michael (Monty) Widenius, Arjen Lentz, and Paul DuBois. For
other contributors, see Appendix C [Credits], page 848.

The copyright (2003) to this manual is owned by the Swedish company MySQL AB. See
Section 1.4.2 [Copyright], page 16.

1.1.1 Conventions Used in This Manual

This manual uses certain typographical conventions:

constant Constant-width font is used for command names and options; SQL statements;
database, table, and column names; C and Perl code; and environment vari-
ables. Example: “To see how mysqladmin works, invoke it with the --help

option.”

‘filename’
Constant-width font with surrounding quotes is used for filenames and path-
names. Example: “The distribution is installed under the ‘/usr/local/’ direc-
tory.”

‘c’ Constant-width font with surrounding quotes is also used to indicate character

sequences. Example: “To specify a wildcard, use the ‘%’ character.”

italic Italic font is used for emphasis, like this.

Chapter 1: General Information 3

boldface = Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed by a particular program, the
program is indicated by a prompt shown before the command. For example, shell> indi-
cates a command that you execute from your login shell, and mysql> indicates a command
that you execute from the mysql client program:

shell> type a shell command here
mysql> type a mysql command here

Shell commands are shown using Bourne shell syntax. If you are using a csh-style shell,
you may need to issue commands slightly differently. For example, the sequence to set an
environment variable and run a command looks like this in Bourne shell syntax:

shell> VARNAME=value some_command
For csh, you would execute the sequence like this:

shell> setenv VARNAME value

shell> some_command

Database, table, and column names must often be substituted into commands. To indicate
that such substitution is necessary, this manual uses db_name, tbl_name, and col_name.
For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own
database, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;
SQL keywords are not case-sensitive and may be written in uppercase or lowercase. This
manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) are used to indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by
vertical bars (‘|”). When one member from a set of choices may be chosen, the alternatives
are listed within square brackets (‘[" and ‘1’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)
When one member from a set of choices must be chosen, the alternatives are listed within
braces (‘{” and ‘}):

{DESCRIBE | DESC} tbl_name {col_name | wild}

1.2 What Is MySQL?

MySQL, the most popular Open Source SQL database, is developed, distributed, and sup-
ported by MySQL AB. MySQL AB is a commercial company, founded by the MySQL developers,
that builds its business providing services around the MySQL database. See Section 1.3 [What
is MySQL AB], page 11.

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
software and MySQL AB.

4 MySQL Technical Reference for Version 4.1.1-alpha

MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple
shopping list to a picture gallery or the vast amounts of information in a corpo-
rate network. To add, access, and process data stored in a computer database,
you need a database management system such as MySQL Server. Since com-
puters are very good at handling large amounts of data, database management
systems play a central role in computing, as stand-alone utilities or as parts of
other applications.

MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility. The SQL part of
“MySQL” stands for “Structured Query Language”. SQL is the most common
standardised language used to access databases and is defined by the ANSI/ISO
SQL Standard.(The SQL standard has been evolving since 1986 and several
versions exist. In this manual, "SQL-92” refers to the standard released in
1992, ”SQL-99” refers to the standard released in 1999, and ”SQL:2003” refers
to the version of the standard that is expected to be released in mid-2003.We use
the term ”the SQL standard” to mean the current version of the SQL Standard
at any time.)

MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software.
Anybody can download the MySQL software from the Internet and use it without
paying anything. If you wish, you may study the source code and change it
to suit your needs. The MySQL software uses the GPL (GNU General Public
License), http://www.gnu.org/licenses/, to define what you may and may
not do with the software in different situations. If you feel uncomfortable with
the GPL or need to embed MySQL code into a commercial application you can buy
a commercially licensed version from us. See Section 1.4.3 [MySQL licenses],
page 16.

Why use the MySQL Database Server?
The MySQL Database Server is very fast, reliable, and easy to use. If that is
what you are looking for, you should give it a try. MySQL Server also has a
practical set of features developed in close cooperation with our users. You can
find a performance comparison of MySQL Server with other database managers
on our benchmark page. See Section 5.1.4 [MySQL Benchmarks], page 394.

MySQL Server was originally developed to handle large databases much faster
than existing solutions and has been successfully used in highly demanding pro-
duction environments for several years. Though under constant development,
MySQL Server today offers a rich and useful set of functions. Its connectivity,
speed, and security make MySQL Server highly suited for accessing databases
on the Internet.

The technical features of MySQL Server
For advanced technical information, see Chapter 6 [Reference|, page 436. The
MySQL Database Software is a client/server system that consists of a multi-
threaded SQL server that supports different backends, several different client

Chapter 1: General Information 5

programs and libraries, administrative tools, and a wide range of programming
interfaces (APIs).

We also provide MySQL Server as a multi-threaded library which you can link
into your application to get a smaller, faster, easier-to-manage product.

There is a large amount of contributed MySQL software available.
It is very likely that you will find that your favorite application or language
already supports the MySQL Database Server.

The official way to pronounce MySQL is “My Ess Que EllI” (not “my sequel”), but we don’t
mind if you pronounce it as “my sequel” or in some other localised way.

1.2.1 History of MySQL

We started out with the intention of using mSQL to connect to our tables using our own
fast low-level (ISAM) routines. However, after some testing we came to the conclusion that
mSQL was not fast enough nor flexible enough for our needs. This resulted in a new SQL
interface to our database but with almost the same API interface as mSQL. This API was
chosen to ease porting of third-party code.

The derivation of the name MySQL is not clear. Our base directory and a large number of
our libraries and tools have had the prefix “my” for well over 10 years. However, co-founder
Monty Widenius’s daughter (some years younger) is also named My. Which of the two gave
its name to MySQL is still a mystery, even for us.

The name of the MySQL Dolphin (our logo) is Sakila. Sakila was chosen by the founders
of MySQL AB from a huge list of names suggested by users in our "Name the Dolphin"
contest. The winning name was submitted by Ambrose Twebaze, an open source software
developer from Swaziland, Africa. According to Ambrose, the name Sakila has its roots
in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha,
Tanzania, near Ambrose’s country of origin, Uganda.

1.2.2 The Main Features of MySQL

The following list describes some of the important characteristics of the MySQL Database
Software. See Section 1.5 [MySQL 4.0 In A Nutshell], page 20.

Internals and Portability
e Written in C and C++. Tested with a broad range of different compilers.
e Works on many different platforms. See Section 2.2.3 [Which OS], page 82.
e Uses GNU Automake, Autoconf, and Libtool for portability.

e APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl. See
Chapter 9 [Clients|, page 658.

e Fully multi-threaded using kernel threads. This means it can easily use
multiple CPUs if available.

e Transactional and non-transactional storage engines.
e Very fast B-tree disk tables (MyISAM) with index compression.

Column Types

MySQL Technical Reference for Version 4.1.1-alpha

Relatively easy to add another storage engine. This is useful if you want
to add an SQL interface to an in-house database.

A very fast thread-based memory allocation system.
Very fast joins using an optimised one-sweep multi-join.
In-memory hash tables which are used as temporary tables.

SQL functions are implemented through a highly optimised class library
and should be as fast as possible. Usually there isn’t any memory allocation
at all after query initialisation.

The MySQL code gets tested with Purify (a commercial mem-
ory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/ sewardj/).

Available as client/server or embedded (linked) version.

Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes
long, FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, and ENUM types. See Section 6.2 [Column types],
page 448.

Fixed-length and variable-length records.

Commands and Functions

Full operator and function support in the SELECT and WHERE clauses of
queries. For example:

mysql> SELECT CONCAT(first_name, " ", last_name)
-> FROM tbl_name
-> WHERE income/dependents > 10000 AND age > 30;

Full support for SQL GROUP BY and ORDER BY clauses. Support for group
functions (COUNT(), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(),
MIN(), and GROUP_CONCATQ)).

Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard
SQL and ODBC syntax.

Support for aliases on tables and columns as required by SQL-92.

DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were
changed (affected). It is possible to return the number of rows matched
instead by setting a flag when connecting to the server.

The MySQL-specific SHOW command can be used to retrieve information
about databases, tables, and indexes. The EXPLAIN command can be used
to determine how the optimiser resolves a query.

Function names do not clash with table or column names. For example,
ABS is a valid column name. The only restriction is that for a function call,
no spaces are allowed between the function name and the ‘(" that follows
it. See Section 6.1.7 [Reserved words|, page 446.

You can mix tables from different databases in the same query (as of Ver-
sion 3.22).

Chapter 1: General Information 7

Security

A privilege and password system that is very flexible and secure, and allows
host-based verification. Passwords are secure because all password traffic
is encrypted when you connect to a server.

Scalability and Limits

Connectivity

Localisation

Handles large databases. We use MySQL Server with databases that con-
tain 50 million records. We also know of users that use MySQL Server with
60,000 tables and about 5,000,000,000 rows.

Up to 32 indexes per table are allowed. Each index may consist of 1 to
16 columns or parts of columns. The maximum index width is 500 bytes
(this may be changed when compiling MySQL Server). An index may use
a prefix of a CHAR or VARCHAR field.

Clients may connect to the MySQL server using TCP/IP Sockets, Unix Sock-
ets (Unix), or Named Pipes (NT).

ODBC (Open-DataBase-Connectivity) support for Win32 (with source).
All ODBC 2.5 functions are supported, as are many others. For example,

you can use MS Access to connect to your MySQL server. See Section 9.2
[ODBC], page 747.

The server can provide error messages to clients in many languages. See
Section 4.6.2 [Languages|, page 314.

Full support for several different character sets, including ISO-8859-1
(Latinl), german, bigh, ujis, and more. For example, the Scandinavian

(a’ ()

characters ‘ad’, ‘4’ and ‘6’ are allowed in table and column names.

All data is saved in the chosen character set. All comparisons for normal
string columns are case-insensitive.

Sorting is done according to the chosen character set (the Swedish way by
default). It is possible to change this when the MySQL server is started. To
see an example of very advanced sorting, look at the Czech sorting code.
MySQL Server supports many different character sets that can be specified
at compile and runtime.

Clients and Tools

Includes myisamchk, a very fast utility for table checking, optimisation,
and repair. All of the functionality of myisamchk is also available through
the SQL interface. See Chapter 4 [MySQL Database Administration],
page 205.

All MySQL programs can be invoked with the ——help or -7 options to obtain
online assistance.

1.2.3 How Stable Is MySQL?

This section addresses the questions “How stable is MySQL Server?” and “Can I depend
on MySQL Server in this project?” We will try to clarify these issues and answer some

8 MySQL Technical Reference for Version 4.1.1-alpha

important questions that concern many potential users. The information in this section is
based on data gathered from the mailing list, which is very active in identifying problems
as well as reporting types of use.

Original code stems back from the early ’80s, providing a stable code base, and the ISAM ta-
ble format remains backward-compatible. At TcX, the predecessor of MySQL AB, MySQL code
has worked in projects since mid-1996, without any problems. When the MySQL Database
Software was released to a wider public, our new users quickly found some pieces of
“untested code”. FEach new release since then has had fewer portability problems (even
though each new release has also had many new features).

Each release of the MySQL Server has been usable. Problems have occurred only when
users try code from the “gray zones.” Naturally, new users don’t know what the gray zones
are; this section therefore attempts to document those areas that are currently known.
The descriptions mostly deal with Version 3.23 and 4.0 of MySQL Server. All known and
reported bugs are fixed in the latest version, with the exception of those listed in the bugs
section, which are things that are design-related. See Section 1.8.6 [Bugs|, page 45.

The MySQL Server design is multi-layered with independent modules. Some of the newer
modules are listed here with an indication of how well-tested each of them is:

Replication — Gamma
Large server clusters using replication are in production use, with good results.
Work on enhanced replication features is continuing in MySQL 4.x.

InnoDB tables — Stable (in 3.23 from 3.23.49)
The InnoDB transactional storage engine has been declared stable in the MySQL
3.23 tree, starting from version 3.23.49. InnoDB is being used in large, heavy-
load production systems.

BDB tables — Gamma
The Berkeley DB code is very stable, but we are still improving the BDB trans-
actional storage engine interface in MySQL Server, so it will take some time
before this is as well tested as the other table types.

FULLTEXT — Beta
Full-text search works but is not yet widely used. Important enhancements
have been implemented in MySQL 4.0.

MyODBC 3.51 (uses ODBC SDK 3.51) — Stable
In wide production use. Some issues brought up appear to be application-
related and independent of the ODBC driver or underlying database server.

Automatic recovery of MyISAM tables — Gamma
This status applies only to the new code in the MyISAM storage engine that
checks if the table was closed properly on open and executes an automatic
check/repair of the table if it wasn’t.

Bulk-insert — Alpha
New feature in MyISAM tables in MySQL 4.0 for faster insert of many rows.

Locking — Gamma
This is very system-dependent. On some systems there are big problems using
standard OS locking (fcnt1()). In these cases, you should run mysqld with the

Chapter 1: General Information 9

--skip-external-locking flag. Problems are known to occur on some Linux
systems, and on SunOS when using NFS-mounted filesystems.

MySQL AB provides high-quality support for paying customers, and the MySQL mailing list
usually provides answers to common questions. Bugs are usually fixed right away with a
patch; for serious bugs, there is almost always a new release.

1.2.4 How Big Can MySQL Tables Be?

MySQL Version 3.22 had a 4 GB (4 gigabyte) limit on table size. With the MyISAM table
type in MySQL Version 3.23, the maximum table size was pushed up to 8 million terabytes
(2 ~ 63 bytes).

Note, however, that operating systems have their own file-size limits. Here are some exam-
ples:

Operating System File-Size Limit

Linux-Intel 32 bit 2 GB, 4GB or more, depends on Linux
version

Linux-Alpha 8 TB (?)

Solaris 2.5.1 2 GB (possible 4GB with patch)

Solaris 2.6 4 GB (can be changed with flag)

Solaris 2.7 Intel 4 GB

Solaris 2.7 UltraSPARC 512 GB

On Linux 2.2 you can get tables larger than 2 GB in size by using the LFS patch for the
ext2 filesystem. On Linux 2.4 patches also exist for ReiserFS to get support for big files.

In effect, then, the table size for MySQL databases is normally limited by the operating
system.

By default, MySQL tables have a maximum size of about 4 GB. You can check the maximum
table size for a table with the SHOW TABLE STATUS command or with the myisamchk -dv
table_name. See Section 4.5.7 [SHOW], page 291.

If you need a table that will be larger than 4 GB in size (and your operating system supports
this), set the AVG_ROW_LENGTH and MAX_ROWS parameters accordingly when you create your
table. See Section 6.5.3 [CREATE TABLE], page 544. You can also set these parameters
later, with ALTER TABLE. See Section 6.5.4 [ALTER TABLE], page 553.

If your big table is a read-only table, you could use myisampack to merge and compress
many tables into one. myisampack usually compresses a table by at least 50%, so you can
have, in effect, much bigger tables. See Section 4.7.4 [myisampack], page 323.

You can get around the operating system file limit for MyISAM datafiles using the RAID
option. See Section 6.5.3 [CREATE TABLE], page 544.

Another solution can be the included MERGE library, which allows you to handle a collection
of identical tables as one. See Section 7.2 [MERGE tables|, page 579.

1.2.5 Year 2000 Compliance

The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

10 MySQL Technical Reference for Version 4.1.1-alpha

e MySQL Server uses Unix time functions and has no problems with dates until 2069.
All 2-digit years are considered to be in the range 1970 to 2069, which means that if
you store 01 in a YEAR column, MySQL Server treats it as 2001.

e All MySQL date functions are stored in one file, ‘sql/time.cc’, and are coded very
carefully to be year 2000-safe.

e In MySQL Version 3.22 and later, the YEAR column type can store years 0 and 1901 to
2155 in one byte and display them using two or four digits.

You may run into problems with applications that use MySQL Server in a way that is not
Y2K-safe. For example, many old applications store or manipulate years using 2-digit values
(which are ambiguous) rather than 4-digit values. This problem may be compounded by
applications that use values such as 00 or 99 as “missing” value indicators.

Unfortunately, these problems may be difficult to fix because different applications may be
written by different programmers, each of whom may use a different set of conventions and
date-handling functions.

Here is a simple demonstration illustrating that MySQL Server doesn’t have any problems
with dates until the year 2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, O rows affected (0.01 sec)

mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,

-> time_stamp TIMESTAMP);
Query OK, O rows affected (0.00 sec)

mysql> INSERT INTO y2k VALUES
-> ("1998-12-31","1998-12-31 23:59:59",19981231235959),
-> ("1999-01-01","1999-01-01 00:00:00",19990101000000) ,
-> ("1999-09-09","1999-09-09 23:59:59",19990909235959),
-> ("2000-01-01","2000-01-01 00:00:00",20000101000000) ,
-> ("2000-02-28","2000-02-28 00:00:00",20000228000000) ,
-> ("2000-02-29","2000-02-29 00:00:00",20000229000000) ,
-> ("2000-03-01","2000-03-01 00:00:00",20000301000000) ,
-> ("2000-12-31","2000-12-31 23:59:59",20001231235959),
-> ("2001-01-01","2001-01-01 00:00:00",20010101000000) ,
-> ("2004-12-31","2004-12-31 23:59:59",20041231235959),
-> ("2005-01-01","2005-01-01 00:00:00",20050101000000) ,
-> ("2030-01-01","2030-01-01 00:00:00",20300101000000) ,
-> ("2050-01-01","2050-01-01 00:00:00",20500101000000) ;

Query 0K, 13 rows affected (0.01 sec)

Records: 13 Duplicates: 0 Warnings: O

mysql> SELECT * FROM y2k;
o e e +

| date | date_time | time_stamp
T e B o +

Chapter 1: General Information

1998-12-31	1998-12-31 23:59:59	19981231235959
1999-01-01	1999-01-01 00:00:00	19990101000000
1999-09-09	1999-09-09 23:59:59	19990909235959
2000-01-01	2000-01-01 00:00:00	20000101000000
2000-02-28	2000-02-28 00:00:00	20000228000000
2000-02-29	2000-02-29 00:00:00	20000229000000
2000-03-01	2000-03-01 00:00:00	20000301000000
2000-12-31	2000-12-31 23:59:59	20001231235959
2001-01-01	2001-01-01 00:00:00	20010101000000
2004-12-31	2004-12-31 23:59:59	20041231235959
2005-01-01	2005-01-01 00:00:00	20050101000000
2030-01-01	2030-01-01 00:00:00	20300101000000
2050-01-01	2050-01-01 00:00:00	00000000000000
o e o +
13 rows in set (0.00 sec)

11

This example shows that the DATE and DATETIME datatypes will not give any problems with
future dates (they handle dates until the year 9999).

The TIMESTAMP datatype, which is used to store the current time, supports values that
range from 19700101000000 to 20300101000000 on 32-bit machines (signed value). On
64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).

Even though MySQL Server is Y2K-compliant, it is your responsibility to provide unambigu-
ous input. See Section 6.2.2.1 [Y2K issues|, page 456 for MySQL Server’s rules for dealing
with ambiguous date input data (data containing 2-digit year values).

1.3 What Is MySQL AB?

MySQL AB is the company of the MySQL founders and main developers. MySQL AB was origi-
nally established in Sweden by David Axmark, Allan Larsson, and Michael Monty Widenius.

The developers of the MySQL server are all employed by the company. We are a virtual or-
ganisation with people in a dozen countries around the world. We communicate extensively
over the Net every day with one another and with our users, supporters, and partners.

We are dedicated to developing the MySQL software and spreading our database to new users.
MySQL AB owns the copyright to the MySQL source code, the MySQL logo and trademark, and
this manual. See Section 1.2 [What-is], page 3.

The MySQL core values show our dedication to MySQL and Open Source.
We want the MySQL Database Software to be:

e The best and the most widely used database in the world.

e Available to, and affordable by all.

e FEasy to use.

e Continuously improving while remaining fast and safe.

e Fun to use and improve.

e Free from bugs.

12 MySQL Technical Reference for Version 4.1.1-alpha

MySQL AB and the people at MySQL AB:

e Promote Open Source philosophy and support the Open Source community.

e Aim to be good citizens.

e Prefer partners that share our values and mind-set.

e Answer e-mail and provide support.

e Are a virtual company, networking with others.

e Work against software patents.
The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.

By the way, the “AB” part of the company name is the acronym for the Swedish “aktiebo-
lag”, or “stock company.” It translates to “MySQL, Inc.” In fact, MySQL Inc. and MySQL
GmbH are examples of MySQL AB subsidiaries. They are located in the US and Germany,
respectively.

1.3.1 The Business Model and Services of MySQL AB

One of the most common questions we encounter is: “How can you make a living from
something you give away for free?” This is how.

MySQL AB makes money on support, services, commercial licenses, and royalties. We use
these revenues to fund product development and to expand the MySQL business.

The company has been profitable since its inception. In October 2001, we accepted ven-
ture financing from leading Scandinavian investors and a handful of business angels. This
investment is used to solidify our business model and build a basis for sustainable growth.

1.3.1.1 Support

MySQL AB is run and owned by the founders and main developers of the MySQL database. The
developers are committed to giving support to customers and other users in order to stay
in touch with their needs and problems. All our support is given by qualified developers.
Really tricky questions are answered by Michael Monty Widenius, principal author of the
MySQL Server. See Section 1.4.1 [Support], page 15.

For more information and ordering support at various levels, see http://www.mysql. com/support/|]
or contact our sales staff at sales@mysql.com.

1.3.1.2 Training and Certification

MySQL AB delivers MySQL and related training worldwide. We offer both open courses and
in-house courses tailored to the specific needs of your company. MySQL Training is also
available through our partners, the Authorised MySQL Training Centers.

Our training material uses the same example databases used in our documentation and
our sample applications, and is always updated to reflect the latest MySQL version. Our
trainers are backed by the development team to guarantee the quality of the training and
the continuous development of the course material. This also ensures that no questions
raised during the courses remain unanswered.

Chapter 1: General Information 13

Attending our training courses will enable you to achieve your MySQL application goals. You
will also:

e Save time.

e Improve the performance of your application(s).

e Reduce or eliminate the need for additional hardware, decreasing cost.
e Enhance security.

e Increase customers’ and co-workers’ satisfaction.

e Prepare yourself for MySQL Certification.

If you are interested in our training as a potential participant or as a training partner,

please visit the training section at http://www.mysql.com/training/ or contact us at:
training@mysql. com.

For details about the MySQL Certification Program, please see http://www.mysql.com/certification/

1.3.1.3 Consulting

MySQL AB and its Authorised Partners offer consulting services to users of MySQL Server
and to those who embed MySQL Server in their own software, all over the world.

Our consultants can help you design and tune your databases, construct efficient queries,
tune your platform for optimal performance, resolve migration issues, set up replication,
build robust transactional applications, and more. We also help customers embed MySQL
Server in their products and applications for large-scale deployment.

Our consultants work in close collaboration with our development team, which ensures the
technical quality of our professional services. Consulting assignments range from 2-day
power-start sessions to projects that span weeks and months. Our expertise not only covers
MySQL Server—it also extends into programming and scripting languages such as PHP,
Perl, and more.

If you are interested in our consulting services or want to become a consulting partner,
please visit the consulting section of our web site at http://www.mysql.com/consulting/
or contact our consulting staff at consulting@mysql.com.

1.3.1.4 Commercial Licenses

The MySQL database is released under the GNU General Public License (GPL). This means
that the MySQL software can be used free of charge under the GPL. If you do not want
to be bound by the GPL terms (such as the requirement that your application must also
be GPL, you may purchase a commercial license for the same product from MySQL AB; see
http://www.mysql.com/products/pricing.html. Since MySQL AB owns the copyright to
the MySQL source code, we are able to employ Dual Licensing, which means that the same
product is available under GPL and under a commercial license. This does not in any way
affect the Open Source commitment of MySQL AB. For details about when a commercial
license is required, please see Section 1.4.3 [MySQL licenses], page 16.

We also sell commercial licenses of third-party Open Source GPL software that adds value
to MySQL Server. A good example is the InnoDB transactional storage engine that offers
ACID support, row-level locking, crash recovery, multi-versioning, foreign key support, and
more. See Section 7.5 [InnoDB]J, page 584.

14 MySQL Technical Reference for Version 4.1.1-alpha

1.3.1.5 Partnering

MySQL AB has a worldwide partner programme that covers training courses, consulting and
support, publications, plus reselling and distributing MySQL and related products. MySQL AB
Partners get visibility on the http://www.mysql.com/ web site and the right to use special
versions of the MySQL trademarks to identify their products and promote their business.

If you are interested in becoming a MySQL AB Partner, please e-mail partner@mysql . com.

The word MySQL and the MySQL dolphin logo are trademarks of MySQL AB. See Section 1.4.4
[MySQL AB Logos and Trademarks|, page 18. These trademarks represent a significant
value that the MySQL founders have built over the years.

1.3.1.6 Advertising

The MySQL web site (http://www.mysql.com/) is popular among developers and users. In
October 2001, we served 10 million page views. Our visitors represent a group that makes
purchase decisions and recommendations for both software and hardware. Twelve percent of
our visitors authorise purchase decisions, and only nine percent are not involved in purchase
decisions at all. More than 65% have made one or more online business purchases within
the last half-year, and 70% plan to make one in the next few months.

1.3.2 Contact Information

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.

For press services and inquiries not covered in our News releases (http://www.mysql.com/news/)]
please send an e-mail to press@mysql.com.

If you have a valid support contract with MySQL AB, you will get timely, precise answers to
your technical questions about the MySQL software. For more information, see Section 1.4.1
[Support], page 15. On our web site, see http://www.mysql.com/support/, or send an
e-mail to sales@mysql.com.

For information about MySQL training, please wvisit the training section at
http://www.mysql.com/training/. If you have restricted access to the Internet, please
contact the MySQL AB training staff via e-mail at training@mysql.com. See Section 1.3.1.2
[Business Services Training], page 12.

For information on the MySQL Certification Program, please see http://www.mysql.com/certification
See Section 1.3.1.2 [Business Services Training], page 12.

If you're interested in consulting, please visit the consulting section of our web site at
http://wuw.mysql.com/consulting/. If you have restricted access to the Internet, please
contact the MySQL AB consulting staff via e-mail at consulting@mysql.com. See Sec-
tion 1.3.1.3 [Business Services Consulting], page 13.

Commercial licenses may be purchased online at https://order.mysql.com/. There you
will also find information on how to fax your purchase order to MySQL AB. More information
about licensing can be found at http://www.mysql.com/products/pricing.html. If you
have questions regarding licensing or you want a quote for a high-volume license deal,

Chapter 1: General Information 15

please fill in the contact form on our web site (http://www.mysql.com/) or send an e-mail
message to licensing@mysql.com (for licensing questions) or to sales@mysql.com (for
sales inquiries). See Section 1.4.3 [MySQL licenses|, page 16.

If you represent a business that is interested in partnering with MySQL AB, please send an
e-mail to partner@mysql.com. See Section 1.3.1.5 [Business Services Partnering], page 14.

For more information on the MySQL trademark policy, refer to http://www.mysql.com/company/trademark
or send an e-mail to trademark@mysql.com. See Section 1.4.4 [MySQL AB Logos and
Trademarks|, page 18.

If you are interested in any of the MySQL AB jobs listed in our jobs section
(http://www.mysql.com/company/jobs/), please send an e-mail to jobs@mysql.com.
Please do not send your CV as an attachment, but rather as plain text at the end of your
e-mail message.

For general discussion among our many users, please direct your attention to the appropriate
mailing list. See Section 1.7.1 [Questions|, page 24.

Reports of errors (often called bugs), as well as questions and comments, should be sent to
the mailing list at mysql@lists.mysql.com. If you have found a sensitive security bug in
the MySQL Server, please send an e-mail to security@mysql.com. See Section 1.7.1.3 [Bug
reports|, page 27.

If you have benchmark results that we can publish, please contact us via e-mail at
benchmarks@mysql. com.

If you have suggestions concerning additions or corrections to this manual, please send them
to the manual team via e-mail at docs@mysql.com.

For questions or comments about the workings or content of the MySQL web site
(http://www.mysql.com/), please send an e-mail to webmaster@mysql. com.

MySQL AB has a privacy policy, which can be read at http://www.mysql.com/company/privacy.html.|]
For any queries regarding this policy, please send an e-mail to privacy@mysql.com.

For all other inquires, please send an e-mail to info@mysql . com.

1.4 MySQL Support and Licensing

This section describes MySQL support and licensing arrangements.

1.4.1 Support Offered by MySQL AB

Technical support from MySQL AB means individualised answers to your unique problems
direct from the software engineers who code the MySQL database engine.

We try to take a broad and inclusive view of technical support. Almost any problem
involving MySQL software is important to us if it’s important to you. Typically customers
seek help on how to get different commands and utilities to work, remove performance
bottlenecks, restore crashed systems, understand operating system or networking impacts
on MySQL, set up best practices for backup and recovery, utilise APIs, and so on. Our
support covers only the MySQL server and our own utilities, not third-party products that
access the MySQL server, though we try to help with these where we can.

16 MySQL Technical Reference for Version 4.1.1-alpha

Detailed information about our various support options is given at http://www.mysql . com/support/,Jj
where support contracts can also be ordered online. If you have restricted access to the
Internet, please contact our sales staff via e-mail at sales@mysql.com.

Technical support is like life insurance. You can live happily without it for years, but when
your hour arrives it becomes critically important, yet it’s too late to buy it. If you use
MySQL Server for important applications and encounter sudden difficulties, it may be too
time consuming to figure out all the answers yourself. You may need immediate access to
the most experienced MySQL troubleshooters available, those employed by MySQL AB.

1.4.2 Copyrights and Licenses Used by MySQL

MySQL AB owns the copyright to the MySQL source code, the MySQL logos and trademarks
and this manual. See Section 1.3 [What is MySQL AB|, page 11. Several different licenses
are relevant to the MySQL distribution:

1. All the MySQL-specific source in the server, the mysqlclient library and the client, as
well as the GNU readline library is covered by the GNU General Public License. See
Appendix H [GPL license], page 985. The text of this license can be found as the file
‘COPYING’ in the distribution.

2. The GNU getopt library is covered by the GNU Lesser General Public License. See
Appendix I [LGPL license], page 991.

3. Some parts of the source (the regexp library) are covered by a Berkeley-style copyright.

4. Older versions of MySQL (3.22 and earlier) are subject to a stricter license

(http://www.mysql.com/products/mypl.html). See the documentation of the
specific version for information.

5. The MySQL reference manual is currently not distributed under a GPL-style license. Use
of the manual is subject to the following terms:
e Conversion to other formats is allowed, but the actual content may not be altered
or edited in any way.
e You may create a printed copy for your own personal use.

e For all other uses, such as selling printed copies or using (parts of) the manual in
another publication, prior written agreement from MySQL AB is required.

Please send an e-mail to docs@mysql.com for more information or if you are interested
in doing a translation.

For information about how the MySQL licenses work in practice, please refer to Section 1.4.3
[MySQL licenses|, page 16. Also see Section 1.4.4 [MySQL AB Logos and Trademarks],
page 18.

1.4.3 MySQL Licenses

The MySQL software is released under the GNU General Public License (GPL),
which is probably the best known Open Source license. The formal terms of
the GPL license can be found at http://www.gnu.org/licenses/. See also
http://www.gnu.org/licenses/gpl-faq.html and http://www.gnu.org/philosophy/enforcing-gpl.:

Chapter 1: General Information 17

Since the MySQL software is released under the GPL, it may often be used for free, but
for certain uses you may want or need to buy commercial licenses from MySQL AB at
https://order.mysql.com/. See http://www.mysql.com/products/licensing.html for
more information.

Older versions of MySQL (3.22 and earlier) are subject to a stricter license
(http://www.mysql.com/products/mypl.html). See the documentation of the specific
version for information.

Please note that the use of the MySQL software under commercial license, GPL, or the old
MySQL license does not automatically give you the right to use MySQL AB trademarks. See
Section 1.4.4 [MySQL AB Logos and Trademarks|, page 18.

1.4.3.1 Using the MySQL Software Under a Commercial License

The GPL license is contagious in the sense that when a program is linked to a GPL program
all the source code for all the parts of the resulting product must also be released under
the GPL. If you do not follow this GPL requirement, you break the license terms and forfeit
your right to use the GPL program altogether. You also risk damages.

You need a commercial license:

e When you link a program with any GPL code from the MySQL software and don’t want
the resulting product to be licensed under GPL, perhaps because you want to build a
commercial product or keep the added non-GPL code closed source for other reasons.
When purchasing commercial licenses, you are not using the MySQL software under GPL
even though it’s the same code.

e When you distribute a non-GPL application that only works with the MySQL software
and ship it with the MySQL software. This type of solution is considered to be linking
even if it’s done over a network.

e When you distribute copies of the MySQL software without providing the source code
as required under the GPL license.

e When you want to support the further development of the MySQL database even if you
don’t formally need a commercial license. Purchasing support directly from MySQL AB
is another good way of contributing to the development of the MySQL software, with
immediate advantages for you. See Section 1.4.1 [Support], page 15.

If you require a license, you will need one for each installation of the MySQL software. This
covers any number of CPUs on a machine, and there is no artificial limit on the number of
clients that connect to the server in any way.

For commercial licenses, please visit our website at http://www.mysql.com/products/licensing.html.|j
For support contracts, see http://www.mysql.com/support/. If you have special needs

or you have restricted access to the Internet, please contact our sales staff via e-mail at
sales@mysql.com.

1.4.3.2 Using the MySQL Software for Free Under GPL

You can use the MySQL software for free under the GPL if you adhere to the
conditions of the GPL. For additional details, including answers to common ques-

18 MySQL Technical Reference for Version 4.1.1-alpha

tions about the GPL, see the generic FAQ from the Free Software Foundation at
http://www.gnu.org/licenses/gpl-faq.html. Common uses of the GPL include:

e When you distribute both your own application and the MySQL source code under the
GPL with your product.

e When you distribute the MySQL source code bundled with other programs that are not
linked to or dependent on the MySQL system for their functionality even if you sell the
distribution commercially. This is called mere aggregation in the GPL license.

e When you are not distributing any part of the MySQL system, you can use it for free.

e When you are an Internet Service Provider (ISP), offering web hosting with MySQL
servers for your customers. We encourage people to use ISPs that have MySQL support,
as this will give them the confidence that their ISP will, in fact, have the resources to
solve any problems they may experience with the MySQL installation. Even if an ISP
does not have a commercial license for MySQL Server, their customers should at least
be given read access to the source of the MySQL installation so that the customers can
verify that it is correctly patched.

e When you use the MySQL database software in conjunction with a web server, you do
not need a commercial license (so long as it is not a product you distribute). This is
true even if you run a commercial web server that uses MySQL Server, because you are
not distributing any part of the MySQL system. However, in this case we would like you
to purchase MySQL support because the MySQL software is helping your enterprise.

If your use of MySQL database software does not require a commercial license, we encourage
you to purchase support from MySQL AB anyway. This way you contribute toward MySQL
development and also gain immediate advantages for yourself. See Section 1.4.1 [Support],
page 15.

If you use the MySQL database software in a commercial context such that you profit by its
use, we ask that you further the development of the MySQL software by purchasing some
level of support. We feel that if the MySQL database helps your business, it is reasonable to
ask that you help MySQL AB. (Otherwise, if you ask us support questions, you are not only
using for free something into which we’ve put a lot a work, you're asking us to provide free
support, t00.)

1.4.4 MySQL AB Logos and Trademarks

Many wusers of the MySQL database want to display the MySQL AB dolphin logo
on their web sites, books, or boxed products. We welcome and encourage this,
although it should be noted that the word MySQL and the MySQL dolphin logo are
trademarks of MySQL AB and may only be used as stated in our trademark policy at
http://wuw.mysql.com/company/trademark.html.

1.4.4.1 The Original MySQL Logo

The MySQL dolphin logo was designed by the Finnish advertising agency Priority in 2001.
The dolphin was chosen as a suitable symbol for the MySQL database since it is a smart, fast,
and lean animal, effortlessly navigating oceans of data. We also happen to like dolphins.

Chapter 1: General Information 19

The original MySQL logo may only be used by representatives of MySQL AB and by those
having a written agreement allowing them to do so.

1.4.4.2 MySQL Logos that may be Used Without Written
Permission

We have designed a set of special Conditional Use logos that may be downloaded from
our web site at http://www.mysql.com/press/logos.html and used on third-party web
sites without written permission from MySQL AB. The use of these logos is not entirely
unrestricted but, as the name implies, subject to our trademark policy that is also available
on our web site. You should read through the trademark policy if you plan to use them.
The requirements are basically as follows:

e Use the logo you need as displayed on the http://www.mysql.com/ site. You may
scale it to fit your needs, but may not change colours or design, or alter the graphics
in any way.

e Make it evident that you, and not MySQL AB, are the creator and owner of the site that
displays the MySQL trademark.

e Don’t use the trademark in a way that is detrimental to MySQL AB or to the value of
MySQL AB trademarks. We reserve the right to revoke the right to use the MySQL AB
trademark.

e If you use the trademark on a web site, make it clickable, leading directly to
http://www.mysql.com/.

e If you are use the MySQL database under GPL in an application, your application must
be Open Source and must be able to connect to a MySQL server.

Contact us via e-mail at trademark@mysql.com to inquire about special arrangements to
fit your needs.

1.4.4.3 When do you need a Written Permission to use MySQL
Logos?

You need written permission from MySQL AB before using MySQL logos in the following cases:
e When displaying any MySQL AB logo anywhere except on your web site.

e When displaying any MySQL AB logo except the Conditional Use logos mentioned pre-
viously on web sites or elsewhere.

Due to legal and commercial reasons we monitor the use of MySQL trademarks on prod-
ucts, books, and other items. We usually require a fee for displaying MySQL AB logos on
commercial products, since we think it is reasonable that some of the revenue is returned
to fund further development of the MySQL database.

1.4.4.4 MySQL AB Partnership Logos

MySQL partnership logos may be used only by companies and persons having a written
partnership agreement with MySQL AB. Partnerships include certification as a MySQL trainer
or consultant. For more information, please see Section 1.3.1.5 [Partnering], page 14.

20 MySQL Technical Reference for Version 4.1.1-alpha

1.4.4.5 Using the word MySQL in Printed Text or Presentations

MySQL AB welcomes references to the MySQL database, but it should be noted that the word
MySQL is a trademark of MySQL AB. Because of this, you must append the trademark symbol
(TM) to the first or most prominent use of the word MySQL in a text and, where appropriate,
state that MySQL is a trademark of MySQL AB. For more information, please refer to our
trademark policy at http://www.mysql.com/company/trademark.html.

1.4.4.6 Using the word MySQL in Company and Product Names

Use of the word MySQL in product or company names or in Internet domain names is not
allowed without written permission from MySQL AB.

1.5 MySQL 4.0 In A Nutshell

Long promised by MySQL AB and long awaited by our users, MySQL Server 4.0 is now
available in production version.

MySQL 4.0 is available for download from http://www.mysql.com/ and from our mirrors.
MySQL 4.0 has been tested by a large number of users and is in production use at many
large sites.

The major new features of MySQL Server 4.0 are geared toward our existing business and
community users, enhancing the MySQL database software as the solution for mission-
critical, heavy-load database systems. Other new features target the users of embedded
databases.

MySQL Version 4.0.12 was declared stable for production use in March 2003. This means
that, in future, only bug fixes will be done for the 4.0 release series and only critical bug fixes
will be done for the older 3.23 series. See Section 2.5.2 [Upgrading-from-3.23|, page 122.

New features to the MySQL software are being added to MySQL 4.1 which is now also
available (alpha version). See Section 1.6 [MySQL 4.1 In A Nutshell], page 22.

1.5.1 Features Available in MySQL 4.0

Speed enhancements
e MySQL 4.0 has a query cache that can give a huge speed boost to appli-
cations with repetitive queries. See Section 6.9 [Query Cache|, page 567.

e Version 4.0 further increases the speed of MySQL Server in a number
of areas, such as bulk INSERTSs, searching on packed indexes, creation of
FULLTEXT indexes, and COUNT (DISTINCT).

Embedded MySQL Server introduced
e The new Embedded Server library (instead of client/server) can easily be

used in standalone and embedded applications. See Section 1.5.2 [Nutshell
Embedded MySQL], page 21.

Chapter 1: General Information 21

InnoDB storage engine as standard
e The InnoDB storage engine is now offered as a standard feature of the
MySQL server. This means full support for ACID transactions, foreign keys
with cascading UPDATE/DELETE, and row-level locking are now stan-
dard features. See Section 7.5 [InnoDB], page 584.

New functionality
e The enhanced FULLTEXT search properties of MySQL Server 4.0 enables
FULLTEXT indexing of large text masses with both binary and natural-
language searching logic. You can customise minimal word length and
define your own stop word lists in any human language, enabling a new
set of applications to be built on MySQL Server. See Section 6.8 [Fulltext
Search], page 562.

Standards compliance, portability, and migration
e Features to simplify migration from other database systems to MySQL
Server include TRUNCATE TABLE (as in Oracle).

e Many users will also be happy to learn that MySQL Server now supports
the UNION statement, a long-awaited standard SQL feature.

e MySQL can now run natively on the Novell NetWare 6.0 platform. See
Section 2.6.8 [Novell NetWare|, page 163.

Internationalisation
e Our German, Austrian, and Swiss users will note that MySQL now supports
a new character set, latinl_de, which ensures that the German sorting
order sorts words with umlauts in the same order as do German telephone
books.

Usability enhancements
In the process of building features for new users, we have not forgotten requests
from our community of loyal users.

e Most mysqld parameters (startup options) can now be set without taking
down the servers. This is a convenient feature for Database Administrators
(DBAs). See Section 5.5.6 [SET OPTION], page 429.

e Multi-table DELETE and UPDATE statements have been added..

e Support has been added for symbolic linking to MyISAM at the table
level (and not just the database level as before) and for enabling symlink
handling by default on Windows.

e SQL_CALC_FOUND_ROWS and FOUND_ROWS () are new functions that make it
possible to find out the number of rows a SELECT query that includes a
LIMIT clause would have returned without that clause.

The news section of this manual includes a more in-depth list of features. See Section D.3
[News-4.0.x], page 863.

1.5.2 Embedded MySQL Server

libmysqld makes MySQL Server suitable for a vastly expanded realm of applications. Using
the embedded MySQL server library, one can embed MySQL Server into various applications

22 MySQL Technical Reference for Version 4.1.1-alpha

and electronics devices, where the end user has no knowledge of there actually being an
underlying database. Embedded MySQL Server is ideal for use behind the scenes in Internet
appliances, public kiosks, turnkey hardware/software combination units, high performance
Internet servers, self-contained databases distributed on CD-ROM, and so on.

Many users of libmysqld will benefit from the MySQL Dual Licensing. For those not
wishing to be bound by the GPL, the software is also made available under a commercial
license. The embedded MySQL library uses the same interface as the normal client library,
so it is convenient and easy to use. See Section 9.1.15 [libmysqld], page 741.

1.6 MySQL 4.1 In A Nutshell

MySQL Server 4.0 laid the foundation for new features such as nested subqueries and Uni-
code (implemented in version 4.1) and for the work on SQL-99 stored procedures being done
for version 5.0. These features come at the top of the wish list of many of our customers.

With these additions, critics of the MySQL Database Server have to be more imaginative
than ever in pointing out deficiencies in the MySQL Database Management System. Already
well-known for its stability, speed, and ease of use, MySQL Server will be able to fulfill the
requirement checklists of very demanding buyers.

1.6.1 Features Available in MySQL 4.1

The features listed in this section are implemented in MySQL 4.1. A few other features are
still planned for MySQL 4.1. See Section 1.9.1 [TODO MySQL 4.1], page 50.

Most new features being coded, such as stored procedures, will be available in MySQL 5.0.
See Section 1.9.2 [TODO MySQL 5.0], page 50.

Support for subqueries and derived tables
e Subqueries are now supported. Here is an example:

SELECT * FROM t1 WHERE t1.a=(SELECT t2.b FROM t2);

SELECT * FROM t1 WHERE (1,2,3) IN (SELECT a,b,c FROM t2);

e Derived tables (unnamed views) are now supported. Basically, a derived
table is a subquery in the FROM clause of a SELECT statement. Here is an
example:

SELECT t1.a FROM t1, (SELECT * FROM t2) t3 WHERE tl.a=t3.a;ll

Speed enhancements
e Faster binary protocol with prepared statements and parameter binding.
See Section 9.1.4 [C API Prepared statements|, page 706.

e BTREE indexing is now supported for HEAP tables, significantly improving
response time for non-exact searches.

New functionality
e CREATE TABLE table LIKE table allows you to create a new table with the
exact structure of an existing table, using a single command.

Chapter 1: General Information 23

e Support for OpenGIS (Geographical data). See Chapter 11 [Spatial exten-
sions in MySQL], page 773.

Standards compliance, portability, and migration
e The new client/server protocol adds the ability to pass multiple warnings
to the client, rather than only a single result. This makes jobs such as bulk
loading of data much easier to track. SHOW WARNINGS shows warnings for
the last command. See Section 4.5.7.9 [SHOW WARNINGS], page 310.

Internationalisation
e To support our ever expanding user base using local languages in applica-
tions, the MySQL software now offers extensive Unicode (UTF8) support.

e Character sets can now be defined per column, table, and database. This
allows for a high degree of flexibility in application design, particularly for
multi-language web sites.

e The documentation for this improved character set support is being devel-
oped and will be added to the manual soon.

Usability enhancements
e In response to popular demand, we have added a server-based HELP
command that can be used in the mysql command line client (and other
clients) to get help for SQL commands. The advantage of having this
information on the server side is that the information is always applicable
for that particular server version.

e In the new client/server protocol, multi-line queries can now be enabled.
This allows you to issue several queries in a single call and then read all
the results in one go. See Section 9.1.8 [C API multiple queries], page 733.

e A new INSERT ... ON DUPLICATE KEY UPDATE ... syntax has been imple-
mented. This allows you to UPDATE an existing row if the INSERT would
have caused a duplicate in a PRIMARY or UNIQUE key (index). See Sec-
tion 6.4.3 [INSERT], page 527.

e We have designed a new aggregate function GROUP_CONCAT(), adding the
extremely useful capability of concatenating columns from grouped rows
into a single result string. See Section 6.3.7 [Group by functions], page 513.

e The new client/server protocol supports multiple result sets.

The news section in this manual includes a more in-depth list of features. See Section D.2
[News-4.1.x], page 858.

1.6.2 Stepwise Rollout

New features are being added to MySQL 4.1, which is already available for download (alpha
version). See Section 1.6.3 [Nutshell Ready for Immediate Use], page 24.

The set of features that are being added to version 4.1 is mostly fixed. Additional devel-
opment is already ongoing for version 5.0. MySQL 4.1 will go through the steps of Alpha
(during which time new features might still be added /changed), Beta (when we have feature
freeze and only bug corrections will be done), and Gamma (indicating that a production

24 MySQL Technical Reference for Version 4.1.1-alpha

release is just weeks ahead). At the end of this process, MySQL 4.1 will become the new
production release.

1.6.3 Ready for Immediate Development Use

MySQL 4.1 is currently in the alpha stage, and binaries are available for download at
http://wuw.mysql.com/downloads/mysql-4.1.html. All binary releases pass our exten-
sive test suite without any errors on the platforms on which we test. See Section D.2
[News-4.1.x], page 858.

1.6.4 MySQL 5.0, The Next Development Release

New development for MySQL is focused on the 5.0 release, featuring Stored Procedures and
other new features. See Section 1.9.2 [TODO MySQL 5.0], page 50.

For those wishing to take a look at the bleeding edge of MySQL development, we have
already made our BitKeeper repository for MySQL version 5.0 publically available. See
Section 2.3.4 [Installing source tree], page 103.

1.7 MySQL Information Sources

1.7.1 MySQL Mailing Lists

This section introduces you to the MySQL mailing lists and gives some guidelines as to how
the lists should be used. When you subscribe to a mailing list, you will receive, as e-mail
messages, all postings to the list. You will also be able to send your own questions and
answers to the list.

1.7.1.1 The MySQL Mailing Lists

To subscribe to the main MySQL mailing list, send a message to the electronic mail address
mysql-subscribe@lists.mysql.com.

To unsubscribe from the main MySQL mailing list, send a message to the electronic mail
address mysql-unsubscribe@lists.mysql.com.

When subscribing and unsubscribing, only the address to which you send your message is
significant. The subject line and the body of the message are ignored.

If your reply address is not valid, you can specify your address explicitly by adding a hyphen
to the subscribe or unsubscribe command word, followed by your address with the ‘@ char-
acter in your address replaced by a ‘=’. For example, to subscribe your_name®@host.domain,
send a message to mysql-subscribe-your_name=host.domain@lists.mysql.com.

Mail to mysgl-subscribe@lists.mysql.com or mysql-unsubscribe@lists.mysql.com is
handled automatically by the ezmlm mailing list processor. Information about ezmlm is
available at the ezmlm web site (http://www.ezmlm.org/).

Chapter 1: General Information 25

To post a message to the list itself, send your message to mysql@lists.mysql.com. Please
do not send mail about subscribing or unsubscribing to mysql@lists.mysql.com because
all mail sent to that address is distributed automatically to thousands of other users.

Your local site may have many subscribers to mysql@lists.mysql.com. If so, it may have a
local mailing list, so that messages sent from lists.mysql.com to your site are propagated
to the local list. In such cases, please contact your system administrator to be added to or
dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set
up a filter based on the message headers. You can use either the List-ID: or Delivered-
To: headers to identify list messages.

The MySQL mailing lists are as follows:

announce-subscribe@lists.mysql.com announce
This list is for announcements of new versions of MySQL and related programs.
This is a low-volume list to which all MySQL users should subscribe.

mysql-subscribe@lists.mysql.com mysql
This is the main list for general MySQL discussion. Please note that some
topics are better discussed on the more-specialised lists. If you post to the
wrong list, you may not get an answer.

mysql-digest-subscribe@lists.mysql.com mysql-digest
This is the mysql list in digest form. Subscribing to this list means you will get
all list messages, sent as one large mail message once a day.

bugs-subscribe@lists.mysql.com bugs
This list will be of interest to you if you want to stay informed about issues
reported since the last release of MySQL or if you want to be actively involved
in the process of bug hunting and fixing. See Section 1.7.1.3 [Bug reports],
page 27.

bugs-digest-subscribe@lists.mysql.com bugs-digest
This is the bugs list in digest form.

internals-subscribe@lists.mysql.com internals
This list is for people who work on the MySQL code. This is also the forum for
discussions on MySQL development and post patches.

internals-digest-subscribe@lists.mysql.com internals-digest
This is the internals list in digest form.

mysqldoc-subscribe@lists.mysql.com mysqldoc
This list is for people who work on the MySQL documentation: people from
MySQL AB, translators, and other community members.

mysqldoc-digest-subscribe@lists.mysql.com mysqldoc-digest
This is the mysqldoc list in digest form.

benchmarks-subscribe@lists.mysql.com benchmarks
This list is for anyone interested in performance issues. Discussions concentrate
on database performance (not limited to MySQL) but also include broader
categories such as performance of the kernel, file system, disk system, and so
on.

26 MySQL Technical Reference for Version 4.1.1-alpha

benchmarks-digest-subscribe@lists.mysql.com benchmarks-digest
This is the benchmarks list in digest form.

packagers—-subscribe@lists.mysql.com packagers
This list is for discussions on packaging and distributing MySQL. This is the
forum used by distribution maintainers to exchange ideas on packaging MySQL
and on ensuring that MySQL looks and feels as similar as possible on all sup-
ported platforms and operating systems.

packagers-digest-subscribe@lists.mysql.com packagers-digest
This is the packagers list in digest form.

java-subscribe@lists.mysql.com java
This list is for discussions about the MySQL server and Java.lt is mostly used
to discuss JDBC drivers, including MySQL Connector/J.

java-digest-subscribe@lists.mysql.com java-digest
This is the java list in digest form.

win32-subscribe@lists.mysql.com win32
This list is for all things concerning the MySQL software on Microsoft operating
systems, such as Windows 9x/Me/NT /2000/XP.

win32-digest-subscribe@lists.mysql.com win32-digest
This is the win32 list in digest form.

myodbc-subscribe@lists.mysql.com myodbc
This list is for all things concerning connecting to the MySQL server with
ODBC.

myodbc-digest-subscribe@lists.mysql.com myodbc-digest
This is the myodbc list in digest form.

mysqlcc-subscribe@lists.mysql.com mysqlcc
This list is for all things concerning the MySQL Control Center graphical client.

mysqlcc-digest-subscribe@lists.mysql.com mysqlcc-digest
This is the mysqlcc list in digest form.

plusplus-subscribe@lists.mysql.com plusplus
This list is for all things concerning programming with the C++ API to MySQL.

plusplus-digest-subscribe@lists.mysql.com plusplus-digest
This is the plusplus list in digest form.

msql-mysql-modules-subscribe@lists.mysql.com msql-mysql-modules
This list is for all things concerning the Perl support for MySQL with msql-
mysql-modules, which is now named DBD-mysql.

msql-mysql-modules-digest-subscribe@lists.mysql.com
msql-mysql-modules-digest

This is the msql-mysql-modules list in digest form.
You subscribe or unsubscribe to all lists using the same method described at the beginning

of this section. For example, to subscribe to or unsubscribe from the myodbc list, send a mes-
sage to myodbc-subscribe@lists.mysql.com or myodbc-unsubscribe@lists.mysql.com.

Chapter 1: General Information 27

If you’re unable to get an answer to your question(s) from a MySQL mailing list, one option
is to pay for support from MySQL AB. This will put you in direct contact with MySQL
developers. See Section 1.4.1 [Support], page 15.

The following table shows some MySQL mailing lists in languages other than English. These
lists are not operated by MySQL AB, so we can’t guarantee their quality.

mysql-france-subscribe@yahoogroups.com A French mailing list
list@tinc.net A Korean mailing list
E-mail subscribe mysql your@e-mail.address to this list.

mysql-de-request@lists.4t2.com A German mailing list
E-mail subscribe mysql-de your@e-mail.address to this list. You can find
information about this mailing list at http://www.4t2.com/mysql/.

mysql-br-request@listas.linkway.com.br A Portuguese mailing list
E-mail subscribe mysql-br your@e-mail.address to this list.

mysql-alta@elistas.net A Spanish mailing list
E-mail subscribe mysql your@e-mail.address to this list.

1.7.1.2 Asking Questions or Reporting Bugs

Before posting a bug report or question, please do the following:

e Start by searching the MySQL online manual at:
http://www.mysql.com/doc/
We try to keep the manual up to date by updating it frequently with
solutions to newly found problems. The change history appendix
(http://www.mysql.com/doc/en/News.html) can be particularly useful since
it is quite possible that a newer version already contains a solution to your problem.

e Search in the bugs database at http://bugs.mysql.com/ to see whether the bug has
already been reported/solved.

e Search the MySQL mailing list archives:
http://lists.mysql.com/

e You can also use http://www.mysql.com/search/ to search all the web pages (includ-
ing the manual) that are located at http://www.mysql.com/.

If you can’t find an answer in the manual or the archives, check with your local MySQL
expert. If you still can’t find an answer to your question, please follow the guidelines on
sending mail to mysql@lists.mysql.com, outlined in the next section, before contacting
us.

1.7.1.3 How to Report Bugs or Problems

Our bugs database is public, and can be browsed and searched by anyone at
http://bugs.mysql.com/. If you log into the system, you will also be able to enter new
reports.

28 MySQL Technical Reference for Version 4.1.1-alpha

Writing a good bug report takes patience, but doing it right the first time saves time both
for us and for yourself. A good bug report, containing a full test case for the bug, makes
it very likely that we will fix the bug in the next release. This section will help you write
your report correctly so that you don’t waste your time doing things that may not help us
much or at all.

We encourage everyone to use the mysqlbug script to generate a bug report (or a report
about any problem). mysqlbug can be found in the ‘scripts’ directory (source distribution)
and in the ‘bin’ directory under your MySQL installation directory (binary distribution).
If you are unable to use mysqlbug (for instance, if you are running on Windows), it is still
vital that you include all the necessary information noted in this section (most importantly
a description of the operating system and the MySQL version).

The mysqlbug script helps you generate a report by determining much of the following
information automatically, but if something important is missing, please include it with
your message. Please read this section carefully and make sure that all the information
described here is included in your report.

Preferably, you should test the problem using the latest production or development version
of MySQL Server before posting. Anyone should be able to repeat the bug by just using
'mysql test < script’ on the included test case or run the shell or Perl script that is
included in the bug report.

All bugs posted in the bugs database or on the bugs@lists.mysql. com list will be corrected
or documented in the next MySQL release. If only minor code changes are needed to correct
a problem, we will also post a patch that fixes the problem.

The normal place to report bugs is http://bugs.mysql.com/.

If you have found a sensitive security bug in MySQL, please send an e-mail to
security@mysql. com.

If you have a repeatable bug report, please report this into the bugs database at
http://bugs.mysql.com/. Note that even in this case it’s good to run the mysqlbug
script first to find information about your system. Any bug that we are able to repeat has
a high chance of being fixed in the next MySQL release.

To report other problem, you can use mysql@lists.mysql.com.

Remember that it is possible for us to respond to a message containing too much informa-
tion, but not to one containing too little. People often omit facts because they think they
know the cause of a problem and assume that some details don’t matter. A good principle
is: if you are in doubt about stating something, state it. It is a thousand times faster and
less troublesome to write a couple of lines more in your report than to be forced to ask
again and wait for the answer because you didn’t include enough information the first time.

The most common errors made in bug reports are (a) not including the version number of
the MySQL distribution used and (b) not fully describing the platform on which the MySQL
server is installed (including the platform type and version number). This is highly relevant
information, and in 99 cases out of 100 the bug report is useless without it. Very often we
get questions like, “Why doesn’t this work for me?” Then we find that the feature requested
wasn’t implemented in that MySQL version, or that a bug described in a report has already
been fixed in newer MySQL versions. Sometimes the error is platform-dependent; in such
cases, it is next to impossible for us to fix anything without knowing the operating system
and the version number of the platform.

Chapter 1: General Information 29

Remember also to provide information about your compiler, if it is related to the problem.
Often people find bugs in compilers and think the problem is MySQL-related. Most compil-
ers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you use.
Note that every compiling problem should be regarded as a bug and reported accordingly.

It is most helpful when a good description of the problem is included in the bug report.
That is, give a good example of all the things you did that led to the problem and describe,
in exact detail, the problem itself. The best reports are those that include a full example
showing how to reproduce the bug or problem. See Section E.1.6 [Reproduceable test case],
page 974.

If a program produces an error message, it is very important to include the message in your
report. If we try to search for something from the archives using programs, it is better that
the error message reported exactly matches the one that the program produces. (Even the
case should be observed.) You should never try to remember what the error message was;
instead, copy and paste the entire message into your report.

If you have a problem with MyODBC, please try to generate a MyODBC trace file and
send it with your report. See Section 9.2.7 [MyODBC bug report], page 756.

Please remember that many of the people who will read your report will do so using an
80-column display. When generating reports or examples using the mysql command-line
tool, you should therefore use the -—-vertical option (or the \G statement terminator) for
output that would exceed the available width for such a display (for example, with the
EXPLAIN SELECT statement; see the example later in this section).

Please include the following information in your report:

e The version number of the MySQL distribution you are using (for example, MySQL Ver-
sion 4.0.12). You can find out which version you are running by executing mysqladmin
version. mysqladmin can be found in the ‘bin’ directory under your MySQL instal-
lation directory.

e The manufacturer and model of the machine on which you experience the problem.

e The operating system name and version. For most operating systems, you can get this
information by executing the Unix command uname -a. If you work with Windows, you
can usually get the name and version number by double-clicking your "My Computer”
icon and pulling down the "Help/About Windows” menu.

e Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include
these values.

e If you are using a source distribution of the MySQL software, the name and version
number of the compiler used is needed. If you have a binary distribution, the distribu-
tion name is needed.

e If the problem occurs during compilation, include the exact error message(s) and also
a few lines of context around the offending code in the file where the error occurrs.

e Ifmysqld died, you should also report the query that crashed mysqld. You can usually
find this out by running mysqld with logging enabled. See Section E.1.5 [Using log
files], page 973.

e If a database table is related to the problem, include the output from mysqldump --
no-data db_name tbl_namel tbl_name2 This is very easy to do and is a powerful

30

MySQL Technical Reference for Version 4.1.1-alpha

way to get information about any table in a database. The information will help us
create a situation matching the one you have.

For speed-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT
statement produces. You should also include the output from SHOW CREATE TABLE tbl_
name for each involved table. The more information you give about your situation, the
more likely it is that someone can help you. The following is an example of a very good
bug report (it should of course be posted with the mysqlbug script).

Example run using the mysql command-line tool (note the use of the \G statement
terminator for statements whose output width would otherwise exceed that of an 80-
column display device):

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
<A short version of the output from SELECT,
including the time taken to run the query>
mysql> SHOW STATUS;
<output from SHOW STATUS>

If a bug or problem occurs while running mysqld, try to provide an input script that
will reproduce the anomaly. This script should include any necessary source files. The
more closely the script can reproduce your situation, the better. If you can make a
reproducible test case, you should post it on http://bugs.mysql.com/ for high-priority
treatment.

If you can’t provide a script, you should at least include the output from mysqladmin
variables extended-status processlist in your mail to provide some information
on how your system is performing.

If you can’t produce a test case with only a few rows, or if the test table is too big to
be mailed to the mailing list (more than 10 rows), you should dump your tables using
mysqldump and create a ‘README’ file that describes your problem.

Create a compressed archive of your files using tar and gzip or zip, and use ftp to
transfer the archive to ftp://support.mysql.com/pub/mysql/secret/. Then enter
the problem into our bugs database at http://bugs.mysql.com/.

If you think that the MySQL server produces a strange result from a query, include
not only the result, but also your opinion of what the result should be, and an account
describing the basis for your opinion.

When giving an example of the problem, it’s better to use the variable names, table
names, etc., that exist in your actual situation than to come up with new names. The
problem could be related to the name of a variable or table. These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to
provide an example that uses your actual situation, and it is by all means better for us.
In case you have data you don’t want to show to others, you can use ftp to transfer

Chapter 1: General Information 31

it to ftp://support.mysql.com/pub/mysql/secret/. If the data is really top secret
and you don’t want to show it even to us, then go ahead and provide an example using
other names, but please regard this as the last choice.

e Include all the options given to the relevant programs, if possible. For example, indicate
the options that you use when you start the mysqld daemon as well as the options that
you use to run any MySQL client programs. The options to programs like mysqld and
mysql, and to the configure script, are often keys to answers and are very relevant.
It is never a bad idea to include them. If you use any modules, such as Perl or PHP,
please include the version number(s) of those as well.

e If your question is related to the privilege system, please include the output of
mysqlaccess, the output of mysqladmin reload, and all the error messages you
get when trying to connect. When you test your privileges, you should first run
mysqlaccess. After this, execute mysqladmin reload version and try to connect
with the program that gives you trouble. mysqlaccess can be found in the ‘bin’
directory under your MySQL installation directory.

e If you have a patch for a bug, do include it. But don’t assume the patch is all we need,
or that we will use it, if you don’t provide some necessary information such as test
cases showing the bug that your patch fixes. We might find problems with your patch
or we might not understand it at all; if so, we can’t use it.

If we can’t verify exactly what the patch is meant for, we won’t use it. Test cases will
help us here. Show that the patch will handle all the situations that may occur. If we
find a borderline case (even a rare one) where the patch won’t work, it may be useless.

e Guesses about what the bug is, why it occurs, or what it depends on are usually
wrong. Even the MySQL team can’t guess such things without first using a debugger
to determine the real cause of a bug.

e Indicate in your bug report that you have checked the reference manual and mail archive
so that others know you have tried to solve the problem yourself.

e If you get a parse error, please check your syntax closely. If you can’t find something
wrong with it, it’s extremely likely that your current version of MySQL Server doesn’t
support the syntax you are using. If you are using the current version and the manual at
http://www.mysql.com/doc/ doesn’t cover the syntax you are using, MySQL Server
doesn’t support your query. In this case, your only options are to implement the syntax
yourself or e-mail 1licensing@mysql.com and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL
Server, you should check the MySQL change history to see when the syntax was imple-
mented. In this case, you have the option of upgrading to a newer version of MySQL
Server. See Appendix D [News|, page 858.

e If your problem is that your data appears corrupt or you get errors when you ac-
cess a particular table, you should first check and then try repairing your tables with
myisamchk or CHECK TABLE and REPAIR TABLE. See Chapter 4 [MySQL Database Ad-
ministration], page 205.

e If you often get corrupted tables you should try to find out when and why this happens.
In this case, the ‘mysql-data-directory/’hostname’.err’ file may contain some in-
formation about what happened. See Section 4.9.1 [Error log], page 355. Please include
any relevant information from this file in your bug report. Normally mysqld should

32 MySQL Technical Reference for Version 4.1.1-alpha

never crash a table if nothing killed it in the middle of an update. If you can find the
cause of mysqld dying, it’s much easier for us to provide you with a fix for the problem.
See Section A.1 [What is crashing], page 816.

e If possible, download and install the most recent version of MySQL Server and check
whether it solves your problem. All versions of the MySQL software are thoroughly
tested and should work without problems. We believe in making everything as
backward-compatible as possible, and you should be able to switch MySQL versions
without difficulty. See Section 2.2.4 [Which version|, page 84.

If you are a support customer, please cross-post the bug report to mysql-support@mysql . comj
for higher-priority treatment, as well as to the appropriate mailing list to see if someone
else has experienced (and perhaps solved) the problem.

For information on reporting bugs in My0ODBC, see Section 9.2.4 [ODBC Problems], page 750.
For solutions to some common problems, see Appendix A [Problems], page 816.

When answers are sent to you individually and not to the mailing list, it is considered good
etiquette to summarise the answers and send the summary to the mailing list so that others
may have the benefit of responses you received that helped you solve your problem.

1.7.1.4 Guidelines for Answering Questions on the Mailing List

If you consider your answer to have broad interest, you may want to post it to the mailing
list instead of replying directly to the individual who asked. Try to make your answer
general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarise the essential part of the question in your reply; don’t feel obliged to quote
the entire original message.

Please don’t post mail messages from your browser with HTML mode turned on. Many
users don’t read mail with a browser.

1.7.2 MySQL Community Support on IRC (Internet Relay Chat)

In addition to the various MySQL mailing lists, you can find experienced community people
on IRC (Internet Relay Chat). These are the best networks/channels currently known to
us:

e freenode (see http://www.freenode.net/ for servers)

e #mysql Primarily MySQL questions but other database and SQL questions wel-
come.

e #mysqlphp Questions about MySQL+PHP, a popular combination.
e #mysqlperl Questions about MySQL+Perl, another popular combination.
e EFnet (see http://www.efnet.org/ for servers)
e #mysql MySQL questions.
If you are looking for IRC client software to connect to an IRC network, take a look at

X-Chat (http://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as
for Windows platforms.

Chapter 1: General Information 33

1.8 How Standards-compatible Is MySQL?

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server
has many extensions to the SQL standard, and here you will find out what they are and
how to use them. You will also find information about functionality missing from MySQL
Server, and how to work around some differences.

Our goal is to not, without a very good reason, restrict MySQL Server usability for any
usage. Even if we don’t have the resources to do development for every possible use, we are
always willing to help and offer suggestions to people who are trying to use MySQL Server
in new territories.

One of our main goals with the product is to continue to work toward compliance with
the SQL-99 standard, but without sacrificing speed or reliability. We are not afraid to add
extensions to SQL or support for non-SQL features if this greatly increases the usability of
MySQL Server for a big part of our users. (The new HANDLER interface in MySQL Server
4.0 is an example of this strategy. See Section 6.4.2 [HANDLER], page 526.)

We will continue to support transactional and non-transactional databases to satisfy both
heavy web/logging usage and mission-critical 24/7 usage.

MySQL Server was designed from the start to work with medium size databases (10-100
million rows, or about 100 MB per table) on small computer systems. We will continue
to extend MySQL Server to work even better with terabyte-size databases, as well as to
make it possible to compile a reduced MySQL version that is more suitable for hand-held
devices and embedded usage. The compact design of the MySQL server makes both of these
directions possible without any conflicts in the source tree.

We are currently not targeting realtime support or clustered databases (even if you can
already do a lot of things with our replication services).

We don’t believe that one should have native XML support in the database, but will instead
add the XML support our users request from us on the client side. We think it’s better
to keep the main server code as “lean and clean” as possible and instead develop libraries
to deal with the complexity on the client side. This is part of the strategy mentioned
previously of not sacrificing speed or reliability in the server.

1.8.1 What Standards Does MySQL Follow?

Entry-level SQL-92. ODBC levels 0-3.51.

We are aiming toward supporting the full SQL-99 standard, but without concessions to
speed and quality of the code.

1.8.2 Running MySQL in ANSI Mode

If you start mysqld with the -—ansi or --sql-mode=ANSI option, the following behaviours
of MySQL Server change:

e || is a string concatenation operator rather than a synonym for OR.

in?
L]

is treated as an identifier quote character (like the MySQL Server ‘¢” quote character)
and not as a string quote character. You can still use ‘‘” to quote identifers in ANSI

mode.

34 MySQL Technical Reference for Version 4.1.1-alpha

e You can have any number of spaces between a function name and the ‘(C’ character.
This forces all function names to be treated as reserved words. As a result, if you want
to access any database, table, or column name that is a reserved word, you must quote
it. For example, because there is a USER() function, the name of the user table in the
mysql database and the User column in that table become reserved, so you must quote
them:

SELECT "User" FROM mysql.'"user";

e REAL is a synonym for FLOAT instead of a synonym for DOUBLE.

e The default transaction isolation level is SERIALIZABLE. See Section 6.7.4 [SET
TRANSACTION], page 562.

e You can use a field/expression in GROUP BY that is not in the field list.

Running the server in ANSI mode is the same as starting it with these options:

--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_B
-—transaction-isolation=SERIALIZABLE

In MySQL 4.1, you can achieve the same effect with these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode =
"REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES, IGNORE_SPACE,ONLY_FULL_GROUP_BY" ;i

In MySQL 4.1.1, the sql_mode options shown can be also be set with:

SET GLOBAL sql_mode="ansi";
In this case, the value of the sql_mode variable will be set to all options that are relevant
for ANSI mode. You can check the result by doing:

mysql> SET GLOBAL sql_mode="ansi";
mysql> SELECT Q@QGLOBAL.sql_mode;
-> "REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES, IGNORE_SPACE,ONLY_FULL_GROUP

1.8.3 MySQL Extensions To The SQL-92 Standard

MySQL Server includes some extensions that you probably will not find in other SQL
databases. Be warned that if you use them, your code will not be portable to other SQL
servers. In some cases, you can write code that includes MySQL extensions, but is still
portable, by using comments of the form /*! ... x/. In this case, MySQL Server will
parse and execute the code within the comment as it would any other MySQL statement,
but other SQL servers will ignore the extensions. For example:

SELECT /=*! STRAIGHT_JOIN */ col_name FROM tablel,table2 WHERE ...

If you add a version number after the *!’, the syntax will be executed only if the MySQL
version is equal to or newer than the used version number:

CREATE /%!132302 TEMPORARY #*/ TABLE t (a INT);

This means that if you have Version 3.23.02 or newer, MySQL Server will use the TEMPORARY
keyword.

The following is a list of MySQL extensions:
e The field types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT types.

Chapter 1: General Information 35

e The field attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

e All string comparisons are case-insensitive by default, with sort ordering determined
by the current character set (ISO-8859-1 Latinl by default). If you don’t like this, you
should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done according to the ASCII order used on the MySQL server
host.

e MySQL Server maps each database to a directory under the MySQL data directory,
and tables within a database to filenames in the database directory.

This has a few implications:

— Database names and table names are case-sensitive in MySQL Server on oper-
ating systems that have case-sensitive filenames (like most Unix systems). See
Section 6.1.3 [Name case sensitivity], page 440.

— Database, table, index, column, or alias names may begin with a digit (but may
not consist solely of digits).

— You can use standard system commands to back up, rename, move, delete, and
copy tables. For example, to rename a table, rename the ‘.MYD’, *.MYI’, and ‘.frm’
files to which the table corresponds.

e In SQL statements, you can access tables from different databases with the
db_name.tbl_name syntax. Some SQL servers provide the same functionality but call
this User space. MySQL Server doesn’t support tablespaces as in: create table
ralph.my_table...IN my_tablespace.

e LIKE is allowed on numeric columns.

e Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement. See Section 6.4.1
[SELECT], page 519.

e The SQL_SMALL_RESULT option in a SELECT statement.
e EXPLAIN SELECT to get a description of how tables are joined.

e Use of index names, indexes on a prefix of a field, and use of INDEX or KEY in a CREATE
TABLE statement. See Section 6.5.3 [CREATE TABLE|, page 544.

e Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.
e Use of COUNT(DISTINCT list) where 1list has more than one element.

e Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in an
ALTER TABLE statement. See Section 6.5.4 [ALTER TABLE], page 553.

e Use of RENAME TABLE. See Section 6.5.5 [RENAME TABLE], page 556.

e Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.
e Use of DROP TABLE with the keywords IF EXISTS.

e You can drop multiple tables with a single DROP TABLE statement.

e The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

e The DELAYED clause of the INSERT and REPLACE statements.

e The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

e Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle’s LOAD
DATA INFILE. See Section 6.4.9 [LOAD DATA], page 536.

e The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

36

MySQL Technical Reference for Version 4.1.1-alpha

The SHOW statement. See Section 4.5.7 [SHOW|, page 291.

‘n?

Strings may be enclosed by either or °’, not just by ‘?’.

Use of the escape ‘\’ character.

The SET statement. See Section 5.5.6 [SET|, page 429.

You don’t need to name all selected columns in the GROUP BY part. This gives better
performance for some very specific, but quite normal queries. See Section 6.3.7 [Group
by functions|, page 513.

One can specify ASC and DESC with GROUP BY.

To make it easier for users who come from other SQL environments, MySQL Server
supports aliases for many functions. For example, all string functions support both
standard SQL syntax and ODBC syntax.

MySQL Server understands the | | and && operators to mean logical OR and AND, as
in the C programming language. In MySQL Server, || and OR are synonyms, as are
&& and AND. Because of this nice syntax, MySQL Server doesn’t support the standard
SQL-99 | | operator for string concatenation; use CONCAT () instead. Because CONCAT ()
takes any number of arguments, it’s easy to convert use of the | | operator to MySQL
Server.
CREATE DATABASE or DROP DATABASE. See Section 6.5.1 [CREATE DATABASE], page 543.
The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.
The =, <>, <= <, >=> <<, >> <=> AND, OR, or LIKE operators may be used in column
comparisons to the left of the FROM in SELECT statements. For example:

mysql> SELECT coll=1 AND col2=2 FROM tbl_name;
The LAST_INSERT_ID() function. See Section 9.1.3.31 [mysql_insert_id ()], page 684.
The REGEXP and NOT REGEXP extended regular expression operators.
CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL
Server, these functions can take any number of arguments.)

The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(),
ENCRYPT (), MD5(), ENCODE(), DECODE (), PERIOD_ADD (), PERIOD_DIFF(), TO_DAYSQ),
or WEEKDAY () functions.

Use of TRIM() to trim substrings. SQL-99 supports removal of single characters only.

The GROUP BY functions STD(), BIT_OR(), BIT_AND(), and GROUP_CONCAT(). See Sec-
tion 6.3.7 [Group by functions], page 513.

Use of REPLACE instead of DELETE + INSERT. See Section 6.4.8 [REPLACE|, page 535.
The FLUSH, RESET and DO statements.
The ability to set variables in a statement with :=:

SELECT @a:=SUM(total) ,@b=COUNT(*),0a/@b AS avg FROM test_table;
SELECT @t1:=(@t2:=1)+0t3:=4,0t1,0t2,0t3;

1.8.4 MySQL Differences Compared To SQL-92

We try to make MySQL Server follow the ANSI SQL standard (SQL-92/SQL-99) and the
ODBC SQL standard, but in some cases MySQL Server does things differently:

Chapter 1: General Information 37

e For VARCHAR columns, trailing spaces are removed when the value is stored. See Sec-
tion 1.8.6 [Bugs], page 45.

e In some cases, CHAR columns are silently changed to VARCHAR columns. See Sec-

tion 6.5.3.1 [Silent column changes|, page 552.

e Privileges for a table are not automatically revoked when you delete a table. You must
explicitly issue a REVOKE to revoke privileges for a table. See Section 4.3.1 [GRANT],
page 248.

e NULL AND FALSE will evaluate to NULL and not to FALSE. This is because we don’t think
it’s good to have to evaluate a lot of extra conditions in this case.

For a prioritised list indicating when new extensions will be added to MySQL Server, you
should consult the online MySQL TODO list at http://www.mysql.com/doc/en/TOD0.html.|j
That is the latest version of the TODO list in this manual. See Section 1.9 [TODO],
page 50.

1.8.4.1 Subqueries

Subqueries are supported in MySQL version 4.1. See Section 1.6.1 [Nutshell 4.1 features],
page 22.

Up to version 4.0, only nested queries of the form INSERT ... SELECT ... and REPLACE
... SELECT ... are supported. You can, however, use the function IN() in other contexts.

You can often rewrite the query without a subquery:

SELECT * FROM tablel WHERE id IN (SELECT id FROM table2);
This can be rewritten as:

SELECT tablel.*x FROM tablel,table2 WHERE tablel.id=table2.id;
The queries:

SELECT * FROM tablel WHERE id NOT IN (SELECT id FROM table2);
SELECT * FROM tablel WHERE NOT EXISTS (SELECT id FROM table2
WHERE tablel.id=table2.id);

Can be rewritten as:

SELECT tablel.* FROM tablel LEFT JOIN table2 ON tablel.id=table2.id
WHERE table2.id IS NULL;

Using a LEFT [OUTER] JOIN is generally much faster than an equivalent subquery because
the server can optimise it better, a fact that is not specific to MySQL Server alone. Prior
to SQL-92, outer joins did not exist, so subqueries were the only way to do certain things in
those bygone days. But that is no longer the case, MySQL Server and many other modern
database systems offer a whole range of outer joins types.

For more complicated subqueries you can often create temporary tables to hold the sub-
query. In some cases, however, this option will not work. The most frequently encountered
of these cases arises with DELETE statements, for which standard SQL does not support
joins (except in subqueries). For this situation there are three options available:

e The first option is to upgrade to MySQL version 4.1.

38 MySQL Technical Reference for Version 4.1.1-alpha

e The second option is to use a procedural programming language (such as Perl or PHP)
to submit a SELECT query to obtain the primary keys for the records to be deleted, and
then use these values to construct the DELETE statement (DELETE FROM ... WHERE ...
IN (keyl, key2, ...)).

e The third option is to use interactive SQL to construct a set of DELETE statements auto-
matically, using the MySQL extension CONCAT() (in lieu of the standard || operator).
For example:

SELECT CONCAT(’DELETE FROM tabl WHERE pkid = ’, "’", tabl.pkid, "’",

FROM tabl, tab2
WHERE tabl.coll = tab2.col2;

You can place this query in a script file and redirect input from it to the mysql
command-line interpreter, piping its output back to a second instance of the inter-
preter:

shell> mysql --skip-column-names mydb < myscript.sql | mysql mydb

MySQL Server 4.0 supports multi-table DELETEs that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time.

1.8.4.2 SELECT INTO TABLE

MySQL Server doesn’t yet support the Oracle SQL extension: SELECT ... INTO TABLE
Instead, MySQL Server supports the SQL-99 syntax INSERT INTO ... SELECT ..., which
is basically the same thing. See Section 6.4.3.1 [INSERT SELECT], page 530.

INSERT INTO tblTemp2 (£1dID) SELECT tblTempl.fldOrder_ID
FROM tblTempl WHERE tblTempl.fldOrder_ID > 100;

Alternatively, you can use SELECT INTO OUTFILE. .. or CREATE TABLE ... SELECT.

1.8.4.3 Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions
with the InnoDB and BDB Transactional storage engines. InnoDB provides full ACID
compliance. See Chapter 7 [Table types], page 572.

The other non-transactional table types (such as MyISAM) in MySQL Server follow a different
paradigm for data integrity called “Atomic Operations.” In transactional terms, MyISAM
tables effectively always operate in AUTOCOMMIT=1 mode. Atomic operations often offer
comparable integrity with higher performance.

With MySQL Server supporting both paradigms, the user is able to decide if he needs the
speed of atomic operations or if he needs to use transactional features in his applications.
This choice can be made on a per-table basis.

As noted, the trade off for transactional vs. non-transactional table types lies mostly in
performance. Transactional tables have significantly higher memory and diskspace require-
ments, and more CPU overhead. That said, transactional table types such as InnoDB do of
course offer many unique features. MySQL Server’s modular design allows the concurrent
use of all these different storage engines to suit different requirements and deliver optimum
performance in all situations.

;;:)I

Chapter 1: General Information 39

But how does one use the features of MySQL Server to maintain rigorous integrity even
with the non-transactional MyISAM tables, and how do these features compare with the
transactional table types?

1. In the transactional paradigm, if your applications are written in a way that is depen-
dent on the calling of ROLLBACK instead of COMMIT in critical situations, transactions
are more convenient. Transactions also ensure that unfinished updates or corrupting
activities are not committed to the database; the server is given the opportunity to do
an automatic rollback and your database is saved.

MySQL Server, in almost all cases, allows you to resolve potential problems by including
simple checks before updates and by running simple scripts that check the databases
for inconsistencies and automatically repair or warn if such an inconsistency occurs.
Note that just by using the MySQL log or even adding one extra log, one can normally
fix tables perfectly with no data integrity loss.

2. More often than not, critical transactional updates can be rewritten to be atomic.
Generally speaking, all integrity problems that transactions solve can be done with
LOCK TABLES or atomic updates, ensuring that you never will get an automatic abort
from the server, which is a common problem with transactional database systems.

3. Even a transactional system can lose data if the server goes down. The difference
between different systems lies in just how small the time-lap is where they could lose
data. No system is 100% secure, only “secure enough.” Even Oracle, reputed to be
the safest of transactional database systems, is reported to sometimes lose data in such
situations.

To be safe with MySQL Server, whether using transactional tables or not, you only
need to have backups and have the binary logging turned on. With this you can recover
from any situation that you could with any other transactional database system. It
is, of course, always good to have backups, independent of which database system you
use.

The transactional paradigm has its benefits and its drawbacks. Many users and application
developers depend on the ease with which they can code around problems where an abort
appears to be, or is necessary. However, even if you are new to the atomic operations
paradigm, or more familiar with transactions, do consider the speed benefit that non-
transactional tables can offer on the order of three to five times the speed of the fastest and
most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-
level reliability and integrity even for non-transactional tables. If you lock tables with LOCK
TABLES, all updates will stall until any integrity checks are made. If you only obtain a
read lock (as opposed to a write lock), reads and inserts are still allowed to happen. The
new inserted records will not be seen by any of the clients that have a read lock until they
release their read locks. With INSERT DELAYED you can queue inserts into a local queue,
until the locks are released, without having the client wait for the insert to complete. See
Section 6.4.4 [INSERT DELAYED)], page 531.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can
be sure that while each specific update is running, no other user can interfere with it, and
there will never be an automatic rollback (which can happen with transactional tables if

40 MySQL Technical Reference for Version 4.1.1-alpha

you are not very careful). MySQL Server also guarantees that there will not be any dirty
reads.

Following are some techniques for working with non-transactional tables:

e Loops that need transactions normally can be coded with the help of LOCK TABLES, and
you don’t need cursors when you can update records on the fly.

e To avoid using ROLLBACK, you can use the following strategy:
1. Use LOCK TABLES ... to lock all the tables you want to access.
2. Test conditions.
3. Update if everything is okay.
4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible ROLLBACKS,
although not always. The only situation this solution doesn’t handle is when someone
kills the threads in the middle of an update. In this case, all locks will be released but
some of the updates may not have been executed.

e You can also use functions to update records in a single operation. You can get a very
efficient application by using the following techniques:

e Modify fields relative to their current value.

e Update only those fields that actually have changed.

For example, when we are doing updates to some customer information, we update
only the customer data that has changed and test only that none of the changed data,
or data that depends on the changed data, has changed compared to the original row.
The test for changed data is done with the WHERE clause in the UPDATE statement. If
the record wasn’t updated, we give the client a message: ”Some of the data you have
changed has been changed by another user.” Then we show the old row versus the new
row in a window, so the user can decide which version of the customer record he should
use.

This gives us something that is similar to column locking but is actually even better
because we only update some of the columns, using values that are relative to their
current values. This means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer

SET
customer_date=’current_date’,
address=’new address’,
phone=’new phone’,
money_he_owes_us=money_he_owes_us-125

WHERE
customer_id=id AND address=’o0ld address’ AND phone=’0ld phone’;

As you can see, this is very efficient and works even if another client has changed the
values in the pay_back or money_he_owes_us columns.

e In many cases, users have wanted ROLLBACK and/or LOCK TABLES for the purpose of
managing unique identifiers for some tables. This can be handled much more efficiently

Chapter 1: General Information 41

by using an AUTO_INCREMENT column and either the SQL function LAST_INSERT_ID()
or the C API function mysql_insert_id (). See Section 9.1.3.31 [mysql_insert_id ()],
page 684.

You can generally code around row-level locking. Some situations really need it, but
they are very few. InnoDB tables support row-level locking. With MyISAM, you can
use a flag column in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag
wasn’t already 1 in the original row.

You can think of it as though MySQL Server changed the preceding query to:
UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.8.4.4 Stored Procedures and Triggers

Stored procedures are being implemented in our version 5.0 development tree. See Sec-
tion 2.3.4 [Installing source tree], page 103.

This effort is based on SQL-99, which has a basic syntax similar (but not identical) to
Oracle PL/SQL. In addition to this, we are implementing the SQL-99 framework to hook
in external languages.

A stored procedure is a set of SQL commands that can be compiled and stored in the server.
Once this has been done, clients don’t need to keep re-issuing the entire query but can refer
to the stored procedure. This provides better overall performance because the query has
to be parsed only once, and less information needs to be sent between the server and the
client. You can also raise the conceptual level by having libraries of functions in the server.
However, stored procedures of course do increase the load on the database server system,
as more of the work is done on the server side and less on the client (application) side.
Triggers will also be implemented. A trigger is effectively a type of stored procedure, one
that is invoked when a particular event occurs. For example, you can install a stored
procedure that is triggered each time a record is deleted from a transaction table and that
stored procedure automatically deletes the corresponding customer from a customer table
when all his transactions are deleted.

1.8.4.5 Foreign Keys

In MySQL Server 3.23.44 and up, InnoDB tables support checking of foreign key constraints,
including CASCADE, ON DELETE, and ON UPDATE. See Section 7.5.5.2 [InnoDB foreign key
constraints|, page 593.

For other table types, MySQL Server only parses the FOREIGN KEY syntax in CREATE TABLE
commands, but does not use/store this info.

Note that foreign keys in SQL are not used to join tables, but are used mostly for checking
referential integrity (foreign key constraints). If you want to get results from multiple tables
from a SELECT statement, you do this by joining tables:

SELECT * FROM tablel,table2 WHERE tablel.id = table2.id;

See Section 6.4.1.1 [JOIN], page 524. See Section 3.5.6 [example-Foreign keys|, page 195.

42 MySQL Technical Reference for Version 4.1.1-alpha

When used as a constraint, FOREIGN KEYs don’t need to be used if the application inserts
rows into MyISAM tables in the proper order.

For MyISAM tables, you can work around the lack of ON DELETE by adding the appropriate
DELETE statement to an application when you delete records from a table that has a foreign
key. In practice this is as quick (in some cases quicker) and much more portable than using
foreign keys.
In MySQL Server 4.0 you can use multi-table delete to delete rows from many tables with
one command. See Section 6.4.6 [DELETE], page 533.
The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to
produce automatic WHERE clauses.
In the near future we will extend the FOREIGN KEY implementation so that the information
is stored in the table specification file and may be retrieved by mysqldump and ODBC. At
a later stage we will implement foreign key constraints for MyISAM tables as well.
Do keep in mind that foreign keys are often misused, which can cause severe problems.
Even when used properly, it is not a magic solution for the referential integrity problem,
although it can make things easier.
Some advantages of foreign key enforcement:

e Assuming proper design of the relations, foreign key constraints will make it more

difficult for a programmer to introduce an inconsistency into the database.
e Using cascading updates and deletes can simplify the client code.
e Properly designed foreign key rules aid in documenting relations between tables.

Disadvantages:

e Mistakes, which are easy to make in designing key relations, can cause severe
problems—for example, circular rules, or the wrong combination of cascading deletes.

e A properly written application will make sure (internally) that it is not violating refer-
ential integrity constraints before proceding with a query. Thus, additional checks on
the database level will only slow down performance for such an application.

e It is not uncommon for a DBA to make such a complex topology of relations that it
becomes very difficult, and in some cases impossible, to back up or restore individual
tables.

1.8.4.6 Views

We plan to implement views in MySQL Server in version 5.1

Historically, MySQL Server has been most used in applications and on web systems where
the application writer has full control over database usage. Of course, usage has shifted over
time, and so we find that an increasing number of users now regard views as an important
aspect.

Views are useful for allowing users to access a set of relations as if it were a single table,
and limiting their access to just that. Many DBMS don’t allow updates to a view, instead
you have to perform the updates on the individual tables.

Views can also be used to restrict access to rows (a subset of a particular table). One does
not need views to restrict access to columns, as MySQL Server has a sophisticated privilege
system. See Section 4.2 [Privilege system], page 221.

Chapter 1: General Information 43

In designing our implementation of views, we aim toward (as fully as possible within the
confines of SQL) compliance with “Codd’s Rule #6” for relational database systems: all
views that are theoretically updatable, should in practice also be updatable. This is a
complex issue, and we are taking the time to make sure we get it right.

The implementation itself will be done in stages. Unnamed views (derived tables, a subquery
in the FROM clause of a SELECT) are already implemented in version 4.1.

Note: If you are an enterprise level user with an urgent need for views, please contact
sales@mysql.com to discuss sponsoring options. Targeted financing of this particular effort
by one or more companies would allow us to allocate additional resources to it. One example
of a feature sponsored in the past is replication.

1.8.4.7 ‘--’ as the Start of a Comment

Some other SQL databases use ‘==’ to start comments. MySQL Server has ‘#’ as the start
comment character. You can also use the C comment style /* this is a comment */ with
MySQL Server. See Section 6.1.6 [Comments], page 445.

MySQL Server Version 3.23.3 and above support the ‘==’ comment style, provided the
comment is followed by a space. This is because this comment style has caused many
problems with automatically generated SQL queries that have used something like the
following code, where we automatically insert the value of the payment for !payment!:

UPDATE tbl_name SET credit=credit-!payment!

Think about what happens if the value of payment is negative. Because 1--1 is legal in
SQL, the consequences of allowing comments to start with ‘==’ are terrible.

Using our implementation of this method of commenting in MySQL Server Version 3.23.3
and up, 1-- This is a comment is actually safe.

Another safe feature is that the mysql command-line client removes all lines that start with
The following information is relevant only if you are running a MySQL version earlier than
3.23.3:

If you have an SQL program in a text file that contains ‘-’ comments you should use:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql database

instead of the usual:
shell> mysql database < text-file-with-funny-comments.sql

You can also edit the command file “in place” to change the ‘==’ comments to ‘#’ comments:
shell> replace " —-" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

1.8.5 How MySQL deals with constraints

As MySQL allows you to work with both transactional and non-transactional tables
(which don’t allow rollback), constraint handling is a bit different in MySQL than in other
databases.

44 MySQL Technical Reference for Version 4.1.1-alpha

We have to handle the case when you have updated a lot of rows with a non-transactional
table which can’t rollback on errors.

The basic philosophy is to try to give an error for anything that we can detect on compile
time but try to recover from any errors we get run time. We do this in most cases, but not
yet for all. See Section 1.9.4 [TODO future], page 52.

The basic options MySQL has is to stop the statement in the middle or do it’s best to
recover from the problem and continue.

Here follows what happens with the different types of constraints.

1.8.5.1 Constraint PRIMARY KEY / UNIQUE

Normally you will get an error when you try to INSERT / UPDATE a row that causes a
primary key, unique key or foreign key violation. If you are using a transactional storage
engine, like InnoDB, MySQL will automatically roll back the transaction. If you are using
a non-transactional storage engine MySQL will stop at the wrong row and leave the rest of
the rows unprocessed.

To make life easier MySQL has added support for the IGNORE directive to most commands
that can cause a key violation (like INSERT IGNORE . ..). In this case MySQL will ignore any
key violation and continue with processing the next row. You can get information of what
MySQL did with the mysql_info() API function and in later MySQL 4.1 version with the
SHOW WARNINGS command. See Section 9.1.3.29 [mysql_info|, page 683. See Section 4.5.7.9
[SHOW WARNINGS], page 310.

Note that for the moment only InnoDB tables support foreign keys. See Section 7.5.5.2 [Inn-
oDB foreign key constraints], page 593. Foreign key support in MyISAM tables is scheduled
for inclusion in the MySQL 5.0 source tree.

1.8.5.2 Constraint NOT NULL and DEFAULT values

To be able to support easy handling of non-transactional tables all fields in MySQL have
default values.

If you insert a 'wrong’ value in a column like a NULL in a NOT NULL column or a too big
numerical value in a numerical column, MySQL will instead of giving an error instead set
the column to the ’best possible value’. For numerical values this is 0, the smallest possible
values or the largest possible value. For strings this is either the empty string or the longest
possible string that can be in the column.

This means that if you try to store NULL into a column that doesn’t take NULL values,
MySQL Server will store 0 or *’ (empty string) in it instead. This last behaviour can, for
single row inserts, be changed with the ~-DDONT_USE_DEFAULT_FIELDS compile option.) See
Section 2.3.3 [configure options], page 100. This causes INSERT statements to generate an
error unless you explicitly specify values for all columns that require a non-NULL value.

The reason for the above rules is that we can’t check these conditions before the query starts
to execute. If we encounter a problem after updating a few rows, we can’t just rollback as
the table type may not support this. The option to stop is not that good as in this case
the update would be ’half done’ which is probably the worst possible scenario. In this case
it’s better to ’do the best you can’ and then continue as if nothing happened. In MySQL

Chapter 1: General Information 45

5.0 we plan to improve this by providing warnings for automatic field conversions, plus an
option to let you roll back statements that only use transactional tables in case one such
statement does a field assignment that is not allowed.

The above means that one should generally not use MySQL to check field content, but
instead handle this in the application.

1.8.5.3 Constraint ENUM and SET

In MySQL 4.x ENUM is not a real constrain but a more efficient way to store fields that can
only contain a given set of values. This is because of the same reasons NOT NULL is not
honoured. See Section 1.8.5.2 [constraint NOT NULL], page 44.

If you insert an wrong value in an ENUM field, it will be set to the reserved enum number 0,
which will be displayed as an empty string in string context. See Section 6.2.3.3 [ENUM],
page 463.

If you insert an wrong option in a SET field, the wrong value will be ignored. See Sec-
tion 6.2.3.4 [SET], page 464.

1.8.6 Known Errors and Design Deficiencies in MySQL

1.8.6.1 Errors in 3.23 Fixed in a Later MySQL Version

The following known errors/bugs are not fixed in MySQL 3.23 because fixing them would
involves changing a lot of code which could introduce other even worse bugs. The bugs are
also classified as 'not fatal’ or ’bearable’.

e One can get a deadlock when doing LOCK TABLE on multiple tables and then in the
same connection doing a DROP TABLE on one of them while another thread is trying to

lock the table. One can however do a KILL on any of the involved threads to resolve
this. Fixed in 4.0.12.

e SELECT MAX(key_column) FROM t1,t2,t3... where one of the tables are empty
doesn’t return NULL but instead the maximum value for the column. Fixed in 4.0.11.

e DELETE FROM heap_table without a WHERE doesn’t work on a locked HEAP table.

1.8.6.2 Open Bugs / Design Deficiencies in MySQL

The following problems are known and fixing them is a high priority:

e ANALYZE TABLE on a BDB table may in some cases make the table unusable until one
has restarted mysqld. When this happens you will see errors like the following in the
MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

e MySQL accepts parentheses in the FROM part, but silently ignores them. The reason
for not giving an error is that many clients that automatically generate queries add
parentheses in the FROM part even where they are not needed.

46

MySQL Technical Reference for Version 4.1.1-alpha

Concatenating many RIGHT JOINS or combining LEFT and RIGHT join in the same query
may not give a correct answer as MySQL only generates NULL rows for the table pre-
ceding a LEFT or before a RIGHT join. This will be fixed in 5.0 at the same time we add
support for parentheses in the FROM part.

Don’t execute ALTER TABLE on a BDB table on which you are running multi-statement
transactions until all those transactions complete. (The transaction will probably be
ignored.)

ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

Doing a LOCK TABLE ... and FLUSH TABLES ... doesn’t guarantee that there isn’t a
half-finished transaction in progress on the table.

BDB tables are a bit slow to open. If you have many BDB tables in a database, it will
take a long time to use the mysql client on the database if you are not using the -A
option or if you are using rehash. This is especially notable when you have a big table
cache.

Replication uses query-level logging: the master writes the executed queries to the
binary log. This is a very fast, compact and efficient logging method which works per-
fectly in most cases. However, currently there is a theoretical chance (though we never
heard about it coming true) that the data on the master and slave become different if
a query is designed in such a way that the data modification is non-deterministic, that
is, left to the will of the query optimiser (which generally is no good practice, even
outside of replication!). For example:

— CREATE ... SELECT or INSERT ... SELECT which feeds zeros or NULLs into an
auto_increment column.

— DELETE if you are deleting rows from a table which has foreign keys with ON DELETE
CASCADE properties.

— REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values
in the inserted data.

IF and only if all these queries have NO ORDER BY clause guaranteeing a deterministic
order.

Indeed, for example for INSERT ... SELECT with no ORDER BY, the SELECT may return
rows in a different order (which will result in a row having different ranks, hence getting
a different number in the auto_increment column), depending on the choices made by
the optimisers on the master and slave. A query will be optimised differently on the
master and slave only if :

— The files used by the two queries are not exactly the same; for example OPTIMIZE
TABLE was run on the master tables and not on the slave tables (to fix this, since
MySQL 4.1.1, OPTIMIZE, ANALYZE and REPAIR are written to the binary log).

— The table is stored in a different storage engine on the master than on the slave
(one can run with different storage engines on the slave and master: for example
InnoDB on the master and MyISAM on the slave, if the slave has less available
disk space).

— The MySQL buffers’ sizes (key_buffer_size etc) are different on the master and
slave.

Chapter 1: General Information 47

— The master and slave run different MySQL versions, and the optimiser code is
different between these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem in all cases is add an ORDER BY clause to such
non-deterministic queries to ensure that the rows are always stored/modified in the
same order. In future MySQL versions we will automatically add an ORDER BY clause
when needed.

The following problems are known and will be fixed in due time:

LIKE is not multi-byte character safe. Comparison is done character by character.

When using RPAD function, or any other string function that ends up adding blanks to
the right, in a query that has to use temporary table to be resolved, then all resulting
strings will be RTRIM’ed. This is an example of the query:

SELECT RPAD(t1.fieldl, 50, > ’) AS £f2, RPAD(t2.field2, 50, ’ ’) AS f1
FROM tablel as t1 LEFT JOIN table2 AS t2 ON t1.record=t2.joinID ORDER BY
t2.record;

Final result of this bug is that use will not be able to get blanks on the right side of
the resulting field.

The above behaviour exists in all versions of MySQL.

The reason for this is due to the fact that HEAP tables, which are used first for
temporary tables, are not capable of handling VARCHAR columns.

This behaviour will be fixed in one of the 4.1 series releases.

Because of how table definitions files are stored one can’t use character 255 (CHAR (255))

in table names, column names or enums. This is scheduled to be fixed in version 5.1
when we have new table definition format files.

When using SET CHARACTER SET, one can’t use translated characters in database, table,
and column names.

One can’t use _ or % with ESCAPE in LIKE ... ESCAPE.

If you have a DECIMAL column with a number stored in different formats (+01.00, 1.00,
01.00), GROUP BY may regard each value as a different value.

DELETE FROM merge_table used without a WHERE will only clear the mapping for the
table, not delete everything in the mapped tables.

You cannot build the server in another directory when using MIT-pthreads. Because
this requires changes to MIT-pthreads, we are not likely to fix this. See Section 2.3.6
[MIT-pthreads], page 108.

BLOB values can’t “reliably” be used in GROUP BY or ORDER BY or DISTINCT. Only
the first max_sort_length bytes (default 1024) are used when comparing BLOBs in
these cases. This can be changed with the -0 max_sort_length option to mysqld. A
workaround for most cases is to use a substring: SELECT DISTINCT LEFT (blob,2048)
FROM tbl_name.

Calculation is done with BIGINT or DOUBLE (both are normally 64 bits long). It depends
on the function which precision one gets. The general rule is that bit functions are done

48

MySQL Technical Reference for Version 4.1.1-alpha

with BIGINT precision, IF, and ELT() with BIGINT or DOUBLE precision and the rest
with DOUBLE precision. One should try to avoid using unsigned long long values if they
resolve to be bigger than 63 bits (9223372036854775807) for anything else than bit
fields. MySQL Server 4.0 has better BIGINT handling than 3.23.

All string columns, except BLOB and TEXT columns, automatically have all trailing
spaces removed when retrieved. For CHAR types this is okay, and may be regarded as a
feature according to SQL-92. The bug is that in MySQL Server, VARCHAR columns are
treated the same way.

You can only have up to 255 ENUM and SET columns in one table.

In MINQ), MAX() and other aggregate functions, MySQL currently compares ENUM and
SET columns by their string value rather than by the string’s relative position in the
set.

mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with
this is that if you execute mysqladmin refresh to close and reopen the log, stdout and
stderr are still redirected to the old log. If you use —--log extensively, you should edit
mysqld_safe to log to ‘’hostname’ . err’ instead of ‘’hostname’.log’ so you can easily
reclaim the space for the old log by deleting the old one and executing mysqladmin
refresh.

In the UPDATE statement, columns are updated from left to right. If you refer to an
updated column, you will get the updated value instead of the original value. For
example:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;
This will update KEY with 2 instead of with 1.

You can’t use temporary tables more than once in the same query. For example, the
following doesn’t work:

mysql> SELECT * FROM temporary_table, temporary_table AS t2;
RENAME doesn’t work with TEMPORARY tables or tables used in a MERGE table.

The optimiser may handle DISTINCT differently if you are using ’hidden’ columns in a
join or not. In a join, hidden columns are counted as part of the result (even if they are
not shown) while in normal queries hidden columns don’t participate in the DISTINCT
comparison. We will probably change this in the future to never compare the hidden
columns when executing DISTINCT.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case you may in MySQL Server 3.23.x get two identical rows in the result
set (because the hidden id column may differ).

Chapter 1: General Information 49

Note that this happens only for queries where you don’t have the ORDER BY columns
in the result, something that you are not allowed to do in SQL-92.

e Because MySQL Server allows you to work with table types that don’t support transac-
tions, and thus can’t rollback data, some things behave a little differently in MySQL
Server than in other SQL servers. This is just to ensure that MySQL Server never
needs to do a rollback for an SQL command. This may be a little awkward at times
as column values must be checked in the application, but this will actually give you a
nice speed increase as it allows MySQL Server to do some optimisations that otherwise
would be very hard to do.

If you set a column to an incorrect value, MySQL Server will, instead of doing a
rollback, store the best possible value in the column:

— If you try to store a value outside the range in a numerical column, MySQL Server
will instead store the smallest or biggest possible value in the column.

— If you try to store a string that doesn’t start with a number into a numerical
column, MySQL Server will store 0 into it.

— If you try to store NULL into a column that doesn’t take NULL values, MySQL Server
will store 0 or ’’ (empty string) in it instead. (This behaviour can, however, be
changed with the -DDONT_USE_DEFAULT_FIELDS compile option.)

— MySQL allows you to store some wrong date values into DATE and DATETIME
columns (like 2000-02-31 or 2000-02-00). The idea is that it’s not the SQL server
job to validate date. If MySQL can store a date and retrieve exactly the same
date, then MySQL will store the date. If the date is totally wrong (outside the
server’s ability to store it), then the special date value 0000-00-00 will be stored
in the column.

— If you set an ENUM column to an unsupported value, it will be set to the error value
empty string, with numeric value 0.
— If you set a SET column to an unsupported value, the value will be ignored.

e If you execute a PROCEDURE on a query that returns an empty set, in some cases the
PROCEDURE will not transform the columns.

e Creation of a table of type MERGE doesn’t check if the underlying tables are of compatible
types.

e MySQL Server can’t yet handle NaN, -Inf, and Inf values in double. Using these will
cause problems when trying to export and import data. We should as an intermediate
solution change NaN to NULL (if possible) and -Inf and Inf to the minimum respective
maximum possible double value.

e LIMIT on negative numbers are treated as big positive numbers.

e If you use ALTER TABLE to first add a UNIQUE index to a table used in a MERGE table
and then use ALTER TABLE to add a normal index on the MERGE table, the key order
will be different for the tables if there was an old key that was not unique in the table.
This is because ALTER TABLE puts UNIQUE keys before normal keys to be able to detect
duplicate keys as early as possible.

The following are known bugs in earlier versions of MySQL:

e You can get a hung thread if you do a DROP TABLE on a table that is one among many
tables that is locked with LOCK TABLES.

50 MySQL Technical Reference for Version 4.1.1-alpha

e In the following case you can get a core dump:
— Delayed insert handler has pending inserts to a table.
— LOCK table with WRITE.
— FLUSH TABLES.

e Before MySQL Server Version 3.23.2 an UPDATE that updated a key with a WHERE on
the same key may have failed because the key was used to search for records and the
same row may have been found multiple times:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;
A workaround is to use:
mysql> UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

This will work because MySQL Server will not use an index on expressions in the WHERE
clause.

e Before MySQL Server Version 3.23, all numeric types were treated as fixed-point fields.
That means you had to specify how many decimals a floating-point field shall have.
All results were returned with the correct number of decimals.

For platform-specific bugs, see the sections about compiling and porting.

1.9 MySQL and The Future (The TODO)

This section summarises the features that we plan to implement in MySQL Server. The lists
are broken up per version, and the items are approximately in the order they will be done.

Note: If you are an enterprise level user with an urgent need for a particular feature, please
contact sales@mysql.com to discuss sponsoring options. Targeted financing by one or more
companies allows us to allocate additional resources for that specific purpose. One example
of a feature sponsored in the past is replication.

1.9.1 New Features Planned For 4.1

The features below are not yet implemented in MySQL 4.1, but are planned for implemen-
tation before MySQL 4.1 moves into its beta phase. For a list what is already done in
MySQL 4.1, see Section 1.6.1 [Nutshell 4.1 features|, page 22.

e Stable OpenSSL support (MySQL 4.0 supports rudimentary, not 100% tested, support
for OpenSSL).

e Character set casts and syntax for handling multiple character sets.

e More testing of prepared statements and multiple characters sets for one table.

Development of other things has already shifted to the 5.0 tree.

1.9.2 New Features Planned For 5.0

The following features are planned for inclusion into MySQL 5.0. Note that because we have
many developers that are working on different projects, there will also be many additional
features. There is also a small chance that some of these features will be added to MySQL

Chapter 1: General Information 51

4.1. For a list what is already done in MySQL 4.1, see Section 1.6.1 [Nutshell 4.1 features],
page 22.

For those wishing to take a look at the bleeding edge of MySQL development, we have
already made our BitKeeper repository for MySQL version 5.0 publically available. See
Section 2.3.4 [Installing source tree], page 103.

Stored Procedures
e Stored procedures are currently being implemented. This effort is based
on SQL-99, which has a basic syntax similar (but not identical) to Oracle
PL/SQL. We will also implement the SQL-99 framework to hook in external
languages, and (where possible) compatibility with, for example, PL/SQL
and T-SQL.

New functionality
e Elementary cursor support.

e Visible RTREE index for MyISAM tables. In 4.1 RTREE indexes are used
internally for geometrical data, but not directly usable.

e Dynamic length rows for HEAP tables.

Standards compliance, portability and migration
e Add true VARCHAR support (there is already support for this in MyISAM).

Speed enhancements
e SHOW COLUMNS FROM table_name (used by mysql client to allow expansions
of column names) should not open the table, only the definition file. This
will require less memory and be much faster.

e Allow DELETE on MyISAM tables to use the record cache. To do this, we
need to update the threads record cache when we update the ‘.MYD’ file.

e Better in-memory (HEAP) tables:
e Dynamic size rows.
e Faster row handling (less copying).
Internationalisation
e When using SET CHARACTER SET we should translate the whole query at

once and not only strings. This will enable users to use the translated
characters in database, table, and column names.

Usability enhancements
e Resolving the issue of RENAME TABLE on a table used in an active MERGE
table possibly corrupting the table.

1.9.3 New Features Planned For 5.1

New functionality
e FOREIGN KEY support for all table types.

e Column-level constraints.

e Fail-safe replication.

52

MySQL Technical Reference for Version 4.1.1-alpha

Online backup with very low performance penalty. The online backup will
make it easy to add a new replication slave without taking down the master.

Speed enhancements

New text based table definition file format (‘. frm’ files) and a table cache
for table definitions. This will enable us to do faster queries of table struc-
tures and do more efficient foreign key support.

Optimise BIT type to take 1 bit (now BIT takes 1 char).

Usability enhancements

Add options to the client/server protocol to get progress notes for long
running commands.

Implement RENAME DATABASE. To make this safe for all storage engines, it
should work as follows:

e Create the new database.
e For every table do a rename of the table to another database, as we
do with the RENAME command.
e Drop the old database.
New internal file interface change. This will make all file handling much
more general and make it easier to add extensions like RAID. (The current
implementation is a hack.)

1.9.4 New Features Planned For The Near Future

New functionality

Oracle-like CONNECT BY PRIOR ... to search tree-like (hierarchical) struc-
tures.

Add all missing SQL-92 and ODBC 3.0 types.
Add SUM(DISTINCT).

INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a con-
current insert at the end of the file if the file is read-locked.

Allow update of variables in UPDATE statements. For example: UPDATE
TABLE foo SET Q@a=a+b,a=0Qa, b=0Qa+c.

Change when user variables are updated so that one can use them with
GROUP BY, as in the following example: SELECT id, @a:=COUNT (%),
SUM(sum_col)/@a FROM table_name GROUP BY id.

Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and
AUTO_INCREMENT fields.

Added LOAD DATA INFILE ... UPDATE syntax.

e For tables with primary keys, if the data contains the primary key,
entries matching that primary key are updated from the remainder of
the columns. However, columns missing from the incoming data feed
are not touched.

e For tables with primary keys that are missing some part of the key

in the incoming data stream, or that have no primary key, the feed is
treated as a LOAD DATA INFILE ... REPLACE INTO now.

Chapter 1: General Information 53

Make LOAD DATA INFILE understand syntax like:
LOAD DATA INFILE ’file_name.txt’ INTO TABLE tbl_name
TEXT_FIELDS (text_fieldl, text_field2, text_field3)
SET table_field1=CONCAT(text_fieldl, text_field2),
table_field3=23

IGNORE text_field3

This can be used to skip over extra columns in the text file, or update

columns based on expressions of the read data.

New functions for working with SET type columns:

e ADD_TO_SET(value,set)
e REMOVE_FROM_SET(value,set)

If you abort mysql in the middle of a query, you should open another

connection and kill the old running query. Alternatively, an attempt should

be made to detect this in the server.

Add a storage engine interface for table information so that you can use it

as a system table. This would be a bit slow if you requested information

about all tables, but very flexible. SHOW INFO FROM tbl_name for basic

table information should be implemented.

Allow SELECT a FROM crash_me LEFT JOIN crash_me2 USING (a); in this

case a is assumed to come from the crash_me table.

DELETE and REPLACE options to the UPDATE statement (this will delete rows

when one gets a duplicate key error while updating).

Change the format of DATETIME to store fractions of seconds.

Make it possible to use the new GNU regexp library instead of the current
one (the GNU library should be much faster than the old one).

Standards compliance, portability and migration

Don’t add automatic DEFAULT values to columns. Give an error when using
an INSERT that doesn’t contain a column that doesn’t have a DEFAULT.

Add ANY(), EVERY (), and SOME() group functions. In standard SQL these
work only on boolean columns, but we can extend these to work on any
columns/expressions by applying: value == 0 -> FALSE and value <> 0 ->
TRUE.

Fix that the type for MAX(column) is the same as the column type:

mysql> CREATE TABLE t1 (a DATE);

mysql> INSERT INTO t1 VALUES (NOW(Q));

mysql> CREATE TABLE t2 SELECT MAX(a) FROM ti1;
mysql> SHOW COLUMNS FROM t2;

Speed enhancements

Don’t allow more than a defined number of threads to run MyISAM recover
at the same time.

Change INSERT ... SELECT to optionally use concurrent inserts.

Add an option to periodically flush key pages for tables with delayed keys
if they haven’t been used in a while.

54 MySQL Technical Reference for Version 4.1.1-alpha

e Allow join on key parts (optimisation issue).

e Add simulation of pread() /pwrite() on Windows to enable concurrent
inserts.

e A logfile analyser that could parse out information about which tables are
hit most often, how often multi-table joins are executed, etc. It should
help users identify areas or table design that could be optimised to execute
much more efficient queries.

Internationalisation

Usability enhancements

Return the original field types() when doing SELECT MIN(column) ...
GROUP BY.

Make it possible to specify long_query_time with a granularity in mi-
croseconds.

Link the myisampack code into the server, enabling a PACK or COM-
PRESS command on the server.

Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that
we can gracefully recover if the index file gets full.

If you perform an ALTER TABLE on a table that is symlinked to another
disk, create temporary tables on this disk.

Implement a DATE/DATETIME type that handles time zone information prop-
erly so that dealing with dates in different time zones is easier.

Fix configure so that one can compile all libraries (like MyISAM) without
threads.

Allow SQL variables in LIMIT, like in LIMIT ®@a, @b.
Automatic output from mysql to a web browser.
LOCK DATABASES (with various options).

Many more variables for SHOW STATUS. Records reads and updates. Selects
on 1 table and selects with joins. Mean number of tables in select. Number
of ORDER BY and GROUP BY queries.

mysqladmin copy database new-database; requires COPY command to be
added to mysqld.

Processlist should show number of queries/threads.
SHOW HOSTS for printing information about the hostname cache.
Change table names from empty strings to NULL for calculated columns.

Don’t use Item_copy_string on numerical values to avoid number->string-
>number conversion in case of: SELECT COUNT (*)*(id+0) FROM table_
name GROUP BY id

Change so that ALTER TABLE doesn’t abort clients that execute INSERT
DELAYED.

Fix so that when columns are referenced in an UPDATE clause, they contain
the old values from before the update started.

Chapter 1: General Information 55

New operating systems
e Port of the MySQL code to QNX.

e Port of the MySQL code to BeOS.
e Port of the MySQL clients to LynxOS.

1.9.5 New Features Planned For The Mid-Term Future

e Implement function: get_changed_tables(timeout,tablel,table2,...).

e Change reading through tables to use memmap when possible. Now only compressed
tables use memmap.

e Make the automatic timestamp code nicer. Add timestamps to the update log with
SET TIMESTAMP=#;.

e Use read/write mutex in some places to get more speed.

e Simple views (stepwise implementation up to full functionality). See Section 1.8.4.6
[ANSI diff Views], page 42.

e Automatically close some tables if a table, temporary table, or temporary files gets
error 23 (not enough open files).

e When one finds a field=#, change all occurrences of field to #. Now this is only done
for some simple cases.

e Change all const expressions with calculated expressions if possible.

e Optimise key = expression. At the moment only key = field or key = constant are
optimised.

e Join some of the copy functions for nicer code.

e Change ‘sql_yacc.yy’ to an inline parser to reduce its size and get better error mes-
sages (5 days).

e Change the parser to use only one rule per different number of arguments in function.

e Use of full calculation names in the order part (for ACCESS97).

e MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION [in 4.0] and LEFT|RIGHT
OUTER JOIN are supported.)

e SQL_OPTION MAX_SELECT_TIME=# to put a time limit on a query.

e Make the update log write to a database.

e Enhance LIMIT to allow retrieval of data from the end of a result set.
e Alarm around client connect/read/write functions.

e Please note the changes to mysqld_safe: according to FSSTND (which Debian tries
to follow) PID files should go into ‘/var/run/<progname>.pid’ and log files into
‘/var/log’. It would be nice if you could put the "DATADIR" in the first decla-
ration of "pidfile" and "log", so the placement of these files can be changed with a
single statement.

e Allow a client to request logging.
e Add use of z1ib() for gzip-ed files to LOAD DATA INFILE.

e Fix sorting and grouping of BLOB columns (partly solved now).

56 MySQL Technical Reference for Version 4.1.1-alpha

e Change to use semaphores when counting threads. One should first implement a
semaphore library to MIT-pthreads.

e Don’t assign a new AUTO_INCREMENT value when one sets a column to 0. Use NULL
instead.

e Add full support for JOIN with parentheses.

e As an alternative for one thread/connection manage a pool of threads to handle the
queries.

e Allow one to get more than one lock with GET_LOCK. When doing this, one must also
handle the possible deadlocks this change will introduce.

Time is given according to amount of work, not real time.

1.9.6 New Features We Don’t Plan To Do

e Nothing; we aim toward full compliance with SQL-92/SQL-99.
1.10 How MySQL Compares to Other Databases

Our users have successfully run their own benchmarks against a number of Open Source
and traditional database servers. We are aware of tests against Oracle server, DB/2 server,
Microsoft SQL Server, and other commercial products. Due to legal reasons we are re-
stricted from publishing some of those benchmarks in our reference manual.

This section includes a comparison with mSQL for historical reasons and with PostgreSQL
as it is also an Open Source database. If you have benchmark results that we can publish,
please contact us at benchmarks@mysql.com.

For comparative lists of all supported functions and types as well as measured
operational limits of many different database systems, see the crash-me web page at
http://wuw.mysql.com/information/crash-me.php.

1.10.1 How MySQL Compares to mSQL

Performance
For a true comparison of speed, consult the growing MySQL benchmark suite.
See Section 5.1.4 [MySQL Benchmarks], page 394.

Because there is no thread creation overhead, a small parser, few features, and
simple security, mSQL should be quicker at:

e Tests that perform repeated connects and disconnects, running a very sim-
ple query during each connection.

e INSERT operations into very simple tables with few columns and keys.

e CREATE TABLE and DROP TABLE.

e SELECT on something that isn’t indexed. (A table scan is very easy.)
Because these operations are so simple, it is hard to be better at them when you

have a higher startup overhead. After the connection is established, MySQL
Server should perform much better.

Chapter 1: General Information 57

On the other hand, MySQL Server is much faster than mSQL (and most other
SQL implementations) on the following:

SQL Features

Complex SELECT operations.

Retrieving large results (MySQL Server has a better, faster, and safer pro-
tocol).

Tables with variable-length strings because MySQL Server has more effi-
cient handling and can have indexes on VARCHAR columns.

Handling tables with many columns.
Handling tables with large record lengths.
SELECT with many expressions.

SELECT on large tables.

Handling many connections at the same time. MySQL Server is fully multi-
threaded. Each connection has its own thread, which means that no thread
has to wait for another (unless a thread is modifying a table another thread
wants to access). In mSQL, once one connection is established, all others
must wait until the first has finished, regardless of whether the connection is
running a query that is short or long. When the first connection terminates,
the next can be served, while all the others wait again, etc.

Joins. mSQL can become pathologically slow if you change the order of
tables in a SELECT. In the benchmark suite, a time more than 15,000 times
slower than MySQL Server was seen. This is due to mSQL’s lack of a join
optimiser to order tables in the optimal order. However, if you put the
tables in exactly the right order in mSQL2 and the WHERE is simple and uses
index columns, the join will be relatively fast. See Section 5.1.4 [MySQL
Benchmarks], page 394.

ORDER BY and GROUP BY.
DISTINCT.
Using TEXT or BLOB columns.

GROUP BY and HAVING. mSQL does not support GROUP BY at all. MySQL
Server supports a full GROUP BY with both HAVING and the following func-
tions: COUNT(), AVG(), MIN(), MAX(), SUMQ), and STD(). COUNT(*) is
optimised to return very quickly if the SELECT retrieves from one table,
no other columns are retrieved, and there is no WHERE clause. MIN() and
MAX () may take string arguments.

INSERT and UPDATE with calculations. MySQL Server can do calculations
in an INSERT or UPDATE. For example:

mysql> UPDATE SET x=x*10+y WHERE x<20;
Aliasing. MySQL Server has column aliasing.

Qualifying column names. In MySQL Server, if a column name is unique
among the tables used in a query, you do not have to use the full qualifier.

SELECT with functions. MySQL Server has many functions (too many to
list here; see Section 6.3 [Functions|, page 468).

o8

MySQL Technical Reference for Version 4.1.1-alpha

Disk Space Efficiency

Stability

Price

That is, how small can you make your tables?

MySQL Server has very precise types, so you can create tables that take very
little space. An example of a useful MySQL datatype is the MEDIUMINT that is
3 bytes long. If you have 100 million records, saving even 1 byte per record is
very important.

mSQL2 has a more limited set of column types, so it is more difficult to get small
tables.

This is harder to judge objectively. For a discussion of MySQL Server stability,
see Section 1.2.3 [Stability], page 7.

We have no experience with mSQL stability, so we cannot say anything about
that.

Another important issue is the license. MySQL Server has a more flexible
license than mSQL, and is also less expensive than mSQL. Whichever product
you choose to use, remember to at least consider paying for a license or e-mail
support.

Perl Interfaces

MySQL Server has basically the same interfaces to Perl as mSQL with some
added features.

JDBC (Java)

MySQL Server currently has a lot of different JDBC drivers:

e MySQL Connector/J is a native Java driver. Version 3.x is released under
dual licensing (GPL and commercial).

e The Resin driver: this is a commercial JDBC driver released under open
source. http://www.caucho.com/projects/jdbc-mysql/index.xtp

e The gwe driver: a Java interface by GWE technologies (no longer sup-
ported).

e The jms driver: an improved gwe driver by Xiaokun Kelvin ZHU
X.Zhu@brad.ac.uk (no longer supported).

e The twz driver: a type 4 JDBC driver by Terrence W. Zellers

zellert@voicenet.com. This is commercial but is free for private and
educational use (no longer supported).

The recommended driver is MySQL Connector/J. The Resin driver may also be
good (at least the benchmarks look good), but we haven’t received that much
information about this yet.

We know that mSQL has a JDBC driver, but we have too little experience with
it to compare.

Rate of Development

MySQL Server has a small core team of developers, but we are quite used to
coding C and C++ very rapidly. Because threads, functions, GROUP BY, and so
on are still not implemented in mSQL, it has a lot of catching up to do. To
get some perspective on this, you can view the mSQL ‘HISTORY’ file for the last

Chapter 1: General Information 59

year and compare it with the News section of the MySQL Reference Manual
(see Appendix D [News], page 858). It should be pretty obvious which one has
developed most rapidly.

Utility Programs
Both mSQL and MySQL Server have many interesting third-party tools. Because
it is very easy to port upward (from mSQL to MySQL Server), almost all the
interesting applications that are available for mSQL are also available for MySQL
Server.

MySQL Server comes with a simple msql2mysql program that fixes differences
in spelling between mSQL and MySQL Server for the most-used C API functions.
For example, it changes instances of msqlConnect () to mysql_connect (). Con-
verting a client program from mSQL to MySQL Server usually requires only
minor effort.

1.10.1.1 How to Convert mSQL Tools for MySQL

According to our experience, it doesn’t take long to convert tools such as msql-tcl and
msqljava that use the mSQL C API so that they work with the MySQL C APIL.

The conversion procedure is:

1. Run the shell script msql2mysql on the source. This requires the replace program,
which is distributed with MySQL Server.

2. Compile.

3. Fix all compiler errors.

Differences between the mSQL C API and the MySQL C API are:
e MySQL Server uses a MYSQL structure as a connection type (mSQL uses an int).

e mysql_connect() takes a pointer to a MYSQL structure as a parameter. It is easy to
define one globally or to use malloc() to get one. mysql_connect() also takes two
parameters for specifying the user and password. You may set these to NULL, NULL for
default use.

e mysql_error() takes the MYSQL structure as a parameter. Just add the parameter to
your old msql_error () code if you are porting old code.

e MySQL Server returns an error number and a text error message for all errors. mSQL
returns only a text error message.

e Some incompatibilities exist as a result of MySQL Server supporting multiple connec-
tions to the server from the same process.

1.10.1.2 How mSQL and MySQL Client/Server Communications
Protocols Differ

There are enough differences that it is impossible (or at least not easy) to support both.

The most significant ways in which the MySQL protocol differs from the mSQL protocol are
listed here:

e A message buffer may contain many result rows.

60

MySQL Technical Reference for Version 4.1.1-alpha

The message buffers are dynamically enlarged if the query or the result is bigger than
the current buffer, up to a configurable server and client limit.

All packets are numbered to catch duplicated or missing packets.

All column values are sent in ASCII. The lengths of columns and rows are sent in
packed binary coding (1, 2, or 3 bytes).

MySQL can read in the result unbuffered (without having to store the full set in the

client).

If a single read/write takes more than 30 seconds, the server closes the connection.

If a connection is idle for 8 hours, the server closes the connection.

1.10.1.3 How mSQL 2.0 SQL Syntax Differs from MySQL

Column types

MySQL Server
Has the following additional types (among others; see Section 6.5.3 [CREATE
TABLE|, page 544):

e ENUM type for one of a set of strings.

mSQL2

e SET type for many of a set of strings.
e BIGINT type for 64-bit integers.

MySQL Server also supports the following additional type attributes:

e UNSIGNED option for integer and floating-point columns.

e ZEROFILL option for integer columns.

e AUTO_INCREMENT option for integer columns that are a PRIMARY KEY. See
Section 9.1.3.31 [mysql_insert_id()], page 684.

e DEFAULT value for all columns.

table:

mSQL type
CHAR(1len)
TEXT (len)
INT

REAL
UINT
DATE
TIME
MONEY

Index Creation

MySQL Server
Indexes may be specified at table creation time with the CREATE TABLE state-

mSQL

ment.

mSQL column types correspond to the MySQL types shown in the following

Corresponding MySQL type

CHAR(1len)

TEXT(len). len is the maximal length. And LIKE works.
INT. With many more options.

REAL. Or FLOAT. Both 4- and 8-byte versions are available.
INT UNSIGNED

DATE. Uses SQL-99 format rather than mSQL’s own format.
TIME

DECIMAL(12,2). A fixed-point value with two decimals.

Indexes must be created after the table has been created, with separate CREATE

INDEX statements.

Chapter 1: General Information 61

To Insert a Unique Identifier into a Table

MySQL Server
Use AUTO_INCREMENT as a column type specifier. See Section 9.1.3.31 [mysql_
insert_id ()], page 684.

mSQL Create a SEQUENCE on a table and select the _seq column.
To Obtain a Unique Identifier for a Row

MySQL Server
Add a PRIMARY KEY or UNIQUE key to the table and use this. New in Version
3.23.11: If the PRIMARY or UNIQUE key consists of only one column and this is
of type integer, one can also refer to it as _rowid.

mSQL Use the _rowid column. Observe that _rowid may change over time depending
on many factors.

To Get the Time a Column Was Last Modified

MySQL Server
Add a TIMESTAMP column to the table. This column is automatically set to the
current date and time for INSERT or UPDATE statements if you don’t give the
column a value or if you give it a NULL value.

mSQL Use the _timestamp column.
NULL Value Comparisons

MySQL Server
MySQL Server complies with standard SQL, and a comparison with NULL is
always UNKNOWN.

mSQL In mSQL, NULL = NULL is TRUE. You must change =NULL to IS NULL and <>NULL
to IS NOT NULL when porting old code from mSQL to MySQL Server.

String Comparisons

MySQL Server
Normally, string comparisons are performed in case-independent fashion with
the sort order determined by the current character set (ISO-8859-1 Latinl by
default). If you don’t like this, declare your columns with the BINARY attribute,
which causes comparisons to be done according to the ASCII order used on the
MySQL server host.

mSQL All string comparisons are performed in case-sensitive fashion with sorting in
ASCII order.

Case-insensitive Searching

MySQL Server
LIKE is a case-insensitive or case-sensitive operator, depending on the columns
involved. If possible, MySQL uses indexes if the LIKE argument doesn’t start
with a wildcard character.

mSQL Use CLIKE.

62 MySQL Technical Reference for Version 4.1.1-alpha

Handling of Trailing Spaces

MySQL Server
Strips all spaces at the end of CHAR and VARCHAR columns. Use a TEXT column
if this behaviour is not desired.

mSQL Retains trailing space.
WHERE Clauses

MySQL Server
MySQL correctly prioritises everything (AND is evaluated before OR). To get
mSQL behaviour in MySQL Server, use parentheses (as shown in an example
later in this section).

mSQL Evaluates everything from left to right. This means that some logical calcu-
lations with more than three arguments cannot be expressed in any way. It
also means you must change some queries when you upgrade to MySQL Server.
You do this easily by adding parentheses. Suppose you have the following mSQL
query:
mysql> SELECT * FROM table WHERE a=1 AND b=2 OR a=3 AND b=4;

To make MySQL Server evaluate this the way that mSQL would, you must add
parentheses:

mysql> SELECT * FROM table WHERE (a=1 AND (b=2 OR (a=3 AND (b=4))));l}
Access Control

MySQL Server
Has tables to store grant (permission) options per user, host, and database. See
Section 4.2.6 [Privileges]|, page 227.

mSQL Has a file ‘mSQL.acl’ in which you can grant read/write privileges for users.

1.10.2 How MySQL Compares to PostgreSQL

When reading the following, please note that both products are continually evolving.
MySQL AB’s and PostgreSQL’s developers are both working on making our respective
databases as good as possible. Both products are thus a serious alternative to any
commercial database.

The following comparison is made by us at MySQL AB. We have tried to be as accurate
and fair as possible, but although we know MySQL Server thoroughly, we don’t have a full
knowledge of all PostgreSQL features, so we may have got some things wrong. We will,
however, correct these when they come to our attention.

We would first like to note that PostgreSQL and MySQL Server are both widely used
products, but with different design goals, even if we are both striving toward SQL standard
compliance. This means that for some applications MySQL Server is more suited, while
for others PostgreSQL is more suited. When choosing which database to use, you should
first check if the database’s feature set satisfies your application. If you need raw speed,
MySQL Server is probably your best choice. If you need some of the extra features that
only PostgreSQL can offer, you should use PostgreSQL.

Chapter 1: General Information 63

1.10.2.1 MySQL and PostgreSQL development strategies

When adding things to MySQL Server we take pride to do an optimal, definite solution.
The code should be so good that we shouldn’t have any need to change it in the foreseeable
future. We also do not like to sacrifice speed for features but instead will do our utmost to
find a solution that will give maximal throughput. This means that development will take
a little longer, but the end result will be well worth this. This kind of development is only
possible because all server code is checked by one of a few (currently two) persons before
it’s included in the MySQL server.

We at MySQL AB believe in frequent releases to be able to push out new features quickly
to our users. Because of this we do a new small release about every three weeks, and a
major branch every year. All releases are thoroughly tested with our testing tools on a lot
of different platforms.

PostgreSQL is based on a kernel with lots of contributors. In this setup it makes sense to
prioritise adding a lot of new features, instead of implementing them optimally, because one
can always optimise things later if there arises a need for this.

Another big difference between MySQL Server and PostgreSQL is that nearly all of the
code in the MySQL server is coded by developers that are employed by MySQL AB and
are still working on the server code. The exceptions are the transaction engines and the
regexp library.

This is in sharp contrast to the PostgreSQL code, the majority of which is coded by a
big group of people with different backgrounds. It was only recently that the PostgreSQL
developers announced that their current developer group had finally had time to take a look
at all the code in the current PostgreSQL release.

Both of the aforementioned development methods have their own merits and drawbacks.
We here at MySQL AB think, of course, that our model is better because our model gives
better code consistency, more optimal and reusable code, and in our opinion, fewer bugs.
Because we are the authors of the MySQL server code, we are better able to coordinate
new features and releases.

1.10.2.2 Featurewise Comparison of MySQL and PostgreSQL

On the crash-me page (http://www.mysql.com/information/crash-me.php) you can
find a list of those database constructs and limits that one can detect automatically with
a program. Note, however, that a lot of the numerical limits may be changed with startup
options for their respective databases. This web page is, however, extremely useful when
you want to ensure that your applications work with many different databases or when you
want to convert your application from one database to another.

MySQL Server offers the following advantages over PostgreSQL:
e MySQL Server is generally much faster than PostgreSQL. MySQL 4.0.1 also has a query
cache that can boost up the query speed for mostly-read-only sites many times.

e MySQL has a much larger user base than PostgreSQL. Therefore, the code is tested
more and has historically proven more stable than PostgreSQL. MySQL Server is used
more in production environments than PostgreSQL, mostly thanks to the fact that
MySQL AB, formerly TCX DataKonsult AB, has provided top-quality commercial

64

MySQL Technical Reference for Version 4.1.1-alpha

support for MySQL Server from the day it was released, whereas until recently Post-
greSQL was unsupported.

MySQL Server works better on Windows than PostgreSQL does. MySQL Server runs
as a native Windows application (a service on NT/2000/XP), while PostgreSQL is run
under the Cygwin emulation. We have heard that PostgreSQL is not yet that stable
on Windows but we haven’t been able to verify this ourselves.

MySQL has more APIs to other languages and is supported by more existing programs
than PostgreSQL. See Appendix B [Contrib], page 843.

MySQL Server works on 24/7 heavy-duty systems. In most circumstances you never
have to run any cleanups on MySQL Server. PostgreSQL doesn’t yet support 24/7
systems because you have to run VACUUM once in a while to reclaim space from UPDATE
and DELETE commands and to perform statistics analyses that are critical to get good
performance with PostgreSQL. VACUUM is also needed after adding a lot of new rows to
a table. On a busy system with lots of changes, VACUUM must be run very frequently, in
the worst cases even many times a day. During the VACUUM run, which may take hours
if the database is big, the database is, from a production standpoint, practically dead.
Please note: in PostgreSQL version 7.2, basic vacuuming no longer locks tables, thus
allowing normal user access during the vacuum. A new VACUUM FULL command does
old-style vacuum by locking the table and shrinking the on-disk copy of the table.

MySQL replication has been thoroughly tested, and is used by sites like:
— Yahoo Finance (http://finance.yahoo.com/)
— Mobile.de (http://www.mobile.de/)
— Slashdot (http://www.slashdot.org/)

Included in the MySQL distribution are two different testing suites, ‘mysql-test-run’
and crash-me (http://www.mysql.com/information/crash-me.php), as well as a
benchmark suite. The test system is actively updated with code to test each new
feature and almost all reproducible bugs that have come to our attention. We test
MySQL Server with these on a lot of platforms before every release. These tests are
more sophisticated than anything we have seen from PostgreSQL, and they ensure that
the MySQL Server is kept to a high standard.

There are far more books in print about MySQL Server than about PostgreSQL.
O’Reilly, SAMS, Que, and New Riders are all major publishers with books about
MySQL. All MySQL features are also documented in the MySQL online manual because
when a new feature is implemented, the MySQL developers are required to document
it before it’s included in the source.

MySQL Server supports more of the standard ODBC functions than PostgreSQL.
MySQL Server has a much more sophisticated ALTER TABLE.

MySQL Server has support for tables without transactions for applications that need
all the speed they can get. The tables may be memory-based, HEAP tables or disk based
MyISAM. See Chapter 7 [Table types], page 572.

MySQL Server has support for two different storage engines that support transactions,
InnoDB, and BerkeleyDB. Because every transaction engine performs differently under
different conditions, this gives the application writer more options to find an optimal
solution for his or her setup, if need be per individual table. See Chapter 7 [Table
types], page 572.

Chapter 1: General Information 65

e MERGE tables gives you a unique way to instantly make a view over a set of identical
tables and use these as one. This is perfect for systems where you have log files that
you order, for example, by month. See Section 7.2 [MERGE], page 579.

e The option to compress read-only tables, but still have direct access to the rows in the
table, gives you better performance by minimising disk reads. This is very useful when
you are archiving things. See Section 4.7.4 [myisampack|, page 323.

e MySQL Server has internal support for full-text search. See Section 6.8 [Fulltext
Search], page 562.

e You can access many databases from the same connection (depending, of course, on
your privileges).

e MySQL Server is coded from the start to be multi-threaded, while PostgreSQL uses
processes. Context switching and access to common storage areas is much faster be-
tween threads than between separate processes. This gives MySQL Server a big speed
advantage in multi-user applications and also makes it easier for MySQL Server to take
full advantage of symmetric multiprocessor (SMP) systems.

e MySQL Server has a much more sophisticated privilege system than PostgreSQL. While
PostgreSQL only supports INSERT, SELECT, and UPDATE/DELETE grants per user on a
database or a table, MySQL Server allows you to define a full set of different privileges
on the database, table, and column level. MySQL Server also allows you to specify the
privilege on host and user combinations. See Section 4.3.1 [GRANT], page 248.

e MySQL Server supports a compressed client/server protocol which improves perfor-
mance over slow links.

e MySQL Server employs a “storage engine” concept, and is the only relational database
we know of built around this concept. This allows different low-level table types to
be called from the SQL engine, and each table type can be optimised for different
performance characteristics.

e All MySQL table types (except InnoDB) are implemented as files (one table per file),
which makes it really easy to back up, move, delete, and even symlink databases and
tables, even when the server is down.

e Tools exist to repair and optimise MyISAM tables (the most common MySQL table
type). A repair tool is only needed when a physical corruption of a datafile happens,
usually from a hardware failure. It allows a majority of the data to be recovered.

e Upgrading MySQL Server is painless. When you are upgrading MySQL Server, you
don’t need to dump/restore your data, as you have to do with most PostgreSQL up-
grades.

Drawbacks with MySQL Server compared to PostgreSQL:

e Because MySQL Server uses threads, which are not yet flawless on many OSs, one must
either use binaries from http://www.mysql.com/downloads/, or carefully follow our
instructions in Section 2.3 [Installing source|, page 97 to get an optimal binary that
works in all cases.

e Table locking, as used by the non-transactional MyISAM tables, is in many cases faster
than page locks, row locks, or versioning. The drawback, however, is that if one doesn’t
take into account how table locks work, a single long-running query can block a table for
updates for a long time. This can usually be avoided when designing the application.

66

MySQL Technical Reference for Version 4.1.1-alpha

If not, one can always switch the trouble table to use one of the transactional table
types. See Section 5.3.2 [Table locking], page 415.

With UDF (user-defined functions) one can extend MySQL Server with both normal
SQL functions and aggregates, but this is not yet as easy or as flexible as in PostgreSQL.
See Section 12.2 [Adding functions|, page 805.

Updates that run over multiple tables used to be harder to do in MySQL Server.
However, this has been fixed in MySQL Server 4.0.2 with multi-table UPDATE and in
MySQL Server 4.1 with subqueries. In MySQL Server 4.0 one can use multi-table
deletes to delete from many tables at the same time. See Section 6.4.6 [DELETE],
page 533.

PostgreSQL currently offers the following advantages over MySQL Server:

Note that because we know the MySQL road map, we have included in the following table
the version when MySQL Server should support this feature. Unfortunately we couldn’t do
this for previous comparisons, because we don’t know the PostgreSQL roadmap.

Feature MySQL version
Subqueries 4.1

Foreign keys 5.1 (3.23 with InnoDB)
Views 5.1

Stored procedures 5.0

Triggers 5.1

Unions 4.0

Full outer join 5.1

Constraints 5.1

Cursors 5.0

R-trees 4.1 (for MyISAM tables)
Inherited tables Not planned
Extensible type system Not planned

Other reasons someone may consider using PostgreSQL:

e Standard usage in PostgreSQL is closer to standard SQL in some cases.

e One can speed up PostgreSQL by coding things as stored procedures.

e The PostgreSQL optimiser can do some optimisation that the current MySQL opti-

miser can’t do. Most notable is doing joins when you don’t have the proper keys in
place and doing a join where you are using different keys combined with OR. The
MySQL benchmark suite at http://www.mysql.com/information/benchmarks.html
shows you what kind of constructs you should watch out for when using different
databases.

e PostgreSQL has a bigger team of developers that contribute to the server.

Drawbacks with PostgreSQL compared to MySQL Server:
e VACUUM makes PostgreSQL hard to use in a 24/7 environment.

e Only transactional tables.
e Much slower INSERT, DELETE, and UPDATE.

For a complete list of drawbacks, you should also examine the first table in this section.

Chapter 1: General Information 67

1.10.2.3 Benchmarking MySQL and PostgreSQL

The only Open Source benchmark that we know of that can be used to benchmark
MySQL Server and PostgreSQL (and other databases) is our own. It can be found at
http://www.mysql.com/information/benchmarks.html.

We have many times asked the PostgreSQL developers and some PostgreSQL users to
help us extend this benchmark to make it the definitive benchmark for databases, but
unfortunately we haven’t gotten any feedback for this.

We, the MySQL developers, have, because of this, spent a lot of hours to get maximum
performance from PostgreSQL for the benchmarks, but because we don’t know PostgreSQL
intimately, we are sure that there are things that we have missed. We have on the benchmark
page documented exactly how we did run the benchmark so that it should be easy for anyone
to repeat and verify our results.

The benchmarks are usually run with and without the --fast option. When run with
--fast we are trying to use every trick the server can do to get the code to execute as
fast as possible. The idea is that the normal run should show how the server would work
in a default setup and the --fast run shows how the server would do if the application
developer would use extensions in the server to make his application run faster.

When running with PostgreSQL and --fast we do a VACUUM after every major table UPDATE
and DROP TABLE to make the database in perfect shape for the following SELECTs. The time
for VACUUM is measured separately.

When running with PostgreSQL 7.1.1 we could, however, not run with --fast because
during the INSERT test, the postmaster (the PostgreSQL daemon) died and the database
was so corrupted that it was impossible to restart postmaster. After this happened twice,
we decided to postpone the --fast test until the next PostgreSQL release. The details
about the machine we run the benchmark on can be found on the benchmark page.

Before going to the other benchmarks we know of, we would like to give some background
on benchmarks.

It’s very easy to write a test that shows any database to be the best database in the world, by
just restricting the test to something the database is very good at and not testing anything
that the database is not good at. If one, after doing this, summarises the result as a single
figure, things are even easier.

This would be like us measuring the speed of MySQL Server compared to PostgreSQL
by looking at the summary time of the MySQL benchmarks on our web page. Based on
this MySQL Server would be more than 40 times faster than PostgreSQL, something that
is, of course, not true. We could make things even worse by just taking the test where
PostgreSQL performs worst and claim that MySQL Server is more than 2000 times faster
than PostgreSQL.

The case is that MySQL does a lot of optimisations that PostgreSQL doesn’t do. This is,
of course, also true the other way around. An SQL optimiser is a very complex thing, and
a company could spend years just making the optimiser faster and faster.

When looking at the benchmark results you should look for things that you do in your
application and just use these results to decide which database would be best suited for
your application. The benchmark results also show things a particular database is not good

68 MySQL Technical Reference for Version 4.1.1-alpha

at and should give you a notion about things to avoid and what you may have to do in
other ways.

We know of two benchmark tests that claim that PostgreSQL performs better than MySQL
Server. These are both multi-user tests, a test that we here at MySQL AB haven’t had
time to write and include in the benchmark suite, mainly because it’s a big task to do this
in a manner that is fair to all databases.

One is the benchmark paid for by Great Bridge, the company that for 16 months attempted
to build a business based on PostgreSQL but now has ceased operations. This is probably
the worst benchmark we have ever seen anyone conduct. This was not only tuned to only
test what PostgreSQL is absolutely best at, but it was also totally unfair to every other
database involved in the test.

Note: We know that even some of the main PostgreSQL developers did not like the way
Great Bridge conducted the benchmark, so we don’t blame the PostgreSQL team for the
way the benchmark was done.

This benchmark has been condemned in a lot of postings and newsgroups, so here we will
just briefly repeat some things that were wrong with it.

e The tests were run with an expensive commercial tool that makes it impossible for
an Open Source company like us to verify the benchmarks, or even check how the
benchmarks were really done. The tool is not even a true benchmark tool, but an
application/setup testing tool. To refer to this as a “standard” benchmark tool is to
stretch the truth a long way.

e Great Bridge admitted that they had optimised the PostgreSQL database (with VACUUM
before the test) and tuned the startup for the tests, something they hadn’t done for
any of the other databases involved. They say “This process optimises indexes and
frees up disk space a bit. The optimised indexes boost performance by some margin.”
Our benchmarks clearly indicate that the difference in running a lot of selects on a
database with and without VACUUM can easily differ by a factor of 10.

e The test results were also strange. The AS3AP test documentation mentions that the
test does “selections, simple joins, projections, aggregates, one-tuple updates, and bulk
updates.”

PostgreSQL is good at doing SELECTs and JOINs (especially after a VACUUM), but doesn’t
perform as well on INSERTs or UPDATEs. The benchmarks seem to indicate that only
SELECTs were done (or very few updates). This could easily explain the good results
for PostgreSQL in this test. The bad results for MySQL will be obvious a bit down in
this document.

e They did run the so-called benchmark from a Windows machine against a Linux ma-
chine over ODBC, a setup that no normal database user would ever do when running
a heavy multi-user application. This tested more the ODBC driver and the Windows
protocol used between the clients than the database itself.

e When running the database against Oracle and MS-SQL (Great Bridge has indirectly
indicated the databases they used in the test), they didn’t use the native protocol but
instead ODBC. Anyone that has ever used Oracle knows that all real applications use
the native interface instead of ODBC. Doing a test through ODBC and claiming that
the results had anything to do with using the database in a real-world situation can’t be

Chapter 1: General Information 69

regarded as fair. They should have done two tests with and without ODBC to provide
the right facts (after having gotten experts to tune all involved databases, of course).

e They refer to the TPC-C tests, but they don’t mention anywhere that the test they
did was not a true TPC-C test and they were not even allowed to call it a TPC-C
test. A TPC-C test can only be conducted by the rules approved by the TPC Council
(http://www.tpc.org/). Great Bridge didn’t do that. By doing this they have both
violated the TPC trademark and miscredited their own benchmarks. The rules set by
the TPC Council are very strict to ensure that no one can produce false results or make
unprovable statements. Apparently Great Bridge wasn’t interested in doing this.

o After the first test, we contacted Great Bridge and mentioned to them some of the
obvious mistakes they had done with MySQL Server:

— Running with a debug version of our ODBC driver
— Running on a Linux system that wasn’t optimised for threads
— Using an old MySQL version when there was a recommended newer one available

— Not starting MySQL Server with the right options for heavy multi-user use (the
default installation of MySQL Server is tuned for minimal resource use)

Great Bridge did run a new test, with our optimised ODBC driver and with better
startup options for MySQL Server, but refused to either use our updated glibc library
or our standard binary (used by 80% of our users), which was statically linked with a
fixed glibc library.

From what we are able to determine, Great Bridge did nothing to ensure that the
other databases were set up correctly to run well in their test environment. We are
sure, however, that they didn’t contact Oracle or Microsoft to ask for their advice in
this matter.

e The benchmark was paid for by Great Bridge, and they decided to publish only partial,
chosen results (instead of publishing it all).

Tim Perdue, a long-time PostgreSQL fan and a reluctant MySQL user, published a com-
parison on PHPbuilder (http://www.phpbuilder.com/columns/tim20001112.php3).

When we became aware of the comparison, we phoned Tim Perdue about this because there
were a lot of strange things in his results. For example, he claimed that MySQL Server
had a problem with five users in his tests, when we know that there are users with similar
machines running MySQL Server with 2000 simultaneous connections doing 400 queries per
second. (In this case the limit was the web bandwidth, not the database.)

It sounded like he was using a Linux kernel that had some problems with many threads,
such as kernels before 2.4, which had a problem with many threads on multi-CPU machines.
This manual describes the fix for this and Tim should be aware of this problem.

The other possible problem could have been an old glibc library and that Tim didn’t use
a MySQL binary from our site, which is linked with a corrected glibc library, but had
compiled a version of his own. In any of these cases, the symptom would have been exactly
what Tim had measured.

We asked Tim if we could get access to his data so that we could repeat the benchmark
and if he could check the MySQL version on the machine to find out what was wrong and
he promised to come back to us about this. He has not done that yet.

70 MySQL Technical Reference for Version 4.1.1-alpha

Because of this we can’t put any trust in this benchmark either.

Over time things also change and the preceding benchmarks are no longer very
relevant. MySQL Server now has a couple of different storage engines with different
speed/concurrency tradeoffs. See Chapter 7 [Table types|, page 572. It would be
interesting to see how the above tests would run with the different transactional table
types in MySQL Server. PostgreSQL has, of course, also got new features since the test
was made. As these tests are not publicly available there is no way for us to know how the
database would perform in the same tests today.

Conclusion:

The only benchmarks that exist today that anyone can download and run against MySQL
Server and PostgreSQL are the MySQL benchmarks. We here at MySQL AB believe that
Open Source databases should be tested with Open Source tools. This is the only way to
ensure that no one does tests that nobody can reproduce and use this to claim that one
database is better than another. Without knowing all the facts it’s impossible to answer
the claims of the tester.

The thing we find strange is that every test we have seen about PostgreSQL, that is impos-
sible to reproduce, claims that PostgreSQL is better in most cases while our tests, which
anyone can reproduce, clearly show otherwise. With this we don’t want to say that Post-
greSQL isn’t good at many things (it is!) or that it isn’t faster than MySQL Server under
certain conditions. We would just like to see a fair test where PostgreSQL performs very
well, so that we could get some friendly competition going.

For more information about our benchmark suite, see Section 5.1.4 [MySQL Benchmarks],
page 394.

We are working on an even better benchmark suite, including multi-user tests, and a better
documentation of what the individual tests really do and how to add more tests to the suite.

Chapter 2: MySQL Installation 71

2 MySQL Installation

This chapter describes how to obtain and install MySQL:

e For a list of sites from which you can obtain MySQL, see Section 2.2.1 [Getting MySQL],
page 79.

e To see which platforms are supported, see Section 2.2.3 [Which OS], page 82. Please
note that not all supported systems are equally good for running MySQL on them. On
some it is much more robust and efficient than others—see Section 2.2.3 [Which OS],
page 82 for details.

e Several versions of MySQL are available in both binary and source distributions. We
also provide public access to our current source tree for those who want to see our most
recent developments and help us test new code. To determine which version and type
of distribution you should use, see Section 2.2.4 [Which version], page 84. When in
doubt, use a binary distribution.

e Installation instructions for binary and source distributions are described in
Section 2.2.9 [Installing binary], page 94, and Section 2.3 [Installing source|, page 97.
Each set of instructions includes a section on system-specific problems you may run
into.

e For post-installation procedures, see Section 2.4 [Post-installation], page 111. These
procedures apply whether you install MySQL using a binary or source distribution.

2.1 Quick Standard Installation of MySQL

This chapter covers the installation of MySQL on platforms where we offer packages using
the native packaging format of the respective platform. However, binary distributions of
MySQL are available for many other platforms as well, see Section 2.2.9 [Installing binary],
page 94 for generic installation instructions for these packages that apply to all platforms.

See Section 2.2 [General Installation Issues|, page 79 for more information on what other
binary distributions are available on how to obtain them.

2.1.1 Imstalling MySQL on Linux

The recommended way to install MySQL on Linux is by using the RPM packages. The
MySQL RPMs are currently built on a SuSE Linux 7.3 system but should work on most
versions of Linux that support rpm and use glibc.

If you have problems with an RPM file (for example, if you receive the error “Sorry, the
host ’xxxx’ could not be looked up”), see Section 2.6.1.1 [Binary notes-Linux], page 133.

In most cases, you only need to install the MySQL-server and MySQL-client packages to
get a functional MySQL installation. The other packages are not required for a standard
installation. If you want to run a MySQL Max server that has additional capabilities,
you should install the MySQL-Max RPM after installing the MySQL-server RPM. See Sec-
tion 4.7.5 [mysqld-max]|, page 329.

If you get a dependency failure when trying to install the MySQL 4.0 packages (for example,
“error: removing these packages would break dependencies: libmysqlclient.so.10

72 MySQL Technical Reference for Version 4.1.1-alpha

is needed by ...”), you should also install the package MySQL-shared-compat, which
includes both the shared libraries for backward compatibility (1ibmysqlclient.so.12 for
MySQL 4.0 and 1ibmysqlclient.so.10 for MySQL 3.23).

Many Linux distributions still ship with MySQL 3.23 and they usually link applications
dynamically to save disk space. If these shared libraries are in a separate package (for
example, MySQL-shared), it is sufficient to simply leave this package installed and just
upgrade the MySQL server and client packages (which are statically linked and do not
depend on the shared libraries). For distributions that include the shared libraries in the
same package as the MySQL server (for example, Red Hat Linux), you could either install
our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead.

The following RPM packages are available:
e MySQL-server-VERSION.i386.rpm

The MySQL server. You will need this unless you only want to connect to a MySQL
server running on another machine. Please note that this package was called MySQL-
VERSION.1386.rpm before MySQL 4.0.10.

e MySQL-Max-VERSION.i386.rpm

The MySQL Max server. This server has additional capabilities that the one in the
MySQL-server RPM does not. You must install the MySQL-server RPM first, because
the MySQL-Max RPM depends on it.

e MySQL-client-VERSION.i386.rpm
The standard MySQL client programs. You probably always want to install this pack-
age.

e MySQL-bench-VERSION.i386.rpm
Tests and benchmarks. Requires Perl and the DBD-mysql module.

e MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL
clients, such as the Perl modules.

e MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (1ibmysqlclient.so*) that certain lan-
guages and applications need to dynamically load and use MySQL.

e MySQL-shared-compat-VERSION.1i386.rpm

This package includes the shared libraries for both MySQL 3.23 and MySQL 4.0. Install
this package instead of MySQL-shared, if you have applications installed that are dy-
namically linked against MySQL 3.23 but you want to upgrade to MySQL 4.0 without
breaking the library dependencies. This package is available since MySQL 4.0.13.

e MySQL-embedded-VERSION.1i386.rpm
The embedded MySQL server library (from MySQL 4.0).
e MySQL-VERSION.src.rpm
This contains the source code for all of the previous packages. It can also be used to

rebuild the RPMs on other architectures (for example, Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server RPM), run:

Chapter 2: MySQL Installation 73

shell> rpm -gpl MySQL-server-VERSION.i386.rpm
To perform a standard minimal installation, run:

shell> rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpmj}
To install just the client package, run:

shell> rpm -i MySQL-client-VERSION.i386.rpm
The server RPM places data under the ‘/var/lib/mysql’ directory. The RPM also creates
the appropriate entries in ‘/etc/init.d/’ to start the server automatically at boot time.
(This means that if you have performed a previous installation and have made changes to
its startup script, you may want to make a copy of the script so you don’t lose it when you
install a newer RPM.) See Section 2.4.3 [Automatic start], page 118 for more information
on how MySQL can be started automatically on system startup.
If you want to install the MySQL RPM on older Linux distributions that do not support
initialisation scripts in ‘/etc/init.d’ (directly or via a symlink), you should create a sym-
bolic link that points to the location where your initialisation scripts actually are installed.
For example, if that location is ‘/etc/rc.d/init.d’, use these commands before installing
the RPM to create ‘/etc/init.d’ as a symbolic link that points there:

shell> cd /etc ; 1n -s rc.d/init.d .
However, all current major Linux distributions should already support the new directory
layout that uses ‘/etc/init.d’, because it is required for LSB (Linux Standard Base)
compliance.
If the RPM files that you install include MySQL-server, the mysqld daemon should be
up and running after installation. You should now be able to start using MySQL. See
Section 2.4 [Post-installation|, page 111.
If something goes wrong, you can find more information in the binary installation chapter.
See Section 2.2.9 [Installing binary], page 94.

2.1.2 Imnstalling MySQL on Windows

The MySQL server for Windows is available in two distribution formats:
e The binary distribution contains a setup program that installs everything you need so
that you can start the server immediately.

e The source distribution contains all the code and support files for building the executa-
bles using the VC++ 6.0 compiler. See Section 2.3.7 [Windows source build], page 110.

Generally speaking, you should use the binary distribution. It’s simpler, and you need no
additional tools to get MySQL up and running.

You will need the following:
e A 32-bit Windows Operating System such as 9x, Me, NT, 2000, or XP. The NT family

(Windows NT, 2000, and XP) permits you to run the MySQL server as a service. See
Section 2.6.2.2 [NT start], page 138.

If you need tables with a size larger than 4 GB, install MySQL on an NTFS or newer
filesystem. Don’t forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables.
See Section 6.5.3 [CREATE TABLE], page 544.

e TCP/IP protocol support.

74

MySQL Technical Reference for Version 4.1.1-alpha

A copy of the MySQL binary distribution for Windows, which can be downloaded from
http://www.mysql.com/downloads/.

Note: The distribution files are supplied with a zipped format and we recommend the
use of an adequate FTP client with resume feature to avoid corruption of files during
the download process.

A ZIP program to unpack the distribution file.

Enough space on the hard drive to unpack, install, and create the databases in accor-
dance with your requirements.

If you plan to connect to the MySQL server via ODBC, you will also need the MyODBC
driver. See Section 9.2 [ODBC], page 747.

2.1.2.1 Installing the Binaries

1.

If you are working on an NT/2000/XP server, log on as a user with administrator
privileges.
If you are doing an upgrade of an earlier MySQL installation, it is necessary to stop the
current server. If you are running the server as a service, stop it using this command:
C:\> NET STOP MySQL
Otherwise, stop the server like this:
C:\mysql\bin> mysqladmin -u root shutdown

On NT/2000/XP machines, if you want to change the server executable (for example,
-max or -nt), it is also necessary to remove the service:

C:\mysql\bin> mysqld --remove

4. Exit the WinMySQLadmin program if it is running.

5. Unzip the distribution file to a temporary directory.

6. Run the setup.exe program to begin the installation process. If you want to install

7.

into another directory than the default (‘C:\mysql’), use the Browse button to specify
your preferred directory.

Finish the install process.

2.1.2.2 Preparing the Windows MySQL Environment

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the
MySQL-Max server binaries. Here is a list of the different MySQL servers from which you

can choose:

Binary Description

mysqld Compiled with full debugging and automatic memory allocation check-
ing, symbolic links, InnoDB, and BDB tables.

mysqgld-opt Optimised binary with no support for transactional tables in version
3.23. For version 4.0, InnoDB is enabled.

mysqld-nt Optimised binary for NT/2000/XP with support for named pipes.

mysqld-max Optimised binary with support for symbolic links, InnoDB and BDB

tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

Chapter 2: MySQL Installation 75

All of the preceding binaries are optimised for the Pentium Pro processor but should work
on any Intel processor >= i386.

When run on a version of Windows that supports named pipes (NT, 2000, XP), the mysqld-
nt and mysqld-max-nt servers support named pipe connections. However, starting from
3.23.50, named pipes are enabled only if you start these servers with the -—enable-named-
pipe option. (The servers can be run on Windows 98 or Me, but TCP /TP must be installed,
and named pipe connections cannot be used. On Windows 95, these servers cannot be used.)

You will find it helpful to use an option file to specify your MySQL configuration under the
following circumstances:

e The installation or data directories are different from the default locations (‘C:\mysql’
and ‘C:\mysql\data’).

e You need to tune the server settings. For example, if you want to use the InnoDB
transactional tables in MySQL version 3.23, you need to manually create two new
directories to hold the InnoDB data and log files—such as, ‘C:\ibdata’ and ‘C:\iblogs’.
You will also need to add some extra lines to the option file, as described in Section 7.5.3
[InnoDB start], page 585. (As of MySQL 4.0, InnoDB will create its datafiles and log
files in the data directory by default. This means you need not configure InnoDB
explicitly, though you may still wish to do so.)

On Windows, the MySQL installer places the data directory directly under the directory
where you install MySQL. If you would like to use a data directory in a different location, you
should copy the entire contents of the ‘data’ directory to the new location. For example, the
default installation places MySQL in ‘C:\mysql’ and the data directory in ‘C:\mysql\data’.
If you want to use a data directory of ‘E:\mydata’, you must copy ‘C:\mysql\data’ there.
You will also need to use a --datadir option to specify the location of the new data
directory.

Normally you can use the WinMySQLAdmin tool to edit the option file ‘my.ini’. In this case
you don’t have to worry about the following discussion.

There are two option files with the same function: ‘C:\my.cnf’, and the ‘my.ini’ file in
the Windows directory. (This directory typically is named something like ‘C: \WINDOWS’ or
‘C:\WinNT’. You can determine its exact location from the value of the WINDIR environment
variable.) MySQL looks first for the ‘my.ini’ file, then for the ‘my.cnf’ file. However, to
avoid confusion, it’s best if you use only one of these files. Both files are plain text.

If your PC uses a boot loader where the C: drive isn’t the boot drive, your only option is
to use the ‘my.ini’ file. Also note that if you use the WinMySQLAdmin tool, it uses only the
‘my.ini’ file. The ‘\mysql\bin’ directory contains a help file with instructions for using
this tool.

Using the notepad program, create the option file and edit the [mysqld] section to specify
values for the basedir and datadir parameters:

[mysqld]

set basedir to your installation path, for example, C:/mysql

basedir=the_install_path

set datadir to the location of your data directory,

for example, C:/mysql/data or D:/mydata/data

datadir=the_data_path

76 MySQL Technical Reference for Version 4.1.1-alpha

Note that Windows pathnames should be specified in option files using forward slashes
rather than backslashes. If you do use backslashes, you must double them.

Now you are ready to test starting the server.

2.1.2.3 Starting the Server for the First Time

Testing is best done from a command prompt in a console window (a “DOS window”). This
way you can have the server display status messages in the window where they are easy to
see. If something is wrong with your configuration, these messages will make it easier for
you to identify and fix any problems.

Make sure you are in the directory where the server is located, then enter this command:
shell> mysqld --comnsole

For servers that include InnoDB support, you should see the following messages as the server
starts up:

InnoDB: The first specified datafile c:\ibdatal\ibdatal did not exist:
InnoDB: a new database to be created!

InnoDB: Setting file c:\ibdatalibdatal size to 209715200

InnoDB: Database physically writes the file full: wait...

InnoDB: Log file c:\iblogs\ib_logfileO did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280

InnoDB: Log file c:\iblogs\ib_logfilel did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfilel size to 31457280

InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280

InnoDB: Doublewrite buffer not found: creating new

InnoDB: Doublewrite buffer created

InnoDB: creating foreign key constraint system tables

InnoDB: foreign key constraint system tables created

011024 10:58:25 InnoDB: Started

For further information about running MySQL on Windows, see Section 2.6.2 [Windows],
page 137.

2.1.3 Imstalling MySQL on Mac OS X

Beginning with MySQL 4.0.11, you can install MySQL on Mac OS X 10.2 (“Jaguar”) using
a Mac OS X PKG binary package instead of the binary tarball distribution. Please note that
older versions of Mac OS X (for example, 10.1.x) are not supported by this package.

The package is located inside a disk image (.dmg) file, that you first need to mount by
double-clicking its icon in the Finder. It should then mount the image and display its
contents.

NOTE: Before proceeding with the installation, be sure to shut down all running MySQL
server instances by either using the MySQL Manager Application (on Mac OS X Server) or
via mysqladmin shutdown on the command line.

To actually install the MySQL PKG, double click on the package icon. This launches the
Mac OS Package Installer, which will guide you through the installation of MySQL.

Chapter 2: MySQL Installation 7

The Mac OS X PKG of MySQL will install itself into ‘/usr/local/mysql-<version>’
and will also install a symbolic link ‘/usr/local/mysql’, pointing to the new location.
If a directory named ‘/usr/local/mysql’ already exists, it will be renamed to
‘/usr/local/mysql.bak’ first. Additionally, it will install the grant tables in the mysql
database by executing mysql_install_db after the installation.

The installation layout is similar to the one of the binary distribution; all MySQL binaries
are located in the directory ‘/usr/local/mysql/bin’. The MySQL socket file is created as
‘/tmp/mysql.sock’ by default. See Section 2.2.5 [Installation layouts|, page 86.

MySQL installation requires a Mac OS X user account named mysql (a user account with
this name should exist by default on Mac OS X 10.2 and up).

If you are running Mac OS X Server, you already have a version of MySQL installed:
e Mac OS X Server 10.2-10.2.2 come with MySQL 3.23.51 installed
e Mac OS X Server 10.2.3-10.2.6 ship with MySQL 3.23.53

This manual section covers the installation of the official MySQL Mac OS X PKG only.
Make sure to read Apple’s help about installing MySQL (Run the “Help View” application,
select “Mac OS X Server” help, and do a search for “MySQL” and read the item entitled
“Installing MySQL”).

Especially note that the pre-installed version of MySQL on Mac OS X Server starts the
MySQL user with the command safe_mysqld instead of mysqld_safe.

If you previously used Marc Liyanage’s MySQL packages for Mac OS X from
http://www.entropy.ch, you can simply follow the update instructions for packages using
the binary installation layout as given on his pages.

If you are upgrading from Marc’s version or from the Mac OS X Server version of MySQL
to the official MySQL PKG, you also need to convert the existing MySQL privilege tables
using the mysql_fix_privilege_tables script, since some new security privileges have
been added. See Section 2.5.2 [Upgrading-from-3.23], page 122.
After the installation, you can start up MySQL by running the following commands in a
terminal window. Please note that you need to have administrator privileges to perform
this task.

shell> cd /usr/local/mysql

shell> sudo ./bin/mysqld_safe

(Enter your password, if necessary)

(Press Control-Z)

shell> bg

(Press Control-D to exit the shell)
You should now be able to connect to the MySQL server, for example, by running
‘/usr/local/mysql/bin/mysql’.
If you installed MySQL for the first time, please remember to set a password for the MySQL
root user!
This is done with the following two commands:

/usr/local/mysql/bin/mysqladmin -u root password <password>

/usr/local/mysql/bin/mysqladmin -u root -h ‘hostname‘ password <password>]
You might want to also add aliases to your shell’s resource file to access mysql and
mysqladmin from the command line:

78 MySQL Technical Reference for Version 4.1.1-alpha

alias mysql ’/usr/local/mysql/bin/mysql’

alias mysqladmin °’/usr/local/mysql/bin/mysqladmin’
Alternatively, you could simply add /usr/local/mysql/bin to your PATH environment
variable, for example, by adding the following to ‘$HOME/.tcshrc’:

setenv PATH ${PATH}:/usr/local/mysql/bin

To enable the automatic startup of MySQL on bootup, you can download Marc Liyanage’s
MySQL Startupltem from the following location:

http://www2.entropy.ch/download/mysql-startupitem.pkg.tar.gz
We plan to add a Startupltem to the official MySQL PKG in the near future.

Please note that installing a new MySQL PKG does not remove the directory of an older
installation. Unfortunately, the Mac OS X Installer does not yet offer the functionality
required to properly upgrade previously installed packages.

After you have copied over the MySQL database files from the previous version and have
successfully started the new version, you should consider removing the old installation files
to save disk space. Additionally, you should also remove older versions of the Package
Receipt directories located in ‘/Library/Receipts/mysql-<version>.pkg’.

2.1.4 Installing MySQL on NetWare

As of version 4.0.11, the MySQL server is available for Novell NetWare in binary package
form. In order to host MySQL, the NetWare server must meet these requirements:

e NetWare version 6.5, or NetWare 6.0 with Support Pack 3 installed (You can obtain
this at http://support.novell.com/filefinder/13659/index.html). The system
must meet Novell’s minimum requirements to run the respective version of NetWare.

e MySQL data, as well as the binaries themselves, must be installed on an NSS volume;
traditional volumes are not supported.
The binary package for NetWare can be obtained at http://www.mysql.com/downloads/.

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-
external-locking option on the command line. It will also be neccesary to use CHECK
TABLE and REPAIR TABLE instead of myisamchk, because myisamchk makes use of external
locking. External locking is known to have problems on NetWare 6.0; the problem has been
eliminated in NetWare 6.5.

2.1.4.1 Installing the MySQL for NetWare Binaries

1. If you are upgrading from a prior installation, stop the MySQL server. This is done
from the server console, using:

SERVER: mysqladmin -u root shutdown

2. Log on to the target server from a client machine with access to the location where you
will install MySQL.

3. Extract the binary package zip file onto the server. Be sure to allow the paths in the
zip file to be used. It is safe to simply extract the file to ‘SYS:\’.

Chapter 2: MySQL Installation 79

If you are upgrading from a prior installation, you may need to copy the data directory
(for example, ‘SYS:MYSQL\DATA’) now, as well as ‘my.cnf’ if you have customised it.
You can then delete the old copy of MySQL.

4. You may wish to rename the directory to something more consistent and easy to use.
We recommend using ‘SYS:MYSQL’; examples in the manual will use this to refer to the
installation directory in general.

5. At the server console, add a search path for the directory containing the MySQL NLMs.
For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Install the initial database, if needed, by executing mysql_install_db at the server
console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to
autoexec.ncf. For example, if your MySQL installation is in ‘SYS:MYSQL’ and you
want MySQL to start automatically, you could add these lines:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are using NetWare 6.0, you should add the --skip-external-locking flag:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

If there was an existing installation of MySQL on the server, be sure to check for existing
MySQL startup commands in autoexec.ncf, and edit or delete them as necessary.

2.2 General Installation Issues

2.2.1 How to Get MySQL

Check the MySQL homepage (http://www.mysql.com/) for information about the current
version and for downloading instructions.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

For a complete up-to-date list of MySQL web/download mirrors, see http://www.mysql.com/downloads/m:
There you will also find information about becoming a MySQL mirror site and how to
report a bad or out-of-date mirror.

2.2.2 Verifying Package Integrity Using MD5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you
attempt to install it, you should make sure it is intact and has not been tampered with.

MySQL AB offers two means of integrity checking: MD5 checksums and cryptographic sig-
natures using GnuPG, the GNU Privacy Guard.

80 MySQL Technical Reference for Version 4.1.1-alpha

Verifying the MD5 Checksum

After you have downloaded the package, you should check, if the MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum,
that you can verify with the following command:

shell> mdbsum <package>

Note, that not all operating systems support the md5sum command - on some it is simply
called md5, others do not ship it at all. On Linux, it is part of the GNU Text Utilities
package, which is available for a wide range of platforms. You can download the source
code from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL in-
stalled, you can also use the command openssl md5 <package> instead. A DOS/Windows
implementation of the md5 command is available from http://www.fourmilab.ch/md5/.

Example:

shell> mdb5sum mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz
155836a7ed8c93aee6728a827a6aalb3
mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz
You should check, if the resulting checksum matches the one printed on the download page
right below the respective package.

Most mirror sites also offer a file named ‘MD5SUMS’, which also includes the MD5 checksums
for all files included in the ‘Downloads’ directory. Please note however that it’s very easy to
modify this file and it’s not a very reliable method. If in doubt, you should consult different
mirror sites and compare the results.

Signature Checking Using GnuPG

A more reliable method of verifying the integrity of a package is using cryptographic
signatures. MySQL AB uses the GNU Privacy Guard (GnuPG), an Open Source alternative
to the very well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See
http://wuw.gnupg.org/ and http://www.openpgp.org/ for more information about
OpenPGP/GnuPG and how to obtain and install GnuPG on your system. Most Linux
distributions already ship with GnuPG installed by default.

Beginning with MySQL 4.0.10 (February 2003), MySQL AB has started signing their down-
loadable packages with GnuPG. Cryptographic signatures are a much more reliable method
of verifying the integrity and authenticity of a file.
To verify the signature for a specific package, you first need to obtain a copy of MySQL
AB’s public GPG build key build@mysql.com. You can either cut and paste it directly
from here, or obtain it from http://www.keyserver.net/.

Key ID:

pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysql.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

Public Key (ASCII-armored):

Chapter 2: MySQL Installation 81

Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bP1UWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+0mSLN9brZ
fw2v0UgCmYv2hWOhyDHuvY1QA/BThQoADgj8AW6/0Lo7V1W9/8VuHPOgQwCgvzV3
BqO0xRznNCRCRxAuAuVztHRCEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwRIpRWVArNYJADRT+rf2RUe3vpqukNQU/hnEIUHJRQqYHo8gTxvxXNQc7£f JYLV
K2HtkrPbP72vwsEKMYhhrOeKCbtLGf1s9kr jI6sBgACYP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2Zo0OHODANwpUkP4317 jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbiOLLtZciN1YsafwAPEOMDKpMqAK6IyisNtPvaLd81HObPAnWqgcyefep
rv0sxxqUEMcM307wwgfN83P0kDasDbs3p jwPhxvhz6//62zQJ7Q7TX1TUUwgUGF j
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAWIDFgIBAheAAAOJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQ0iGO0a/bPxrvK/gCAJ40inSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AA0JEE1Q4SqycpHyJOEAn1mxHi jft00bKXvu
cSo/pECUmppiAJ41MIMRV j5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAA0JELb1zU3GuiQ/1pEAoIhpp6BozKI8p6eaabzF5M1 JH58pAKCu/RO0fK8J
Eg2alos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJIfxbMdY4ws1PnjHOrF4AN2qfWsEN/1
xaZoJYc3a6M02WCnH16ahT2/tBK2w1QI4YFteR47gCvtgb601 JHEf002Hf LmRDR1
Rjd1DTCHqeyX7CHhcghj/dNR1W2ZO15QFEcmVOUOVhp3aFfWC4Ujfs3LU+hkAWZE
72aD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/09Rkbf4fm
Lel1EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8I1bf5vSYHbuESp
/10IDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnl1LzKUb/F5GwADBQf +Lwqq
a8CGrRfs0AJxim63CHE tybmUc5rUSnTs1GYEIOCR1BeQauyPZbPDsDDO9MZ1ZaSaf
anFvwFG6L1x9xkU7tzq+vKLoWkm4ubxf3vn55VjnSd1aQ9e(nUcXiL4cnBGoTbOW
I39Ecyzgs1zBdC++MPjcQTcA7p6JUVsP60AB3F(Wgb4tuUoOEc8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPt10k1k4bQk40ajHsiy1BMahpT27 jWjJ1MiJc+IWJIOmghkKHt92
6s/ymfdf5HkdQ1lcyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkgOn6KdUOetdZ
Whe70YGNPw1lyjWJT1IhMBBgRAgAMBQI+PqMdBOkJZgGAAA0JEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295k1 6NxYEuFApmr 1+0ulq/S1sQ==
=YJkx

You can import this key into your public GPG keyring by using gpg --import. See the GPG
documentation for more info on how to work with public keys.

After you have downloaded and imported the public build key, now download your
desired MySQL package and the corresponding signature, which is also available from
the download page. The signature has the file name extension ‘.asc’. For example,
the signature for ‘mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz’ would be
‘mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz.asc’. Make sure that both
files are stored in the same directory and then run the following command to verify the

signature for this file:

shell> gpg --verify <package>.asc

Example:

82 MySQL Technical Reference for Version 4.1.1-alpha

shell> gpg --verify mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz.asc
gpg: Warning: using insecure memory!
gpg: Signature made Mon 03 Feb 2003 08:50:39 PM MET using DSA key ID 5072E1F5]
gpg: Good signature from
"MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The "Good signature" message indicates that everything is all right.

For RPM packages, there is no separate signature - RPM packages actually have a built-in GPG
signature and MD5 checksum. You can verify them by running the following command:

shell> rpm --checksig <package>.rpm
Example:

shell> rpm --checksig MySQL-server-4.0.10-0.1386.rpm
MySQL-server-4.0.10-0.1i386.rpm: md5 gpg OK

Note: If you are using RPM 4.1 and it complains about (GPG) NOT 0K (MISSING KEYS:
GPG#5072e1f5) (even though you have imported it into your GPG public keyring), you
need to import the key into the RPM keyring first. RPM 4.1 no longer uses your GPG
keyring (and GPG itself), but rather maintains its own keyring (because it’s a system wide
application and the GPG public keyring is user-specific file). To import the MySQL public
key into the RPM keyring, please use the following command:

shell> rpm --import <pubkey>
Example:

shell> rpm --import mysql_pubkey.asc

In case you notice that the MD5 checksum or GPG signatures do not match, first try to
download the respective package one more time, maybe from another mirror site. If you
repeatedly can not successfully verify the integrity of the package, please notify us about
such incidents including the full package name and the download site you have been using
at webmaster@mysql.com or build@mysql. com.

2.2.3 Operating Systems Supported by MySQL

We use GNU Autoconf, so it is possible to port MySQL to all modern systems with working
Posix threads and a C++ compiler. (To compile only the client code, a C++ compiler is
required but not threads.) We use and develop the software ourselves primarily on Linux
(SuSE and Red Hat), FreeBSD and Sun Solaris (Versions 8 and 9).

Note that for many operating systems, the native thread support works only in the latest
versions. MySQL has been reported to compile successfully on the following operating
system/thread package combinations:

e AIX 4.x, 5.x with native threads. See Section 2.6.6.4 [IBM-AIX], page 155.
e Amiga.
e BSDI 2.x with the MIT-pthreads package. See Section 2.6.4.5 [BSDI], page 150.

Chapter 2: MySQL Installation 83

BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.6.4.5 [BSDI], page 150.

SCO OpenServer with a recent port of the FSU Pthreads package. See Section 2.6.6.9
[SCO], page 160.

SCO UnixWare 7.1.x. See Section 2.6.6.10 [SCO UnixWare], page 162.

DEC Unix 4.x with native threads. See Section 2.6.6.6 [Alpha-DEC-UNIX], page 157.
FreeBSD 2.x with the MIT-pthreads package. See Section 2.6.4.1 [FreeBSD], page 148.
FreeBSD 3.x and 4.x with native threads. See Section 2.6.4.1 [FreeBSD], page 148.
FreeBSD 4.x with Linuxthreads. See Section 2.6.4.1 [FreeBSD], page 148.

HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.6.6.2
[HP-UX 10.20], page 153.

HP-UX 11.x with the native threads. See Section 2.6.6.3 [HP-UX 11.x], page 154.

Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+. See Section 2.6.1 [Linux],
page 130.

Mac OS X. See Section 2.6.5 [Mac OS X], page 152.

NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (Requires GNU make). See Section 2.6.4.2
[NetBSD], page 150.

Novell NetWare 6.0. See Section 2.6.8 [Novell NetWare], page 163.

OpenBSD > 2.5 with native threads. OpenBSD < 2.5 with the MIT-pthreads package.
See Section 2.6.4.3 [OpenBSD], page 150.

OS/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.6.7 [OS/2],
page 163.

SGI Irix 6.x with native threads. See Section 2.6.6.8 [SGI-Irix], page 159.

Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.6.3 [So-
laris], page 144.

SunOS 4.x with the MIT-pthreads package. See Section 2.6.3 [Solaris], page 144.
Tru64 Unix
Windows 9x, Me, NT, 2000 and XP. See Section 2.6.2 [Windows|, page 137.

Note that not all platforms are suited equally well for running MySQL. How well a cer-
tain platform is suited for a high-load mission-critical MySQL server is determined by the
following factors:

General stability of the thread library. A platform may have excellent reputation
otherwise, but if the thread library is unstable in the code that is called by MySQL,
even if everything else is perfect, MySQL will be only as stable as the thread library.

The ability of the kernel and/or thread library to take advantage of SMP on multi-
processor systems. In other words, when a process creates a thread, it should be
possible for that thread to run on a different CPU than the original process.

The ability of the kernel and/or the thread library to run many threads which ac-
quire/release a mutex over a short critical region frequently without excessive context
switches. In other words, if the implementation of pthread_mutex_lock() is too anx-
ious to yield CPU time, this will hurt MySQL tremendously. If this issue is not taken
care of, adding extra CPUs will actually make MySQL slower.

84 MySQL Technical Reference for Version 4.1.1-alpha

e General filesystem stability /performance.

e Ability of the filesystem to deal with large files at all and deal with them efficiently, if
your tables are big.

e Our level of expertise here at MySQL AB with the platform. If we know a platform
well, we introduce platform-specific optimisations/fixes enabled at compile time. We
can also provide advice on configuring your system optimally for MySQL.

e The amount of testing of similar configurations we have done internally.

e The number of users that have successfully run MySQL on that platform in similar
configurations. If this number is high, the chances of hitting some platform-specific
surprises are much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are
x86 with SuSE Linux 8.2, 2.4 kernel, and ReiserF'S (or any similar Linux distribution) and
SPARC with Solaris (2.7-9). FreeBSD comes third, but we really hope it will join the top
club once the thread library is improved. We also hope that at some point we will be
able to include all other platforms on which MySQL compiles, runs okay, but not quite
with the same level of stability and performance, into the top category. This will require
some effort on our part in cooperation with the developers of the OS/library components
MySQL depends upon. If you are interested in making one of those components better, are
in a position to influence their development, and need more detailed instructions on what
MySQL needs to run better, send an e-mail to internals@lists.mysql.com.

Please note that the preceding comparison is not to say that one OS is better or worse
than the other in general. We are talking about choosing a particular OS for a dedicated
purpose—running MySQL, and compare platforms in that regard only. With this in mind,
the result of this comparison would be different if we included more issues into it. And in
some cases, the reason one OS is better than the other could simply be that we have put
forth more effort into testing on and optimising for that particular platform. We are just
stating our observations to help you decide on which platform to use MySQL on in your
setup.

2.2.4 Which MySQL Version to Use

The first decision to make is whether you want to use the latest development release or the
last production (stable) release:

e Normally, if you are beginning to use MySQL for the first time or trying to port it to
some system for which there is no binary distribution, we recommend going with the
production release (currently version 4.0). Note that all MySQL releases are checked
with the MySQL benchmarks and an extensive test suite before each release (even the
development releases).

e Otherwise, if you are running an old system and want to upgrade, but don’t want to
take chances with a non-seamless upgrade, you should upgrade to the latest in the same
branch you are using (where only the last version number is newer than yours). We
have tried to fix only fatal bugs and make small, relatively safe changes to that version.

The second decision to make is whether you want to use a source distribution or a binary
distribution. In most cases you should probably use a binary distribution, if one exists for
your platform, as this generally will be easier to install than a source distribution.

Chapter 2: MySQL Installation 85

In the following cases you probably will be better off with a source installation:

e If you want to install MySQL at some explicit location. (The standard binary distribu-
tions are “ready to run” at any place, but you may want to get even more flexibility).

e To be able to satisfy different user requirements, we are providing two different binary
versions: one compiled with the non-transactional storage engines (a small, fast binary),
and one configured with the most important extended options like transaction-safe
tables. Both versions are compiled from the same source distribution. All native MySQL
clients can connect to both MySQL versions.

The extended MySQL binary distribution is marked with the -max suffix and is config-
ured with the same options as mysqld-max. See Section 4.7.5 [mysqld-max], page 329.

If you want to use the MySQL-Max RPM, you must first install the standard MySQL-
server RPM.

e If you want to configure mysqld with some extra features that are not in the standard
binary distributions. Here is a list of the most common extra options that you may
want to use:

e --with-innodb (default for MySQL 4.0 and onwards)
e —-with-berkeley-db (not available on all platforms)
e —-with-raid
e —-ywith-libwrap
e --with-named-z-1libs (This is done for some of the binaries)
e —-with-debug[=full]
e The default binary distribution is normally compiled with support for all character sets
and should work on a variety of processors from the same processor family.

If you want a faster MySQL server you may want to recompile it with support for only
the character sets you need, use a better compiler (like pgcc), or use compiler options
that are better optimised for your processor.

e If you have found a bug and reported it to the MySQL development team you will
probably receive a patch that you need to apply to the source distribution to get the
bug fixed.

e If you want to read (and/or modify) the C and C++ code that makes up MySQL,
you should get a source distribution. The source code is always the ultimate manual.
Source distributions also contain more tests and examples than binary distributions.

The MySQL naming scheme uses release numbers that consist of three numbers and a suffix.
For example, a release name like mysql-3.21.17-beta is interpreted like this:

e The first number (3) describes the file format. All Version 3 releases have the same file
format.

e The second number (21) is the release level. Normally there are two to choose from.
One is the production branch (currently 3.23) and the other is the development branch
(currently 4.0). Normally both are stable, but the development version may have
quirks, may be missing documentation on new features, or may fail to compile on some
systems.

86 MySQL Technical Reference for Version 4.1.1-alpha

e The third number (17) is the version number within the release level. This is incre-
mented for each new distribution. Usually you want the latest version for the release
level you have chosen.

e The suffix (beta) indicates the stability level of the release. The possible suffixes are:

— alpha indicates that the release contains some large section of new code that hasn’t
been 100% tested. Known bugs (usually there are none) should be documented
in the News section. See Appendix D [News], page 858. There are also new
commands and extensions in most alpha releases. Active development that may
involve major code changes can occur on an alpha release, but everything will be
tested before doing a release. There should be no known bugs in any MySQL
release.

— Dbeta means that all new code has been tested. No major new features that could
cause corruption on old code are added. There should be no known bugs. A
version changes from alpha to beta when there haven’t been any reported fatal
bugs within an alpha version for at least a month and we don’t plan to add any
features that could make any old command more unreliable.

— gamma is a beta that has been around a while and seems to work fine. Only minor
fixes are added. This is what many other companies call a release.

— If there is no suffix, it means that the version has been run for a while at many
different sites with no reports of bugs other than platform-specific bugs. Only
critical bug fixes are applied to the release. This is what we call a production
(stable) release.

All versions of MySQL are run through our standard tests and benchmarks to ensure that
they are relatively safe to use. Because the standard tests are extended over time to check
for all previously found bugs, the test suite keeps getting better.

Note that all releases have been tested at least with:

An internal test suite
This is part of a production system for a customer. It has many tables with
hundreds of megabytes of data.

The MySQL benchmark suite
This runs a range of common queries. It is also a test to see whether the latest
batch of optimisations actually made the code faster. See Section 5.1.4 [MySQL
Benchmarks], page 394.

The crash-me test
This tries to determine what features the database supports and what its capa-
bilities and limitations are. See Section 5.1.4 [MySQL Benchmarks], page 394.

Another test is that we use the newest MySQL version in our internal production environ-
ment, on at least one machine. We have more than 100 gigabytes of data to work with.

2.2.5 Installation Layouts

This section describes the default layout of the directories created by installing binary and
source distributions.

Chapter 2: MySQL Installation 87

A binary distribution is installed by unpacking it at the installation location you choose
(typically ‘/usr/local/mysql’) and creates the following directories in that location:

Directory Contents of directory

‘bin’ Client programs and the mysqld server
‘data’ Log files, databases

‘include’ Include (header) files

‘1ib’ Libraries

‘scripts’ mysql_install_db

‘share/mysql’ Error message files

‘sql-bench’ Benchmarks

A source distribution is installed after you configure and compile it. By default, the instal-
lation step installs files under ‘/usr/local’, in the following subdirectories:

Directory Contents of directory

‘bin’ Client programs and scripts
‘include/mysqllnclude (header) files

‘info’ Documentation in Info format
‘1ib/mysql’ Libraries

‘libexec’ The mysqld server
‘share/mysql’ Error message files
‘sql-bench’ Benchmarks and crash-me test
‘var’ Databases and log files

Within an installation directory, the layout of a source installation differs from that of a
binary installation in the following ways:

e The mysqld server is installed in the ‘libexec’ directory rather than in the ‘bin’
directory.

e The data directory is ‘var’ rather than ‘data’.

e mysql_install_db is installed in the ‘/usr/local/bin’ directory rather than in
‘/usr/local/mysql/scripts’.

e The header file and library directories are ‘include/mysql’ and ‘lib/mysql’ rather
than ‘include’ and ‘1ib’.

You can create your own binary installation from a compiled source distribution by executing
the script ‘scripts/make_binary_distribution’.

2.2.6 How and When Updates Are Released

MySQL is evolving quite rapidly here at MySQL AB and we want to share this with other
MySQL users. We try to make a release when we have very useful features that others seem
to have a need for.

We also try to help out users who request features that are easy to implement. We take note
of what our licensed users want to have, and we especially take note of what our extended
e-mail supported customers want and try to help them out.

No one has to download a new release. The News section will tell you if the new release
has something you really want. See Appendix D [News], page 858.

We use the following policy when updating MySQL:

88 MySQL Technical Reference for Version 4.1.1-alpha

e For each minor update, the last number in the version string is incremented. When
there are major new features or minor incompatibilities with previous versions, the
second number in the version string is incremented. When the file format changes, the
first number is increased.

e Production (stable-tested) releases are meant to appear about 1-2 times a year, but if
small bugs are found, a release with only bug fixes will be released.

e Working releases/bug fixes to old releases are meant to appear about every 1-8 weeks.

e Binary distributions for some platforms will be made by us for major releases. Other
people may make binary distributions for other systems but probably less frequently.

e We usually make patches available as soon as we have located and fixed small bugs.
They are usually posted to bugs@lists.mysql.com and are immediately available from
our public BitKeeper repositories. They will also be included in the next release.

e Non-critical but annoying bugs will be added to the MySQL source repository and they
will be fixed in the next release.

e If there is, by any chance, a fatal bug in a release we will make a new release as soon
as possible. We would like other companies to do this, too.

The current production release is Version 4.0; we have already moved active development
to Version 4.1 and 5.0. Bugs will still be fixed in the 4.0 version, and critical bugs also in
the 3.23 series. We don’t believe in a complete freeze, as this also leaves out bug fixes and
things that “must be done.” “Somewhat frozen” means that we may add small things that
“almost surely will not affect anything that’s already working.”

MySQL uses a slightly different naming scheme from most other products. In general it’s

relatively safe to use any version that has been out for a couple of weeks without being
replaced with a new version. See Section 2.2.4 [Which version]|, page 84.

2.2.7 Release Philosophy - No Known Bugs in Releases

We put a lot of time and effort into making our releases bug free. To our knowledge, we
have not released a single MySQL version with any known ’fatal’ repeatable bugs.
A fatal bug is something that crashes MySQL under normal usage, gives wrong answers for
normal queries, or has a security problem.
We have documented all open problems, bugs and things that are dependent on design
decisions. See Section 1.8.6 [Bugs|, page 45.
Our aim is to fix everything that is fixable, but without risking making a stable MySQL
version less stable. In certain cases, this means we can fix an issue in the development
version(s), but not in the stable (production) version. Naturally, we document such issues
so that users are aware.
Here is a description of how our build process works:
e We monitor bugs from our customer support list, the MySQL external mailing lists
and the bugs database at http://bugs.mysql.com/.
e All reported bugs for live versions are entered into the bugs database.
e When we fix a bug, we always try to make a test case of it and include this into our
test system to ensure that the bug will never come back. (About 90% of all fixed bugs
have a test case.)

Chapter 2: MySQL Installation 89

e We also create test cases for all new features we add to MySQL.

e Before we start to build a new MySQL release, we ensure that all reported repeatable
bugs for the MySQL version (3.23.x, 4.0.x, etc) are fixed. If something is impossible to
fix (because some internal design decision in MySQL) we document this in the manual.
See Section 1.8.6 [Bugs], page 45.

e We do a build on all platforms for which we support binaries (15+ platforms) and run
our test suite and benchmark suite on all of them.

e We will not publish a binary for a platform for which the test or benchmark suite fails.
If it’s a general error in the source, we fix this and do the build plus tests on all systems
again, from scratch.

e If we, during the build and test process (which takes 2-3 days), receive a report regard-
ing a fatal bug (for example, one that causes a core dump), we fix this and restart the
build process.

e After publishing the binaries on http://www.mysql.com/, we send out an announce
email on the lists mysql@lists.mysql.com and announce@lists.mysql.com. The
announce message contains a list of all changes to the release and any known problems
with the release. (The ’known problems’ section in the release notes has only been
needed in a handful of releases.)

e To quickly give our users access to the latest MySQL features, we do a new MySQL
release every 4-5 weeks.

o If we, after the release is done, get any bug reports that there was (after all) anything
critically wrong with the build on a specific platform, we will fix this at once and build
anew ’a’ release for that platform. Thanks to our large user base, problems are found
quickly.

e Our track record for making good releases is quite good. In the last 150 releases, we
had to do a new build for less than 10 releases (in 3 of these cases, the bug was a faulty
glibe library on one of our build machines that took us a long time to track down).

2.2.8 MySQL Binaries Compiled by MySQL AB

As a service, we at MySQL AB provide a set of binary distributions of MySQL that are
compiled at our site or at sites where customers kindly have given us access to their ma-
chines.

In addition to the binaries provided in platform-specific package formats (see Section 2.1
[Quick Standard Installation|, page 71), we do offer binary distributions for a number of
platforms by means of compressed tar archives (.tar.gz).

These distributions are generated using the script Build-tools/Do-compile which com-
piles the source code and creates the binary tar.gz archive using scripts/make_binary_
distribution These binaries are configured and built with the following compilers and
options.

Binaries built on MySQL AB development systems:

Linux 2.4.xx x86 with gcc 2.95.3

CFLAGS="-02 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-02 -
mcpu=pentiumpro -felide-constructors" ./configure —-prefix=/usr/local/mysqll]

90 MySQL Technical Reference for Version 4.1.1-alpha

--with-extra-charsets=complex ——enable-thread-safe-client
--enable-local-infile —--enable-assembler —--disable-shared --with-
client-l1dflags=-all-static --with-mysqld-ldflags=-all-static

Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0)
CC=ecc CFLAGS="-02 -tpp2 -ip —nolib_inline" CXX=ecc CXXFLAGS="-02
-tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex —-enable-thread-safe-client
--enable-local-infile

Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0)
CC=ecc CFLAGS=-tppl CXX=ecc CXXFLAGS=-tppl ./configure —-
prefix=/usr/local/mysql —-with-extra-charsets=complex ——enable-
thread-safe-client ——enable-local-infile

Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006)
CC=ccc CFLAGS="-fast —arch generic" CXX=cxx CXXFLAGS="-
fast —arch generic —-noexceptions -nortti" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile —-with-
mysqld-ldflags=-non_shared —-with-client-1dflags=-non_shared
--disable-shared

Linux 2.4.xx s390 with gcc 2.95.3
CFLAGS="-02" CXX=gcc CXXFLAGS="-02 -felide-constructors"
./configure —-prefix=/usr/local/mysql --with-extra-charsets=complex]]
—--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static ——with-mysqld-ldflags=-all-
static

Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1
CXX=gcc ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —-enable-local-infile
--disable-shared

Sun Solaris 8 x86 with gcc 3.2.3
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-
03 -fno-omit-frame-pointer -felide-constructors -fno-
exceptions —-fno-rtti" ./configure --prefix=/usr/local/mysql --

localstatedir=/usr/local/mysql/data ——libexecdir=/usr/local/mysql/bin}]

--with-extra-charsets=complex —-enable-thread-safe-client
--enable-local-infile —--disable-shared --with-innodb

Sun Solaris 8 sparc with gcc 3.2
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —--enable-local-infile
--enable-assembler ——-with-named-z-libs=no --with-named-curses-
libs=-lcurses --disable-shared

Chapter 2: MySQL Installation 91

Sun Solaris 8 sparc 64bit with gcc 3.2
CC=gcc CFLAGS="-03 -m64 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-03 -m64 -fno-omit-frame-pointer —-felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex ——enable-thread-safe-client
--enable-local-infile —-enable-assembler —-with-named-z-1libs=no
--with-named-curses-libs=-lcurses —--disable-shared

Sun Solaris 9 sparc with gcc 2.95.3
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client —--enable-local-infile
--enable-assembler —--with-named-curses-libs=-lcurses —-disable-
shared

Sun Solaris 9 sparc with cc-5.0 (Sun Forte 5.0)
CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst
-mt -D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_
-xarch=v9" ./configure —-prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —-enable-local-infile
-—enable-assembler —-with-named-z-libs=no —--enable-thread-safe-
client --disable-shared

IBM AIX 4.3.2 ppc with gec 3.2.3
CFLAGS="-02 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-02
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —-enable-local-infile
--with-named-z-libs=no --disable-shared

IBM AIX 4.3.3 ppc with x1C_r (IBM Visual Age C/C++ 6.0)
CC=xlc_r CFLAGS="-ma -02 -gstrict —qoptimize=2 -gmaxmem=8192"
CXX=x1C_r CXXFLAGS ="-ma -02 -gstrict —qoptimize=2 -gmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/datal]
—--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-
libs=no --disable-shared --with-innodb

IBM AIX 5.1.0 ppc with gcc 3.3
CFLAGS="-02 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-02
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --with-server-suffix="-pro" --enable-thread-
safe-client --enable-local-infile —--with-named-z-libs=no
--disable-shared

HP-UX 10.20 pa-riscl.1 with gcc 3.1
CFLAGS="-DHPUX -I/opt/dce/include -03 -fPIC" CXX=gcc CXXFLAGS="-
DHPUX -I/opt/dce /include -felide-constructors -fno-exceptions

92 MySQL Technical Reference for Version 4.1.1-alpha

-fno-rtti -03 -fPIC" ./configure —--prefix=/usr/local/mysql
--with-extra-charsets=complex —-enable-thread-safe-client —-
enable-local-infile —-with-pthread --with-named-thread-libs=-1dce
--with-1lib-ccflags=-fPIC --disable-shared

HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33)
CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --
prefix=/usr/local/mysql --with-extra-charsets=complex --enable-
thread-safe-client --enable-local-infile --disable-shared

HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33)
CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable"

./configure —-prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/datal]

--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
-—enable-thread-safe-client -—enable-local-infile --disable-shared
--with-innodb

Apple Mac OS X 10.2 powerpc with gcec 3.1
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —-enable-local-infile
--disable-shared

FreeBSD 4.7 1386 with gcc 2.95.4
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysqll]
--with-extra-charsets=complex —-enable-thread-safe-client
--enable-local-infile —--enable-assembler —--with-named-z-libs=not-
used —-disable-shared

QNX Neutrino 6.2.1 i386 with gcc 2.95.3gnx-nto 20010315
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
—-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —--enable-local-infile
--disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by
other users. Please note that these are only provided as a courtesy. Since MySQL AB
does not have full control over these systems, we can only provide limited support for the
binaries built on these systems.

SCO Unix 3.2v5.0.6 1386 with gcc 2.95.3
CFLAGS="-03 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-03 -

mpentium -felide-constructors" ./configure --prefix=/usr/local/mysqll}

--with-extra-charsets=complex ——enable-thread-safe-client
—-enable-local-infile ——with—-named-z-1libs=no —-enable-thread-safe-
client ——-disable-shared

SCO OpenUnix 8.0.0 1386 with CC 3.2
CC=cc CFLAGS="-0" CXX=CC ./configure —-prefix=/usr/local/mysql
--with-extra-charsets=complex —-enable-thread-safe-client

Chapter 2: MySQL Installation 93

—-enable-local-infile ——with-named-z-libs=no —--enable-thread-safe-
client —--disable-shared

Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-0291 / DIGITAL
C++ V6.1-027)
CC="cc —-pthread" CFLAGS="-04 -ansi_alias -ansi_args -fast -
inline speed —-speculate all" CXX="cxx -pthread" CXXFLAGS="-04
-ansi_alias -fast -inline speed -speculate all -noexceptions
-nortti" ./configure --prefix=/usr/local/mysql —-with-extra-
charsets=complex —-enable-thread-safe-client —--enable-local-infile
--with-prefix=/usr/local/mysql --with-named-thread-libs="-
lpthread —-1mach -lexc -1c" --disable-shared --with-mysqld-ldflags=-
all-static

SGI Irix 6.5 IP32 with gcc 3.0.1
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —-enable-local-infile
--disable-shared

FreeBSD 5.0 sparc64 with gcc 3.2.1
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure —--prefix=/usr/local/mysqll}
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin}}
--with-extra-charsets=complex ——enable-thread-safe-client
-—enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages MySQL AB used to
provide in the past. These binaries are no longer being updated, but the compile options
are kept here for reference purposes.

Linux 2.2.xx sparc with egcs 1.1.2
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client —--enable-local-infile
--enable-assembler —-disable-shared

Linux 2.2.x with x686 with gcc 2.95.2
CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro
-felide-constructors -fno-exceptions —-fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler —--with-mysqld-
ldflags=-all-static -—disable-shared —-with-extra-charsets=complex

SunOS 4.1.4 2 sun4dc with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors" ./configure
—--prefix=/usr/local/mysql --disable-shared --with-extra-
charsets=complex —-enable-assembler

94 MySQL Technical Reference for Version 4.1.1-alpha

SunOS 5.5.1 (and above) sund4u with egcs 1.0.3a or 2.90.27 or gce 2.95.2 and newer
CC=gcc CFLAGS="-03" CXX=gcc CXXFLAGS="-03 -felide-constructors
-fno-exceptions —-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex -—enable-assembler

SunOS 5.6 i86pc with gcc 2.8.1
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
--with-low-memory ——-with-extra-charsets=complex

BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS=-0 ./configure —-prefix=/usr/local/mysql
--with-extra-charsets=complex

BSDI BSD/OS 2.1 1386 with gcc 2.7.2
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql
--with-extra-charsets=complex

AIX 2 4 with gcc 2.7.2.2
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

Anyone who has more optimal options for any of the preceding configurations listed can
always mail them to the developer’s mailing list at internals@lists.mysql.com.

RPM distributions prior to MySQL Version 3.22 are user-contributed. Beginning with
Version 3.22, the RPMs are generated by us at MySQL AB.

If you want to compile a debug version of MySQL, you should add --with-debug or —-
with-debug=full to the preceding configure lines and remove any ~fomit-frame-pointer
options.

For the Windows distribution, please see Section 2.1.2 [Windows installation], page 73.

2.2.9 Installing a MySQL Binary Distribution

This chapter covers the installation of MySQL binary distributions (.tar.gz Archives) for
various platforms (see Section 2.2.8 [MySQL binaries|, page 89 for a detailed list).

In addition to these generic packages, we also offer binaries in platform-specific package
formats for selected platforms. See Section 2.1 [Quick Standard Installation], page 71 for
more information on how to install these.

The generic MySQL binary distributions are packaged as gzip-compressed GNU tar archives
(.tar.gz). You need the following tools to install a MySQL binary distribution:

e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Some tar
implementations that come pre-installed with the operating system (e.g. Sun tar) are
known to have problems (with long file names, for example). In that case, you should
install GNU tar first.

If you run into problems, please always use mysqlbug when posting questions to
mysql@lists.mysql.com. FKven if the problem isn’t a bug, mysqlbug gathers system
information that will help others solve your problem. By not using mysqlbug, you lessen

Chapter 2: MySQL Installation 95

the likelihood of getting a solution to your problem. You will find mysqlbug in the ‘bin’
directory after you unpack the distribution. See Section 1.7.1.3 [Bug reports|, page 27.

The basic commands you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql

shell> useradd -g mysql mysql

shell> cd /usr/local

shell> gunzip < /path/to/mysql-VERSION-0S.tar.gz | tar xvf -
shell> 1n -s full-path-to-mysql-VERSION-0S mysql
shell> cd mysql

shell> scripts/mysql_install_db

shell> chown -R root

shell> chown -R mysql data

shell> chgrp -R mysql .

shell> bin/mysqld_safe --user=mysql &

or

shell> bin/mysqld_safe --user=mysql &

if you are running MySQL 4.x

You can add new users using the bin/mysql_setpermission script if you install the DBI
and DBD-mysql Perl modules.

A more detailed description follows.

To install a binary distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 111, for post-installation setup and testing:

1.

Pick the directory under which you want to unpack the distribution, and move into
it. In the following example, we unpack the distribution under ‘/usr/local’ and
create a directory ‘/usr/local/mysql’ into which MySQL is installed. (The following
instructions, therefore, assume you have permission to create files in ‘/usr/local’. If
that directory is protected, you will need to perform the installation as root.)

Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 79.
MySQL binary distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION-0S.tar.gz’, where VERSION is a number (for example, 3.21.15),
and 0S indicates the type of operating system for which the distribution is intended (for
example, pc-linux-gnu-i586). Note that all binaries are built from the same MySQL
source distribution.
Add a user and group for mysqld to run as:

shell> groupadd mysql

shell> useradd -g mysql mysql
These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.
Change into the intended installation directory:

shell> cd /usr/local

Unpack the distribution and create the installation directory:

96

10.

11.

MySQL Technical Reference for Version 4.1.1-alpha

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> 1n -s full-path-to-mysql-VERSION-0S mysql

Using GNU tar, you can also replace the first line with the following alternative com-
mand to decompress and extract the distribution in one go:

shell> tar zxvf /path/to/mysql-VERSION-0S.tar.gz

The first command creates a directory named ‘mysql-VERSION-0S’. The second com-
mand makes a symbolic link to that directory. This lets you refer more easily to the
installation directory as ‘/usr/local/mysql’.

Change into the installation directory:
shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important
for installation purposes are the ‘bin’ and ‘scripts’ subdirectories.

‘bin’ This directory contains client programs and the server You should add the
full pathname of this directory to your PATH environment variable so that
your shell finds the MySQL programs properly. See Appendix F [Environ-
ment variables|, page 981.

‘scripts’ This directory contains the mysql_install_db script used to initialise the
mysql database containing the grant tables that store the server access
permissions.

If you would like to use mysqlaccess and have the MySQL distribution in some non-
standard place, you must change the location where mysqlaccess expects to find the
mysql client. Edit the ‘bin/mysqlaccess’ script at approximately line 18. Search for
a line that looks like this:

$MYSQL = ’/usr/local/bin/mysql’; # path to mysql executable
Change the path to reflect the location where mysql actually is stored on your system.
If you do not do this, you will get a Broken pipe error when you run mysqlaccess.
Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):
shell> scripts/mysql_install_db
Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true.

Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql/.
shell> chown -R mysql /usr/local/mysql/data
shell> chgrp -R mysql /usr/local/mysql/.
The first command changes the owner attribute of the files to the root user, the second

one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support|, page 164.

If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup

Chapter 2: MySQL Installation 97

files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 118.

After everything has been unpacked and installed, you should initialise and test your dis-
tribution.

You can start the MySQL server with the following command:
shell> bin/mysqld_safe --user=mysql &

Now proceed to Section 4.7.2 [mysqld_safe], page 318, and See Section 2.4
[Post-installation], page 111.

2.3 Installing a MySQL Source Distribution

Before you proceed with the source installation, check first to see if our binary is available
for your platform and if it will work for you. We put a lot of effort into making sure that
our binaries are built with the best possible options.

You need the following tools to build and install MySQL from source:
e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Some tar
implementations that come pre-installed with the operating system (e.g. Sun tar) are
known to have problems (with long file names, for example). In that case, you should
install GNU tar first.

e A working ANSI C++ compiler. gcc >= 2.95.2, egcs >= 1.0.2 or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work. libg++ is
not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile
some perfectly legal C++ files, such as ‘sql/sql_base.cc’. If you only have gcc 2.7.x,
you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is also known to
have problems on some platforms, so it should be avoided if a new compiler exists for
the platform.

gec >= 2.95.2 is recommended when compiling MySQL Version 3.23.x.

e A good make program. GNU make is always recommended and is sometimes required.
If you have problems, we recommend trying GNU make 3.75 or newer.

If you are using a recent version of gcc, recent enough to understand the -fno-exceptions
option, it is very important that you use it. Otherwise, you may compile a binary that
crashes randomly. We also recommend that you use -felide-constructors and -fno-
rtti along with ~-fno-exceptions. When in doubt, do the following:

CFLAGS="-03" CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-exceptions \|]
—-fno-rtti" ./configure --prefix=/usr/local/mysql --enable-assembler \Jj
--with-mysqld-ldflags=-all-static

On most systems this will give you a fast and stable binary.

If you run into problems, please always use mysqlbug when posting questions to
mysql@lists.mysql.com. FKven if the problem isn’t a bug, mysqlbug gathers system
information that will help others solve your problem. By not using mysqlbug, you lessen

98 MySQL Technical Reference for Version 4.1.1-alpha

the likelihood of getting a solution to your problem. You will find mysqlbug in the
‘scripts’ directory after you unpack the distribution. See Section 1.7.1.3 [Bug reports],
page 27.

2.3.1 Quick Installation Overview

The basic commands you must execute to install a MySQL source distribution are:

shell> groupadd mysql

shell> useradd -g mysql mysql

shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -

shell> cd mysql-VERSION

shell> ./configure --prefix=/usr/local/mysql

shell> make

shell> make install

shell> scripts/mysql_install_db

shell> chown -R root /usr/local/mysql

shell> chown -R mysql /usr/local/mysql/var

shell> chgrp -R mysql /usr/local/mysql

shell> cp support-files/my-medium.cnf /etc/my.cnf

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &
If your version of MySQL is older than 4.0, use safe_mysqld rather than mysqld_safe.

If you want to have support for InnoDB tables, you should edit the /etc/my.cnf file and
remove the # character before the parameter that starts with innodb_. ... See Section 4.1.2
[Option files|, page 212, and Section 7.5.3 [InnoDB start], page 585.

If you start from a source RPM, do the following;:
shell> rpm --rebuild --clean MySQL-VERSION.src.rpm
This will make a binary RPM that you can install.

You can add new users using the bin/mysql_setpermission script if you install the DBI
and DBD-mysql Perl modules.

A more detailed description follows.

To install a source distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 111, for post-installation initialisation and testing:
1. Pick the directory under which you want to unpack the distribution, and move into it.
2. Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 79.

3. If you are interested in using Berkeley DB tables with MySQL, you will need to obtain
a patched version of the Berkeley DB source code. Please read the chapter on Berkeley
DB tables before proceeding. See Section 7.6 [BDB|, page 631.

MySQL source distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION.tar.gz’, where VERSION is a number like 4.1.1-alpha.

4. Add a user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

Chapter 2: MySQL Installation 99

10.

11.

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.

Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -
This command creates a directory named ‘mysql-VERSION’.
Change into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory.
You cannot build it in a different directory.

Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql

shell> make
When you run configure, you might want to specify some options. Run ./configure
--help for a list of options. Section 2.3.3 [configure options], page 100, discusses
some of the more useful options.

If configure fails, and you are going to send mail to mysql@lists.mysql.com to ask
for assistance, please include any lines from ‘config.log’ that you think can help
solve the problem. Also include the last couple of lines of output from configure if
configure aborts. Post the bug report using the mysqlbug script. See Section 1.7.1.3
[Bug reports|, page 27.

If the compile fails, see Section 2.3.5 [Compilation problems], page 105, for help with
a number of common problems.

Install everything:
shell> make install

You might need to run this command as root.

Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):
shell> scripts/mysql_install_db

Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true.

Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql
shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql

The first command changes the owner attribute of the files to the root user, the second
one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support], page 164.

100 MySQL Technical Reference for Version 4.1.1-alpha

12. If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 118.

After everything has been installed, you should initialise and test your distribution:
shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If that command fails immediately with mysqld daemon ended, you can find some informa-
tion in the file ‘mysql-data-directory/’hostname’.err’. The likely reason is that you

already have another mysqld server running. See Section 4.1.3 [Multiple servers|, page 215.

Now proceed to Section 2.4 [Post-installation], page 111.

2.3.2 Applying Patches

Sometimes patches appear on the mailing list or are placed in the patches area of the
MySQL web site (http://www.mysql.com/downloads/patches.html).

To apply a patch from the mailing list, save the message in which the patch appears in a file,
change into the top-level directory of your MySQL source tree, and run these commands:

shell> patch -pl < patch-file-name
shell> rm config.cache
shell> make clean

Patches from the FTP site are distributed as plain text files or as files compressed with
gzip. Apply a plain patch as shown previously for mailing list patches. To apply a com-
pressed patch, change into the top-level directory of your MySQL source tree and run these
commands:

shell> gunzip < patch-file-name.gz | patch -pl

shell> rm config.cache

shell> make clean

After applying a patch, follow the instructions for a normal source install, beginning with
the ./configure step. After running the make install step, restart your MySQL server.

You may need to bring down any currently running server before you run make install.
(Use mysqladmin shutdown to do this.) Some systems do not allow you to install a new
version of a program if it replaces the version that is currently executing.

2.3.3 Typical configure Options

The configure script gives you a great deal of control over how you configure your MySQL
distribution. Typically you do this using options on the configure command-line. You can
also affect configure using certain environment variables. See Appendix F [Environment
variables|, page 981. For a list of options supported by configure, run this command:

shell> ./configure --help
Some of the more commonly-used configure options are described here:

e To compile just the MySQL client libraries and client programs and not the server, use
the ——without-server option:

Chapter 2: MySQL Installation 101

shell> ./configure --without-server

If you don’t have a C++ compiler, mysql will not compile (it is the one client program
that requires C++). In this case, you can remove the code in configure that tests
for the C++ compiler and then run ./configure with the -—without-server option.
The compile step will still try to build mysql, but you can ignore any warnings about
‘mysql.cc’. (If make stops, try make -k to tell it to continue with the rest of the build
even if errors occur.)

e If you want to get an embedded MySQL library (1ibmysqld.a) you should use the
--with-embedded-server option.

e If you don’t want your log files and database directories located under
‘/usr/local/var’, use a configure command, something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \
--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under
‘/usr/local/mysql’ rather than the default of ‘/usr/local’. The second command
preserves the default installation prefix, but overrides the default location for database
directories (normally ‘/usr/local/var’) and changes it to /usr/local/mysql/data.
After you have compiled MySQL, you can change these options with option files. See
Section 4.1.2 [Option files|, page 212.

e If you are using Unix and you want the MySQL socket located somewhere other than
the default location (normally in the directory ‘/tmp’ or ‘/var/run’) use a configure
command like this:

shell> ./configure --with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock]]

Note that the given file must be an absolute pathname. You can also later change the
location ‘mysql.sock’ by using the MySQL option files. See Section A.4.5 [Problems
with mysql.sock], page 833.

e If you want to compile statically linked programs (for example, to make a binary
distribution, to get more speed, or to work around problems with some Red Hat Linux
distributions), run configure like this:

shell> ./configure --with-client-1ldflags=-all-static \
--with-mysqld-ldflags=-all-static
e If you are using gcc and don’t have libg++ or libstdc++ installed, you can tell
configure to use gcc as your C++ compiler:
shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it will not attempt to link in libg++ or
libstdc++. This may be a good idea to do even if you have the above libraries installed,
as some versions of these libraries have caused strange problems for MySQL users in
the past.

Here are some common environment variables to set depending on the compiler you
are using:

Compiler Recommended options
gee 2.7.2.1 CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors"

102

MySQL Technical Reference for Version 4.1.1-alpha

eges 1.0.3a CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-

exceptions -fno-rtti"

gee 2.95.2 CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03
mpentiumpro \ -felide-constructors -fno-exceptions -fno-rtti"

pgee 2.90.29 or CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc
newer \ CXXFLAGS="-03 -mpentiumpro -mstack-align-double

-felide-constructors \ -fno-exceptions -fno-rtti"
In most cases you can get a reasonably optimal MySQL binary by using the options
from the preceding table and adding the following options to the configure line:

—--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static
The full configure line would, in other words, be something like the following for all
recent gcc versions:

CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
—--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static
The binaries we provide on the MySQL web site at http://www.mysql.com/ are all
compiled with full optimisation and should be perfect for most users. See Section 2.2.8
[MySQL binaries], page 89. There are some things you can tweak to make an even
faster binary, but this is only for advanced users. See Section 5.5.3 [Compile and link
options], page 426.
If the build fails and produces errors about your compiler or linker not being able to
create the shared library ‘libmysqlclient.so.#’ (‘#’ is a version number), you can
work around this problem by giving the ——-disable-shared option to configure. In
this case, configure will not build a shared ‘1ibmysqlclient.so.#’ library.

You can configure MySQL not to use DEFAULT column values for non-NULL columns
(that is, columns that are not allowed to be NULL). See Section 1.8.5.2 [constraint
NOT NULL], page 44.

shell> CXXFLAGS=-DDONT_USE_DEFAULT_FIELDS ./configure

By default, MySQL uses the ISO-8859-1 (Latinl) character set. To change the default
set, use the ——with-charset option:

shell> ./configure --with-charset=CHARSET
CHARSET may be one of bigh, cpl1251, cp1257, czech, danish, dec8, dos, euc_kr,
gb2312, gbk, germanl, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latinl, latin2,
sjis, swe7, tis620, ujis, usa7, or win1251lukr. See Section 4.6.1 [Character sets],
page 312.
If you want to convert characters between the server and the client, you should take a
look at the SET CHARACTER SET command. See Section 5.5.6 [SET], page 429.
Warning: If you change character sets after having created any tables, you will have
to run myisamchk -r -q —--set-character-set=charset on every table. Your indexes
may be sorted incorrectly otherwise. (This can happen if you install MySQL, create
some tables, then reconfigure MySQL to use a different character set and reinstall it.)
With the option —-with-extra-charsets=LIST you can define which additional char-
acter sets should be compiled into the server.

Chapter 2: MySQL Installation 103

Here LIST is either a list of character sets separated with spaces, complex to include all
characters that can’t be dynamically loaded, or all to include all character sets into
the binaries.

e To configure MySQL with debugging code, use the ~—with-debug option:
shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and
that provides output about what is happening. See Section E.1 [Debugging server],
page 969.

e If your client programs are using threads, you need to also compile a thread-safe ver-
sion of the MySQL client library with the —-—enable-thread-safe-client configure
options. This will create a 1libmysqlclient_r library with which you should link your
threaded applications. See Section 9.1.14 [Threaded clients|, page 740.

e Options that pertain to particular systems can be found in the system-specific section
of this manual. See Section 2.6 [Operating System Specific Notes|, page 129.

2.3.4 Installing from the Development Source Tree

Caution: You should read this section only if you are interested in helping us test our new
code. If you just want to get MySQL up and running on your system, you should use a
standard release distribution (either a source or binary distribution will do).

To obtain our most recent development source tree, use these instructions:

1. Download BitKeeper from http://www.bitmover.com/cgi-bin/download.cgi. You
will need Bitkeeper 3.0 or newer to access our repository.

2. Follow the instructions to install it.

3. After BitKeeper is installed, first go to the directory you want to work from, and then
use one of the following commands to clone the MySQL version branch of your choice:

To clone the 3.23 (old) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-3.23 mysql-3.23
To clone the 4.0 (stable/production) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.0 mysql-4.0
To clone the 4.1 alpha branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.1 mysql-4.1
To clone the 5.0 development branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-5.0 mysql-5.0
In the preceding examples the source tree will be set up in the ‘mysql-3.23/’,
‘mysql-4.0/’, ‘mysql-4.1/’, or ‘mysql-5.0/’ subdirectory of your current directory.
If you are behind a firewall and can only initiate HTTP connections, you can also use
BitKeeper via HTTP.
If you are required to use a proxy server, simply set the environment variable http_
proxy to point to your proxy:

shell> export http_proxy="http://your.proxy.server:3080/"
Now, simply replace the bk:// with http:// when doing a clone. Example:

104 MySQL Technical Reference for Version 4.1.1-alpha

shell> bk clone http://mysql.bkbits.net/mysql-4.1 mysql-4.1

The initial download of the source tree may take a while, depending on the speed of
your connection - please be patient.

4. You will need GNU make, autoconf 2.53 (or newer), automake 1.5, 1libtool 1.4,
and m4 to run the next set of commands. Even though many operating system already
come with their own implementation of make, chances are high that the compilation
fails with strange error messages. Therefore it is highly recommended to use GNU
make (sometimes also named gmake) by all means.

Fortunately, a large number of operating systems already ship with the GNU toolchain
preinstalled or supply installable packages of these. In any case, they can also be
downloaded from the following locations:

e http://www.gnu.org/software/autoconf/
e http://www.gnu.org/software/automake/
e http://www.gnu.org/software/libtool/
e http://www.gnu.org/software/make/

If you are trying to configure MySQL 4.1, you will also need GNU bison 1.75. Older
versions of bison may report this error: sql_yacc.yy:#####: fatal error: maximum
table size (32767) exceeded. Note: the maximum table size is not actually ex-
ceeded, the error is caused by bugs in these earlier bison versions.

Versions of MySQL before version 4.1 may also compile with other yacc implementa-
tions (e.g. BSD yacc 91.7.30). For later versions, GNU bison is a requirement.
The typical command to do in a shell is:
cd mysql-4.0
bk -r edit
aclocal; autoheader; autoconf; automake
(cd innobase ; aclocal; autoheader; autoconf; automake) # for InnoDB
(cd bdb/dist ; sh s_all) # for Berkeley DB
./configure # Add your favorite options here
make

If you get some strange error during this stage, check that you really have libtool
installed.

A collection of our standard configure scripts is located in the ‘BUILD/’ subdirectory. If
you are lazy, you can use ‘BUILD/compile-pentium-debug’. To compile on a different
architecture, modify the script by removing flags that are Pentium-specific.

5. When the build is done, run make install. Be careful with this on a production
machine; the command may overwrite your live release installation. If you have another
installation of MySQL, we recommend that you run ./configure with different values
for the prefix, with-tcp-port, and unix-socket-path options than those used for
your production server.

6. Play hard with your new installation and try to make the new features crash. Start by
running make test. See Section 12.1.2 [MySQL test suite], page 802.

7. If you have gotten to the make stage and the distribution does not compile, please report
it in our bugs database at http://bugs.mysql.com/. If you have installed the latest

Chapter 2: MySQL Installation 105

versions of the required GNU tools, and they crash trying to process our configuration
files, please report that also. However, if you execute aclocal and get a command not
found error or a similar problem, do not report it. Instead, make sure all the necessary
tools are installed and that your PATH variable is set correctly so that your shell can
find them.

8. After the initial bk clone operation to get the source tree, you should run bk pull
periodically to get the updates.

9. You can examine the change history for the tree with all the diffs by using bk sccstool.
If you see some funny diffs or code that you have a question about, do not hesitate to
send e-mail to internals@lists.mysql.com. Also, if you think you have a better idea
on how to do something, send an e-mail to the same address with a patch. bk diffs
will produce a patch for you after you have made changes to the source. If you do not
have the time to code your idea, just send a description.

10. BitKeeper has a nice help utility that you can access via bk helptool.

11. Please note that any commits (bk ci or bk citool) will trigger the posting of a message
with the changeset to our internals mailing list, as well as the usual openlogging.org
submission with just the changeset comments. Generally, you wouldn’t need to use
commit (since the public tree will not allow bk push), but rather use the bk diffs
method described previously.

You can also browse changesets, comments and sourcecode online by browsing to for exam-
ple, http://mysql.bkbits.net:8080/mysql-4.1 For MySQL 4.1.
The manual is in a separate tree which can be cloned with:
shell> bk clone bk://mysql.bkbits.net/mysqldoc mysqldoc
There are also public BitKeeper trees for MySQL Control Center and Connector/ODBC.
They can be cloned respectively as follows.
To clone MySQL Control center, use this command:
shell> bk clone http://mysql.bkbits.net/mysqlcc mysqlcc
To clone Connector/ODBC, use this command:
shell> bk clone http://mysql.bkbits.net/myodbc3 myodbc3

2.3.5 Problems Compiling MySQL?

All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using
gcc. On other systems, warnings may occur due to differences in system include files.
See Section 2.3.6 [MIT-pthreads|, page 108 for warnings that may occur when using MIT-
pthreads. For other problems, check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take
note of the following:

e If configure is run after it already has been run, it may use information that was
gathered during its previous invocation. This information is stored in ‘config.cache’.
When configure starts up, it looks for that file and reads its contents if it exists, on
the assumption that the information is still correct. That assumption is invalid when
you reconfigure.

106 MySQL Technical Reference for Version 4.1.1-alpha

e Each time you run configure, you must run make again to recompile. However, you
may want to remove old object files from previous builds first because they were com-
piled using different configuration options.

To prevent old configuration information or object files from being used, run these com-
mands before rerunning configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been
found to occur most often:

e If you get errors when compiling ‘sql_yacc.cc’, such as the ones shown here, you have
probably run out of memory or swap space:

Internal compiler error: program cclplus got fatal signal 11
or

Out of virtual memory
or

Virtual memory exhausted

The problem is that gcc requires huge amounts of memory to compile ‘sql_yacc.cc’
with inline functions. Try running configure with the -—with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc
and -00 if you are using something else. You should try the -—with-low-memory option
even if you have so much memory and swap space that you think you can’t possibly
have run out. This problem has been observed to occur even on systems with generous
hardware configurations, and the —-with-low-memory option usually fixes it.

e By default, configure picks c++ as the compiler name and GNU c++ links with -1g++.
If you are using gcc, that behaviour can cause problems during configuration such as
this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or
libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but
not libg++, or libstdc++. Take a look at the ‘config.log’ file. It should contain the
exact reason why your C++ compiler didn’t work. To work around these problems, you
can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc
-03". For example:

shell> CXX="gcc -03" ./configure

This works because gcc compiles C++ sources as well as g++ does, but does not link in
libg++ or libstdc++ by default.

Another way to fix these problems, of course, is to install g++, libg++, and libstdc++.
We would however like to recommend you to not use 1ibg++ or 1ibstdc++ with MySQL
as this will only increase the binary size of mysqld without giving you any benefits.

Chapter 2: MySQL Installation 107

Some versions of these libraries have also caused strange problems for MySQL users in
the past.

Using gcc as the C++ compiler is also required, if you want to compile MySQL with
RAID functionality (see Section 6.5.3 [CREATE TABLE], page 544 for more info on
RAID table type) and you are using GNU gcc version 3 and above. If you get errors
like the ones below during the linking stage when you configure MySQL to compile
with the option --with-raid, try to use gcc as your C++ compiler by defining the
above mentioned environment variable CXX:

gcc -03 -DDBUG_OFF -rdynamic -o isamchk isamchk.o sort.o 1libnisam.a
../mysys/libmysys.a ../dbug/libdbug.a ../strings/libmystrings.a -lpthread]]
-1z -lcrypt -1lnsl -1m -lpthread

../mysys/libmysys.a(raid.o) (.text+0x79): In function ‘my_raid_create’:|}
: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o) (.text+0xdd): In function ‘my_raid_create’:|]
: undefined reference to ‘operator delete(voidx*)’
../mysys/libmysys.a(raid.o) (.text+0x129): In function ‘my_raid_open’:Jj
: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o) (.text+0x189): In function ‘my_raid_open’:|}
: undefined reference to ‘operator delete(voidx)’
../mysys/libmysys.a(raid.o) (.text+0x64b): In function ‘my_raid_close’:Jj
: undefined reference to ‘operator delete(voidx)’

collect2: 1d returned 1 exit status

e If your compile fails with errors, such as any of the following, you must upgrade your
version of make to GNU make:

making all in mit-pthreads

make: Fatal error in reader: Makefile, line 18:

Badly formed macro assignment
or

make: file ‘Makefile’ line 18: Must be a separator (:
or

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.
GNU make Version 3.75 is known to work.
e If you want to define flags to be used by your C or C++ compilers, do so by adding

the flags to the CFLAGS and CXXFLAGS environment variables. You can also specify the
compiler names this way using CC and CXX. For example:

shell> CC=gcc

shell> CFLAGS=-03

shell> CXX=gcc

shell> CXXFLAGS=-03

shell> export CC CFLAGS CXX CXXFLAGS
See Section 2.2.8 [MySQL binaries|, page 89, for a list of flag definitions that have been
found to be useful on various systems.

e If you get an error message like this, you need to upgrade your gcc compiler:

client/libmysql.c:273: parse error before ‘__attribute__’

108 MySQL Technical Reference for Version 4.1.1-alpha

gce 2.8.1 is known to work, but we recommend using gcc 2.95.2 or egcs 1.0.3a instead.

e If you get errors such as those shown here when compiling mysqld, configure didn’t
correctly detect the type of the last argument to accept(), getsockname(), or
getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ’’length’’ is ’’unsigned long’’, whichf
is not compatible with ’’int’’.
new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);
To fix this, edit the ‘config.h’ file (which is generated by configure). Look for these
lines:
/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (Note that you
will have to do this each time you run configure because configure regenerates
‘config.h’.)

e The ‘sql_yacc.cc’ file is generated from ‘sql_yacc.yy’. Normally the build process
doesn’t need to create ‘sql_yacc.cc’, because MySQL comes with an already generated
copy. However, if you do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison
(the GNU version of yacc) and use that instead.

e If you need to debug mysqld or a MySQL client, run configure with the —--with-
debug option, then recompile and link your clients with the new client library. See
Section E.2 [Debugging client], page 974.

e If you get a compilation error on Linux (e.g. SuSE Linux 8.1 or Red Hat Linux 7.3)
similar to the following one:

libmysql.c:1329: warning: passing arg 5 of ‘gethostbyname_r’ from incompatible]
libmysql.c:1329: too few arguments to function ‘gethostbyname_r’
libmysql.c:1329: warning: assignment makes pointer from integer without a cast]
make [2] : #** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of argu-
ments by using g++ the GNU C++ compiler. This test yields wrong results, if g++ is
not installed. There are two ways to work around this problem:

e Make sure that the GNU C++ g++ is installed. On some Linux distributions, the
required package is called gpp, on others it is named gcc—c++.

e Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

Please note that you need to run configure again afterwards.
2.3.6 MIT-pthreads Notes

This section describes some of the issues involved in using MIT-pthreads.

Chapter 2: MySQL Installation 109

Note that on Linux you should not use MIT-pthreads but use the installed LinuxThreads
implementation instead. See Section 2.6.1 [Linux], page 130.

If your system does not provide native thread support, you will need to build MySQL using
the MIT-pthreads package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4
and earlier, and some others. See Section 2.2.3 [Which OS], page 82.

Note, that beginning with MySQL 4.0.2 MIT-pthreads are no longer part of the source
distribution. If you require this package, you need to download it separately from
http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source
directory. It will create a new subdirectory mit-pthreads.

e On most systems, you can force MIT-pthreads to be used by running configure with
the ——with-mit-threads option:

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because
we want to minimise our changes to this code.

e The checks that determine whether to use MIT-pthreads occur only during the part
of the configuration process that deals with the server code. If you have configured
the distribution using —-without-server to build only the client code, clients will not
know whether MIT-pthreads is being used and will use Unix socket connections by
default. Because Unix sockets do not work under MIT-pthreads on some platforms,
this means you will need to use -h or --host when you run client programs.

e When MySQL is compiled using MIT-pthreads, system locking is disabled by default
for performance reasons. You can tell the server to use system locking with the —-
external-locking option. This is only needed if you want to be able to run two
MySQL servers against the same datafiles (not recommended).

e Sometimes the pthread bind() command fails to bind to a socket without any error
message (at least on Solaris). The result is that all connections to the server fail. For
example:

shell> mysqladmin version
mysqladmin: connect to server at ’’ failed;
error: ’Can’t connect to mysql server on localhost (146)’

The solution to this is to kill the mysqld server and restart it. This has only happened
to us when we have forced the server down and done a restart immediately.

e With MIT-pthreads, the sleep() system call isn’t interruptible with SIGINT (break).
This is only noticeable when you run mysqladmin --sleep. You must wait for the
sleep() call to terminate before the interrupt is served and the process stops.

e When linking, you may receive warning messages like these (at least on Solaris); they
can be ignored:
1d: warning: symbol ‘_iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;
file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken
1d: warning: symbol ‘__iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

110 MySQL Technical Reference for Version 4.1.1-alpha

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

e Some other warnings also can be ignored:

implicit declaration of function ‘int strtoll(...)’
implicit declaration of function ‘int strtoul(...)’

e We haven’t gotten readline to work with MIT-pthreads. (This isn’t needed, but may
be interesting for someone.)

2.3.7 Windows Source Distribution

You will need the following:

e VC++ 6.0 compiler (updated with 4 or 5 SP and Pre-processor package) The
Pre-processor package is mnecessary for the macro assembler. More details at:
http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx.

e The MySQL source distribution for Windows, which can be downloaded from
http://www.mysql.com/downloads/.
Building MySQL:
1. Create a work directory (for example, ‘workdir’).
Unpack the source distribution in the aforementioned directory.
Start the VC++ 6.0 compiler.
In the File menu, select Open Workspace.
Open the ‘mysql.dsw’ workspace you find on the work directory.
From the Build menu, select the Set Active Configuration menu.
Click over the screen selecting mysqld - Win32 Debug and click OK.

Press F7 to begin the build of the debug server, libraries, and some client applications.

© 00N o e N

When the compilation finishes, copy the libraries and the executables to a separate
directory.

10. Compile the release versions that you want, in the same way.
11. Create the directory into which to install the MySQL stuff (for example, ‘c:\mysql’).
12. From the ‘workdir’ directory copy into the c:\mysql directory the following directories:

e ‘Data’
e ‘Docs’
e ‘Share’

13. Create the directory ‘c:\mysql\bin’ and copy into it all the servers and clients that
you just compiled.

14. If you want, also create the ‘c:\mysql\1lib’ directory and copy the libraries that you
just compiled.

15. Do a clean using Visual Studio.

Set up and start the server in the same way as for the binary Windows distribution. See
Section 2.1.2.2 [Windows prepare environment|, page 74.

Chapter 2: MySQL Installation 111

2.4 Post-installation Setup and Testing

Once you've installed MySQL (from either a binary or source distribution), you need to
initialise the grant tables, start the server, and make sure that the server works okay. You
may also wish to arrange for the server to be started and stopped automatically when your
system starts up and shuts down.

Normally you install the grant tables and start the server like this for installation from a
source distribution:

shell> ./scripts/mysql_install_db
shell> cd mysql_installation_directory
shell> ./bin/mysqld_safe --user=mysql &

For a binary distribution (not RPM or pkg packages), do this:

shell> cd mysql_installation_directory
shell> ./scripts/mysql_install_db
shell> ./bin/mysqld_safe --user=mysql &

The mysql_install_db script creates the mysql database which will hold all database
privileges, the test database which you can use to test MySQL, and also privilege entries
for the user that runs mysql_install_db and a root user. The entries are created without
passwords. The mysqld_safe script starts the mysqld server. (If your version of MySQL
is older than 4.0, use safe_mysqld rather than mysqld_safe.)

mysql_install_db will not overwrite any old privilege tables, so it should be safe to run
in any circumstances. If you don’t want to have the test database you can remove it with
mysqladmin -u root drop test after starting the server.

Testing is most easily done from the top-level directory of the MySQL distribution.
For a binary distribution, this is your installation directory (typically something like
‘/usr/local/mysql’). For a source distribution, this is the main directory of your MySQL
source tree.

In the commands shown in this section and in the following subsections, BINDIR is the
path to the location in which programs like mysqladmin and mysqld_safe are installed.
For a binary distribution, this is the ‘bin’ directory within the distribution. For a source
distribution, BINDIR is probably ‘/usr/local/bin’, unless you specified an installation
directory other than ‘/usr/local’ when you ran configure. EXECDIR is the location in
which the mysqld server is installed. For a binary distribution, this is the same as BINDIR.
For a source distribution, EXECDIR is probably ‘/usr/local/libexec’.

Testing is described in detail:

1. If necessary, start the mysqld server and set up the initial MySQL grant tables con-
taining the privileges that determine how users are allowed to connect to the server.
This is normally done with the mysql_install_db script:

shell> scripts/mysql_install_db

Typically, mysql_install_db needs to be run only the first time you install MySQL.
Therefore, if you are upgrading an existing installation, you can skip this step. (How-
ever, mysql_install_db is quite safe to use and will not update any tables that already
exist, so if you are unsure of what to do, you can always run mysql_install_db.)

112

MySQL Technical Reference for Version 4.1.1-alpha

mysql_install_db creates six tables (user, db, host, tables_priv, columns_priv,
and func) in the mysql database. A description of the initial privileges is given in
Section 4.3.4 [Default privileges|, page 253. Briefly, these privileges allow the MySQL
root user to do anything, and allow anybody to create or use databases with a name
of test or starting with test_.

If you don’t set up the grant tables, the following error will appear in the log file when
you start the server:

mysqld: Can’t find file: ’host.frm’

This may also happen with a binary MySQL distribution if you don’t start MySQL by
executing exactly ./bin/mysqld_safe. See Section 4.7.2 [mysqld_safe|, page 318.

You might need to run mysql_install_db as root. However, if you prefer, you can
run the MySQL server as an unprivileged (non-root) user, provided that the user can
read and write files in the database directory. Instructions for running MySQL as an
unprivileged user are given in Section A.3.2 [Changing MySQL user|, page 827.

If you have problems with mysql_install_db, see Section 2.4.1 [mysql_install_db],
page 114.

There are some alternatives to running the mysql_install_db script as it is provided
in the MySQL distribution:

e You may want to edit mysql_install_db before running it, to change the initial
privileges that are installed into the grant tables. This is useful if you want to
install MySQL on a lot of machines with the same privileges. In this case you
probably should need only to add a few extra INSERT statements to the mysql.user
and mysql.db tables.

e If you want to change things in the grant tables after installing them, you can run
mysql_install_db, then use mysql -u root mysql to connect to the grant tables
as the MySQL root user and issue SQL statements to modify the grant tables
directly.

e It is possible to re-create the grant tables completely after they have already been
created. You might want to do this if you’ve already installed the tables but then
want to re-create them after editing mysql_install_db.

For more information about these alternatives, see Section 4.3.4 [Default privileges],
page 253.
Start the MySQL server like this:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If you have problems starting the server, see Section 2.4.2 [Starting server|, page 116.

Use mysqladmin to verify that the server is running. The following commands provide
a simple test to check that the server is up and responding to connections:

shell> BINDIR/mysqladmin version

shell> BINDIR/mysqladmin variables
The output from mysqladmin version varies slightly depending on your platform and
version of MySQL, but should be similar to that shown here:

shell> BINDIR/mysqladmin version

Chapter 2: MySQL Installation 113

mysqladmin Ver 8.14 Distrib 3.23.32, for linux on ib586

Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

This software comes with ABSOLUTELY NO WARRANTY. This is free software,li
and you are welcome to modify and redistribute it under the GPL license.|}

Server version 3.23.32-debug

Protocol version 10

Connection Localhost via Unix socket
TCP port 3306

UNIX socket /tmp/mysql.sock

Uptime: 16 sec

Threads: 1 Questions: 9 Slow queries: O
Opens: 7 Flush tables: 2 Open tables: O
Queries per second avg: 0.000

Memory in use: 132K Max memory used: 16773K

To get a feeling for what else you can do with BINDIR/mysqladmin, invoke it with the
—-—help option.

4. Verify that you can shut down the server:
shell> BINDIR/mysqladmin -u root shutdown

5. Verify that you can restart the server. Do this using mysqld_safe or by invoking
mysqld directly. For example:

shell> BINDIR/mysqld_safe --log &

If mysqld_safe fails, try running it from the MySQL installation directory (if you are
not already there). If that doesn’t work, see Section 2.4.2 [Starting server|, page 116.

6. Run some simple tests to verify that the server is working. The output should be
similar to what is shown here:

shell> BINDIR/mysqlshow

O +
| Databases |
fom +
| mysql |
fomm +

shell> BINDIR/mysqlshow mysql
Database: mysql

columns_priv |
db |
func |
host |
tables_priv |
user |

114 MySQL Technical Reference for Version 4.1.1-alpha

shell> BINDIR/mysql -e "SELECT host,db,user FROM db" mysql

FR— R FRE— +
| host | db | user |
fo——— fommm R +
I % | test | I
| % | test_% | |
fo—m— S FRE— +

There is also a benchmark suite in the ‘sql-bench’ directory (under the MySQL in-
stallation directory) that you can use to compare how MySQL performs on different
platforms. The benchmark suite is written in Perl, using the Perl DBI module to
provide a database-independent interface to the various databases. The following ad-
ditional Perl modules are required to run the benchmark suite:

DBI

DBD-mysql

Data-Dumper

Data-ShowTable

These modules can be obtained from CPAN http://www.cpan.org/. See Section 2.7.1
[Perl installation], page 164.

The ‘sql-bench/Results’ directory contains the results from many runs against dif-
ferent databases and platforms. To run all tests, execute these commands:

shell> cd sql-bench

shell> run-all-tests

If you don’t have the ‘sql-bench’ directory, you are probably using an RPM for a binary
distribution. (Source distribution RPMs include the benchmark directory.) In this case,
you must first install the benchmark suite before you can use it. Beginning with MySQL
Version 3.22, there are benchmark RPM files named ‘mysql-bench-VERSION-1386.rpm’
that contain benchmark code and data.

If you have a source distribution, you can also run the tests in the ‘tests’ subdirectory.
For example, to run ‘auto_increment.tst’, do this:

shell> BINDIR/mysql -vvf test < ./tests/auto_increment.tst

The expected results are shown in the ‘./tests/auto_increment.res’ file.

2.4.1 Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables.
It will not affect any other data. It will also not do anything if you already have MySQL
privilege tables installed.

If you want to re-create your privilege tables, you should take down the mysqld server, if
it’s running, and then do something like:

mv mysql-data-directory/mysql mysql-data-directory/mysql-old
mysql_install_db

This section lists problems you might encounter when you run mysql_install_db:

Chapter 2: MySQL Installation 115

mysql_install_db doesn’t install the grant tables
You may find that mysql_install_db fails to install the grant tables and ter-
minates after displaying the following messages:

starting mysqld daemon with databases from XXXXXX
mysql daemon ended

In this case, you should examine the log file very carefully. The log should
be located in the directory ‘XXXXXX’ named by the error message, and should
indicate why mysqld didn’t start. If you don’t understand what happened,
include the log when you post a bug report using mysqlbug. See Section 1.7.1.3
[Bug reports|, page 27.

There is already a mysqld daemon running
In this case, you probably don’t have to run mysql_install_db at all. You
have to run mysql_install_db only once, when you install MySQL the first
time.

Installing a second mysqld daemon doesn’t work when one daemon is running

This can happen when you already have an existing MySQL installation, but
want to put a new installation in a different place (for example, for testing,
or perhaps you simply want to run two installations at the same time). Gen-
erally the problem that occurs when you try to run the second server is that
it tries to use the same socket and port as the old one. In this case you will
get the error message: Can’t start server: Bind on TCP/IP port: Address
already in use or Can’t start server: Bind on unix socket.... See Sec-
tion 4.1.3 [Multiple servers], page 215.

You don’t have write access to ‘/tmp’
If you don’t have write access to create a socket file at the default place (in
‘/tmp’) or permission to create temporary files in ‘/tmp,’ you will get an error
when running mysql_install_db or when starting or using mysqld.

You can specify a different socket and temporary directory as follows:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysqld.sock
shell> export TMPDIR MYSQL_UNIX_PORT

See Section A.4.5 [Problems with mysql.sock], page 833.

‘some_tmp_dir’ should be the path to some directory for which you have write
permission. See Appendix F [Environment variables|, page 981.

After this you should be able to run mysql_install_db and start the server
with these commands:

shell> scripts/mysql_install_db
shell> BINDIR/mysqld_safe &

mysqld crashes immediately
If you are running Red Hat Version 5.0 with a version of glibc older than
2.0.7-5, you should make sure you have installed all glibc patches. There
is a lot of information about this in the MySQL mail archives. Links to the
mail archives are available online at http://lists.mysql.com/. Also, see Sec-
tion 2.6.1 [Linux], page 130.

116 MySQL Technical Reference for Version 4.1.1-alpha

You can also start mysqld manually using the --skip-grant-tables option
and add the privilege information yourself using mysql:

shell> BINDIR/mysqld_safe --skip-grant-tables &
shell> BINDIR/mysql -u root mysql

From mysql, manually execute the SQL commands in mysql_install_db.
Make sure you run mysqladmin flush-privileges or mysqladmin reload af-
terward to tell the server to reload the grant tables.

2.4.2 Problems Starting the MySQL Server

If you are going to use tables that support transactions (InnoDB, BDB), you should first
create a ‘my.cnf’ file and set startup options for the table types you plan to use. See
Chapter 7 [Table types], page 572.

Generally, you start the mysqld server in one of these ways:

e By invoking mysql.server. This script is used primarily at system startup and shut-
down, and is described more fully in Section 2.4.3 [Automatic start], page 118.

e By invoking mysqld_safe, which tries to determine the proper options for mysqld and
then runs it with those options. See Section 4.7.2 [mysqld_safe], page 318.

e For Windows NT/2000/XP, please see Section 2.6.2.2 [NT start], page 138.
e By invoking mysqld directly.

When the mysqld daemon starts up, it changes the directory to the data directory. This is
where it expects to write log files and the pid (process ID) file, and where it expects to find
databases.

The data directory location is hardwired in when the distribution is compiled. However, if
mysqld expects to find the data directory somewhere other than where it really is on your
system, it will not work properly. If you have problems with incorrect paths, you can find
out what options mysqld allows and what the default path settings are by invoking mysqld
with the --help option. You can override the defaults by specifying the correct pathnames
as command-line arguments to mysqld. (These options can be used with mysqld_safe as
well.)

Normally you should need to tell mysqld only the base directory under which MySQL is
installed. You can do this with the ——basedir option. You can also use ——help to check the
effect of changing path options (note that —-help must be the final option of the mysqld
command). For example:

shell> EXECDIR/mysqld --basedir=/usr/local --help
Once you determine the path settings you want, start the server without the —~help option.

Whichever method you use to start the server, if it fails to start up correctly, check the
log file to see if you can find out why. Log files are located in the data directory (typi-
cally ‘/usr/local/mysql/data’ for a binary distribution, ‘/usr/local/var’ for a source
distribution, and ‘\mysql\data\mysql.err’ on Windows). Look in the data directory for
files with names of the form ‘host_name.err’ and ‘host_name.log’ where host_name is the
name of your server host. Then check the last few lines of these files:

Chapter 2: MySQL Installation 117

shell> tail host_name.err
shell> tail host_name.log

Look for something like the following in the log file:

000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/tl.db: No such file or directory
000729 14:50:10 Can’t init databases

This means that you didn’t start mysqld with ——bdb-no-recover and Berkeley DB found
something wrong with its log files when it tried to recover your databases. To be able to
continue, you should move away the old Berkeley DB log file from the database directory to
some other place, where you can later examine it. The log files are named ‘1log.0000000001’,
where the number will increase over time.

If you are running mysqld with BDB table support and mysqld core dumps at start this
could be because of some problems with the BDB recover log. In this case you can try
starting mysqld with —-bdb-no-recover. If this helps, then you should remove all ‘log. *’
files from the data directory and try starting mysqld again.

If you get the following error, it means that some other program (or another mysqld server)
is already using the TCP/IP port or socket mysqld is trying to use:

Can’t start server: Bind on TCP/IP port: Address already in use
or
Can’t start server : Bind on unix socket...

Use ps to make sure that you don’t have another mysqld server running. If you can’t
find another server running, you can try to execute the command telnet your-host-name
tcp-ip-port-number and press Enter a couple of times. If you don’t get an error message
like telnet: Unable to connect to remote host: Connection refused, something is us-
ing the TCP/IP port mysqld is trying to use. See Section 2.4.1 [mysql_install_db], page 114
and Section 4.1.3 [Multiple servers|, page 215.

If mysqld is currently running, you can find out what path settings it is using by executing
this command:

shell> mysqladmin variables
or
shell> mysqladmin -h ’your-host-name’ variables

If you get Errcode 13, which means Permission denied, when starting mysqld this means
that you didn’t have the right to read/create files in the MySQL database or log directory.
In this case you should either start mysqld as the root user or change the permissions for
the involved files and directories so that you have the right to use them.

If mysqld_safe starts the server but you can’t connect to it, you should make sure you
have an entry in ‘/etc/hosts’ that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that don’t have a working thread library and for which
MySQL must be configured to use MIT-pthreads.

If you can’t get mysqld to start you can try to make a trace file to find the problem. See
Section E.1.2 [Making trace files|, page 970.

118 MySQL Technical Reference for Version 4.1.1-alpha

If you are using InnoDB tables, refer to the InnoDB-specific startup options. See Sec-
tion 7.5.3 [InnoDB start], page 585.

If you are using BDB (Berkeley DB) tables, you should familiarise yourself with the different
BDB-specific startup options. See Section 7.6.3 [BDB start]|, page 632.

2.4.3 Starting and Stopping MySQL Automatically

The mysql.server and mysqld_safe scripts can be used to start the server automatically
at system startup time. mysql.server can also be used to stop the server.

The mysql.server script can be used to start or stop the server by invoking it with start
or stop arguments:

shell> mysql.server start
shell> mysql.server stop

mysql.server can be found in the ‘share/mysql’ directory under the MySQL installation
directory or in the ‘support-files’ directory of the MySQL source tree. Note that if you
use the Linux RPM package (MySQL-server-VERSION.rpm), the mysql.server script has
already been installed as ‘/etc/init.d/mysql’ - you don’t have to install it manually. See
Section 2.1.1 [Linux-RPM], page 71 for more information on the Linux RPM packages.

Before mysql.server starts the server, it changes the directory to the MySQL installation
directory, then invokes mysqld_safe. You might need to edit mysql.server if you have a
binary distribution that you’ve installed in a non-standard location. Modify it to cd into
the proper directory before it runs mysqld_safe. If you want the server to run as some
specific user, add an appropriate user line to the ‘/etc/my.cnf’ file, as shown later in this
section.

mysql.server stop brings down the server by sending a signal to it. You can also take
down the server manually by executing mysqladmin shutdown.

You need to add these start and stop commands to the appropriate places in your ‘/etc/rc*’
files when you want to start up MySQL automatically on your server.

On most current Linux distributions, it is sufficient to copy the file mysql.server into the
‘/etc/init.d’ directory (or ‘/etc/rc.d/init.d’ on older Red Hat systems). Afterwards,
run the following command to enable the startup of MySQL on system bootup:

shell> chkconfig --add mysql.server

On FreeBSD startup scripts generally should go in ‘/usr/local/etc/rc.d/’. The rc(8)
manual page also states that scripts in this directory are only executed, if their basename
matches the shell globbing pattern *.sh. Any other files or directories present within
the directory are silently ignored. In other words, on FreeBSD you should install the file
‘mysql.server’ as ‘/usr/local/etc/rc.d/mysql.server.sh’ to enable automatic startup.

As an alternative to the above, some operating systems also use ‘/etc/rc.local’ or
‘/etc/init.d/boot.local’ to start additional services on bootup. To start up MySQL
using this method, you could append something like the following to it:

/bin/sh -c ’cd /usr/local/mysql ; ./bin/mysqld_safe --user=mysql &’

You can also add options for mysql.server in a global ‘/etc/my.cnf’ file. A typical
‘/etc/my.cnf’ file might look like this:

Chapter 2: MySQL Installation 119

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306

user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: datadir, basedir, and pid-
file.

The following table shows which option groups each startup script reads from option files:
Script Option groups

mysqld [mysqld] and [server]

mysql.server [mysql.server], [mysqld], and [server]

mysqld_safe [mysqld], [server], and [mysqld_safel

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead.

See Section 4.1.2 [Option files], page 212.
2.5 Upgrading/Downgrading MySQL

Before you do an upgrade, you should back up your old databases.

You can always move the MySQL form files and datafiles between different versions on the
same architecture as long as you have the same base version of MySQL. The current base
version is 4. If you change the character set when running MySQL, you must run myisamchk
-r -q —-set-character-set=charset on all tables. Otherwise, your indexes may not be
ordered correctly, because changing the character set may also change the sort order.

If you are afraid of new versions, you can always rename your old mysqld to something like
mysqld-old-version-number. If your new mysqld then does something unexpected, you
can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as
Commands out of sync or unexpected core dumps, you probably have used an old header
or library file when compiling your programs. In this case you should check the date for
your ‘mysql.h’ file and ‘libmysqlclient.a’ library to verify that they are from the new
MySQL distribution. If not, please recompile your programs.

If problems occur, such as that the new mysqld server doesn’t want to start or that you
can’t connect without a password, check that you don’t have some old ‘my.cnf’ file from
your old installation. You can check this with: program-name --print-defaults. If this
outputs anything other than the program name, you have an active ‘my.cnf’ file that will
affect things.

It is a good idea to rebuild and reinstall the Perl DBD-mysql module whenever you install
a new release of MySQL. The same applies to other MySQL interfaces as well, such as the
Python MySQLdb module.

120 MySQL Technical Reference for Version 4.1.1-alpha

2.5.1 Upgrading From Version 4.0 to 4.1

2.5.1.1 Preparing to Upgrade From Version 4.0 to 4.1

Some visible things have changed between MySQL 4.0 and MySQL 4.1 to fix some critical
bugs and make MySQL more compatible with the ANSI SQL standard.

Instead of adding options (and a lot of code) to try to make 4.1 behave like 4.0 we have
taken another approach:

We have added to the later MySQL 4.0 releases (from 4.0.12 on) the —-new startup option
for mysqld, which gives you the 4.1 behaviour for the most critical changes. You can also
set this behaviour for a given client connection with the SET @Onew=1 command.

If you believe that some of the following changes will affect you when you upgrade to 4.1,
we recommend that before upgrading to 4.1, you download the latest MySQL 4.0 version
and make sure that your applications work in the --new mode. This way you will have a
smooth painless upgrade to 4.1 later.

In MySQL 4.1 we have done some things that may affect applications. The following is a
list of things that you have to watch out for when upgrading to version 4.1:

e TIMESTAMP is now returned as a string with the format ’YYYY-MM-DD HH:MM:SS’. If
you want to have this as a number (like Version 4.0 does) should add +0 to TIMESTAMP
columns when you retrieve them. Different TIMESTAMP display widths are no longer
supported.

This change was necessary for SQL standards compliance. In a future version, a further
change will be made (backward compatible with this change), allowing the timestamp
length to indicate the desired number of digits for fractions of a second.

e For functions that produce a DATE, DATETIME, or TIME value, the result returned to the
client now is fixed up to have a temporal type. For example, in MySQL 4.1, you get
this result:

mysql> SELECT CAST("2001-1-1" as DATETIME);
-> ’2001-01-01 00:00:00’
In MySQL 4.0, the result is different:
mysql> SELECT CAST("2001-1-1" as DATETIME);
-> ’2001-01-01"

e Binary values such as OxFFDF now are assumed to be strings instead of numbers. This
fixes some problems with character sets where it’s convenient to input the string as a
binary values. With this change, you should use CAST () if you want to compare binary
values numerically as integers:

SELECT CAST(OxXFEFF AS UNSIGNED INTEGER) < CAST(OxFF AS UNSIGNED INTEGER)N
Using binary items in a numeric context or comparing them using the = operator should
work as before. (The --new option can be used to make the server behave as 4.1 in
this repect from 4.0.13 on.)

e AUTO_INCREMENT columns cannot take DEFAULT values. (In 4.0 these were just silently
ignored; in 4.1, an error occurs).

Chapter 2: MySQL Installation 121

e SERIALIZE is no longer a valid option value for the sql_mode variable.
You should wuse SET TRANSACTION ISOLATION LEVEL SERIALIZABLE instead.
SERIALIZE is no longer valid for the --sql-mode option for mysqld, either. Use
--transaction-isolation=SERIALIZABLE instead.

e All column and tables now have a character set, which shows up in SHOW CREATE TABLE
and mysqldump. (MySQL versions 4.0.6 and above can read the new dump files; older
versions cannot.)

e If you are running multiple servers on the same Windows machine, you should use a
different --shared_memory_base_name option on all machines.

Note: The table definition format used in ‘.frm’ files has changed slightly in 4.1. MySQL
4.0 versions from 4.0.11 on can read the new ‘.frm’ format directly, but older versions
cannot. If you need to move tables from 4.1 to an earlier MySQL version, you should use
mysqldump. See Section 4.8.6 [mysqldump|, page 345.

If you are running MySQL Server on Windows, please also see Section 2.5.7 [Windows
upgrading], page 129.

2.5.1.2 What to do when upgrading from 4.0 to 4.1

In general, upgrading to 4.1 from an earlier MySQL version involves the following steps:

e Check the changes section if there is some change that may affect your application. See
Section 2.5.1.1 [Prepare-upgrade-4.0-4.1], page 120.

e Read the 4.1 news items to see what significant new features you can use in 4.1. See
Section D.2 [News-4.1.x], page 858.

e Run the script mysql_fix_privilege_tables to generate the new longer Password
column that is needed for secure handling of passwords.

The password hashing mechanism has changed in 4.1 to provide better security, but this
may cause compatibility problems if you still have clients that use the client library from
4.0 or earlier. (It is very likely that you will have 4.0 clients in situations where clients
connect from remote hosts that have not yet upgraded to 4.1). The following list indicates
some possible upgrade strategies. They represent various tradeoffs between the goal of
compatibility with old clients and the goal of security.

e Don’t upgrade to 4.1. No behaviour will change, but of course you cannot use any of
the new features provided by the 4.1 client/server protocol, either. (MySQL 4.1 has
an extended client/server protocol that offers such features as prepared statements and
multiple result sets.) See Section 9.1.4 [C API Prepared statements], page 706.

e Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table so that it can hold long password hashes. But run
the server with the —-old-passwords option to provide backward compatibility that
allows pre-4.1 clients to continue to connect to their short-hash accounts. Eventually,
when all your clients are upgraded to 4.1, you can stop using the --old-passwords
server option. You can also change the passwords for your MySQL accounts to use
the new more secure format.

e Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table. If you know that all clients also have been

122 MySQL Technical Reference for Version 4.1.1-alpha

upgraded to 4.1, don’t run the server with the --old-passwords option. Instead,
change the passwords on all existing accounts so that they have the new format. A
pure-4.1 installation is the most secure.

Further background on password hashing with respect to client authentication and
password-changing operations may be found in Section 4.2.11 [Password hashing],
page 239.

2.5.2 Upgrading From Version 3.23 to 4.0

In general, you should do the following when upgrading to 4.0 from an earlier MySQL
version:

e Run the script mysql_fix_privilege_tables to add new privileges and features to
the MySQL privilege tables.

e Edit any MySQL startup scripts or configure files to not use any of the deprecated
options described later in this section.

e Convert your old ISAM files to MyISAM files with the mysql_convert_table_format
database script. (This is a Perl script; it requires that DBI be installed.) To convert
the tables in a given database, use this command:

shell> mysql_convert_table_format database db_name

Note that this should only be used if all tables in the given database are ISAM or MyISAM
tables. To avoid converting tables of other types to MyISAM, you can explicitly list the
names of your ISAM tables after the database name on the command line. You can
also issue a ALTER TABLE table_name TYPE=MyISAM statement for each ISAM table to
convert it to MyISAM.

e Ensure that you don’t have any MySQL clients that use shared libraries (like the Perl
DBD-mysql mode). If you do, you should recompile them, because the data struc-
tures used in ‘libmysqlclient.so’ have changed. The same applies to other MySQL
interfaces as well, such as the Python MySQLdb module.

MySQL 4.0 will work even if you don’t do the above, but you will not be able to use the new
security privileges that MySQL 4.0 and you may run into problems when upgrading later
to MySQL 4.1 or newer. The ISAM file format still works in MySQL 4.0 but it’s deprecated
and will be disabled in MySQL 5.0.

Old clients should work with a Version 4.0 server without any problems.

Even if you do the above, you can still downgrade to MySQL 3.23.52 or newer if you run
into problems with the MySQL 4.0 series. In this case, you must use mysqldump to dump
any tables that use full-text indexes and reload the dump file into the 3.23 server. This is
necessary because 4.0 uses a new format for full-text indexing.

The following is a more complete list that tells what you must watch out for when upgrading
to version 4.0:
e MySQL 4.0 has a lot of new privileges in the mysql.user table. See Section 4.3.1
[GRANT], page 248.

To get these new privileges to work, you must run the mysql_fix_privilege_tables
script. Until you do, all users have the SHOW DATABASES, CREATE TEMPORARY TABLES,

Chapter 2: MySQL Installation 123

and LOCK TABLES privileges. SUPER and EXECUTE privileges take their value from
PROCESS. REPLICATION SLAVE and REPLICATION CLIENT take their values from FILE.

If you have any scripts that create new users, you may want to change them to use the
new privileges. If you are not using GRANT commands in the scripts, this is a good time
to change your scripts to use GRANT instead of modifying the grant tables directly..

From version 4.0.2 on, the option --safe-show-database is deprecated (and no longer
does anything). See Section 4.2.3 [Privileges options], page 225.

If you get Access denied errors for new users in version 4.0.2 and up, you should check
if you need some of the new grants that you didn’t need before. In particular, you will
need REPLICATION SLAVE (instead of FILE) for new slaves.

‘safe_mysqld’ is renamed to ‘mysqld_safe’. For backward compatibility, binary dis-
tributions will for some time include safe_mysqld as a symlink to mysqld_safe.

The startup parameters myisam_max_extra_sort_file_size and myisam_max_
extra_sort_file_size are now given in bytes (they were given in megabytes before
4.0.3).

External system locking of MyISAM/ISAM files is now turned off by default. Your can
turn this on by doing --external-locking. (However, this is never needed for most
users.)

The following startup variables/options have been renamed:

0Old Name New Name
myisam_bulk_insert_tree_size bulk_insert_buffer_size
query_cache_startup_type query_cache_type
record_buffer read_buffer_size
record_rnd_buffer read_rnd_buffer_size
sort_buffer sort_buffer_size

warnings log-warnings

-—err-log --log-error (for mysqld_safe)

The startup options record_buffer, sort_buffer and warnings will still work in
MySQL 4.0 but are deprecated.

The following SQL variables have changed name.

Old Name New Name
SQL_BIG_TABLES BIG_TABLES
SQL_LOW_PRIORITY_UPDATES LOW_PRIORITY_UPDATES
SQL_MAX_JOIN_SIZE MAX_JOIN_SIZE
SQL_QUERY_CACHE_TYPE QUERY_CACHE_TYPE

The old names still work in MySQL 4.0 but are deprecated.

You have to use SET GLOBAL SQL_SLAVE_SKIP_COUNTER=# instead of SET SQL_SLAVE_
SKIP_COUNTER=#.

The mysqld startup options —-skip-locking and --enable-locking were renamed
to ——skip-external-locking and --external-locking.

SHOW MASTER STATUS now returns an empty set if binary logging is not enabled.
SHOW SLAVE STATUS now returns an empty set if slave is not initialised.

mysqld now has the option —-—temp-pool enabled by default as this gives better per-
formance with some operating systems (most notably Linux).

124

MySQL Technical Reference for Version 4.1.1-alpha

DOUBLE and FLOAT columns now honour the UNSIGNED flag on storage (before, UNSIGNED
was ignored for these columns).

ORDER BY col_name DESC sorts NULL values last, as of MySQL 4.0.11. In 3.23 and in
earlier 4.0 versions, this was not always consistent.

SHOW INDEX has two more columns (Null and Index_type) than it had in 3.23.
CHECK, SIGNED, LOCALTIME and LOCALTIMESTAMP are now reserved words.

The result of all bitwise operators (|, &, <<, >>, and 7)) is now unsigned. This may
cause problems if you are using them in a context where you want a signed result. See
Section 6.3.5 [Cast Functions], page 503.

Note: when you use subtraction between integer values where one is of type UNSIGNED,
the result will be unsigned. In other words, before upgrading to MySQL 4.0, you
should check your application for cases where you are subtracting a value from an
unsigned entity and want a negative answer or subtracting an unsigned value from
an integer column. You can disable this behaviour by using the --sql-mode=N0_
UNSIGNED_SUBTRACTION option when starting mysqld. See Section 6.3.5 [Cast Func-
tions], page 503.

To use MATCH ... AGAINST (... IN BOOLEAN MODE) with your tables, you need to re-
build them with REPAIR TABLE table_name USE_FRM.

LOCATE() and INSTR() are case-sensitive if one of the arguments is a binary string.
Otherwise they are case-insensitive.

STRCMP () now uses the current character set when doing comparisons, which means
that the default comparison behaviour now is case-insensitive.

HEX (string) now returns the characters in string converted to hexadecimal. If you
want to convert a number to hexadecimal, you should ensure that you call HEX() with
a numeric argument.

In 3.23, INSERT INTO ... SELECT always had IGNORE enabled. In 4.0.1, MySQL will
stop (and possibly roll back) by default in case of an error unless you specify IGNORE.

The old C API functions mysql_drop_db(), mysql_create_db(), and
mysql_connect() are no longer supported unless you compile MySQL with
CFLAGS=-DUSE_OLD_FUNCTIONS. However, it is preferable to change client programs
to use the new 4.0 API instead.

In the MYSQL_FIELD structure, length and max_length have changed from unsigned
int to unsigned long. This should not cause any problems, except that they may
generate warning messages when used as arguments in the printf () class of functions.

You should use TRUNCATE TABLE when you want to delete all rows from a table and you
don’t need to obtain a count of the number of rows that were deleted. (DELETE FROM
table_name returns a row count in 4.0, and TRUNCATE TABLE is faster.)

You will get an error if you have an active LOCK TABLES or transaction when trying to
execute TRUNCATE TABLE or DROP DATABASE.

You should use integers to store values in BIGINT columns (instead of using strings,
as you did in MySQL 3.23). Using strings will still work, but using integers is more
efficient.

The format of SHOW OPEN TABLES has changed.

Chapter 2: MySQL Installation 125

e Multi-threaded clients should use mysql_thread_init() and mysql_thread_end().
See Section 9.1.14 [Threaded clients], page 740.

e If you want to recompile the Perl DBD: :mysql module, you must get DBD-mysql version
1.2218 or newer because older DBD modules used the deprecated mysql_drop_db()
call. Version 2.1022 or newer is recommended.

e RAND(seed) returns a different random number series in 4.0 than in 3.23; this was done
to further differentiate RAND (seed) and RAND (seed+1).

e The default type returned by IFNULL(A,B) is now set to be the more ’general’ of the
types of A and B. (The general-to-specific order is string, REAL or INTEGER).

If you are running MySQL Server on Windows, please also see Section 2.5.7 [Windows
upgrading], page 129. If you are using replication, please also see Section 4.10.2 [Replication
Implementation], page 361.

2.5.3 Upgrading From Version 3.22 to 3.23

MySQL Version 3.23 supports tables of the new MyISAM type and the old ISAM type. You
don’t have to convert your old tables to use these with Version 3.23. By default, all new
tables will be created with type MyISAM (unless you start mysqld with the --default-
table-type=isam option). You can convert an ISAM table to MyISAM format with ALTER
TABLE table_name TYPE=MyISAM or the Perl script mysql_convert_table_format.

Version 3.22 and 3.21 clients will work without any problems with a Version 3.23 server.
The following list tells what you have to watch out for when upgrading to Version 3.23:

e All tables that use the tis620 character set must be fixed with myisamchk -r or REPAIR
TABLE.

e If you do a DROP DATABASE on a symbolically-linked database, both the link and the
original database are deleted. (This didn’t happen in 3.22 because configure didn’t
detect the availability of the readlink() system call.)

e OPTIMIZE TABLE now works only for MyISAM tables. For other table types, you can use
ALTER TABLE to optimise the table. During OPTIMIZE TABLE, the table is now locked
to prevent it from being used by other threads.

e The MySQL client mysql is now by default started with the option --no-named-
commands (-g). This option can be disabled with --enable-named-commands (-G).
This may cause incompatibility problems in some cases—for example, in SQL scripts
that use named commands without a semicolon. Long format commands still work
from the first line.

e Date functions that work on parts of dates (like MONTH()) will now return 0 for 0000~
00-00 dates. (In MySQL 3.22, these functions returned NULL.)

e If you are using the german character sort order for ISAM tables, you must repair them
with isamchk -r, because we have made some changes in the sort order.

e The default return type of IF() now depends on both arguments and not only the first
argument.

e AUTO_INCREMENT columns should not be used to store negative numbers. The reason for
this is that negative numbers caused problems when wrapping from -1 to 0. You should

126

MySQL Technical Reference for Version 4.1.1-alpha

not store 0 in AUTO_INCREMENT columns, either; CHECK TABLE will complain about 0
values because they may change if you dump and restore the table. AUTO_INCREMENT
for MyISAM tables is now handled at a lower level and is much faster than before. In
addition, for MyISAM tables, old numbers are no longer reused, even if you delete rows
from the table.

CASE, DELAYED, ELSE, END, FULLTEXT, INNER, RIGHT, THEN, and WHEN are now reserved
words.

FLOAT(X) is now a true floating-point type and not a value with a fixed number of
decimals.

When declaring columns using a DECIMAL (1ength,dec) type, the length argument no
longer includes a place for the sign or the decimal point.

A TIME string must now be of one of the following formats: [[[DAYS]
[HIH:1MM:1SS[.fraction] or [[[[[HIH]JH]IHIMMISS[.fraction].

LIKE now compares strings using the same character comparison rules as for the = op-
erator. If you require the old behaviour, you can compile MySQL with the CXXFLAGS=-
DLIKE_CMP_TOUPPER flag.

REGEXP is now case-insensitive if neither of the strings are binary strings.

When you check or repair MyISAM (‘.MYI’) tables, you should use the CHECK TABLE
statement or the myisamchk command. For ISAM (‘.ISM’) tables, use the isamchk
command.

If you want your mysqldump files to be compatible between MySQL Version 3.22 and
Version 3.23, you should not use the --opt or ——all option to mysqldump.

Check all your calls to DATE_FORMAT () to make sure there is a ‘)’ before each format
character. (MySQL Version 3.22 and later already allowed this syntax.)
mysql_fetch_fields_direct() is now a function (it used to be a macro) and it returns
a pointer to a MYSQL_FIELD instead of a MYSQL_FIELD.

mysql_num_fields() can no longer be used on a MYSQL* object (it’s now a function
that takes a MYSQL_RES* value as an argument). With a MYSQL* object, you should
now use mysql_field_count () instead.

In MySQL Version 3.22, the output of SELECT DISTINCT ... was almost always sorted.
In Version 3.23, you must use GROUP BY or ORDER BY to obtain sorted output.

SUM() now returns NULL instead of 0 if there are no matching rows. This is required
by SQL-99.

An AND or OR with NULL values will now return NULL instead of 0. This mostly affects
queries that use NOT on an AND/OR expression as NOT NULL = NULL.

LPAD() and RPAD() now shorten the result string if it’s longer than the length argument.

2.5.4 Upgrading from Version 3.21 to 3.22

Nothing that affects compatibility has changed between versions 3.21 and 3.22. The only
pitfall is that new tables that are created with DATE type columns will use the new way to
store the date. You can’t access these new columns from an old version of mysqld.

After installing MySQL Version 3.22, you should start the new server and then run the
mysql_fix_privilege_tables script. This will add the new privileges that you need to

Chapter 2: MySQL Installation 127

use the GRANT command. If you forget this, you will get Access denied when you try to use
ALTER TABLE, CREATE INDEX, or DROP INDEX. If your MySQL root user requires a password,
you should give this as an argument to mysql_fix_privilege_tables.

The C API interface to mysql_real_connect() has changed. If you have an old client
program that calls this function, you must place a 0 for the new db argument (or recode
the client to send the db element for faster connections). You must also call mysql_init ()
before calling mysql_real_connect(). This change was done to allow the new mysql_
options() function to save options in the MYSQL handler structure.

The mysqld variable key_buffer has been renamed to key_buffer_size, but you can still
use the old name in your startup files.

2.5.5 Upgrading from Version 3.20 to 3.21

If you are running a version older than Version 3.20.28 and want to switch to Version 3.21,
you need to do the following:

You can start the mysqld Version 3.21 server with the -—old-protocol option to use it with
clients from a Version 3.20 distribution. In this case, the new client function mysql_errno ()
will not return any server error, only CR_UNKNOWN_ERROR (but it works for client errors),
and the server uses the old pre-3.21 password () checking rather than the new method.

If you are not using the --old-protocol option to mysqld, you will need to make the
following changes:

e All client code must be recompiled. If you are using ODBC, you must get the new
MyODBC 2.x driver.

e The script scripts/add_long_password must be run to convert the Password field in
the mysql.user table to CHAR(16).

e All passwords must be reassigned in the mysql.user table (to get 62-bit rather than
31-bit passwords).

e The table format hasn’t changed, so you don’t have to convert any tables.

MySQL Version 3.20.28 and above can handle the new user table format without affecting
clients. If you have a MySQL version earlier than Version 3.20.28, passwords will no longer
work with it if you convert the user table. So to be safe, you should first upgrade to at
least Version 3.20.28 and then upgrade to Version 3.21.

The new client code works with a 3.20.x mysqld server, so if you experience problems with
3.21.x, you can use the old 3.20.x server without having to recompile the clients again.

If you are not using the --old-protocol option to mysqld, old clients will be unable to
connect and will issue the following error message:

ERROR: Protocol mismatch. Server Version = 10 Client Version = 9

The new Perl DBI /DBD interface also supports the old mysqlperl interface. The only change
you have to make if you use mysqlperl is to change the arguments to the connect()
function. The new arguments are: host, database, user, and password (note that the
user and password arguments have changed places). See Section 9.5.2 [Perl DBI Class],
page 758.

The following changes may affect queries in old applications:

128 MySQL Technical Reference for Version 4.1.1-alpha

e HAVING must now be specified before any ORDER BY clause.
e The parameters to LOCATE() have been swapped.
e There are some new reserved words. The most notable are DATE, TIME, and TIMESTAMP.

2.5.6 Upgrading to Another Architecture

If you are using MySQL Version 3.23, you can copy the ‘.frm’, ‘.MYI’, and ‘.MYD’ files for
MyISAM tables between different architectures that support the same floating-point format.
(MySQL takes care of any byte-swapping issues.) See Section 7.1 [MyISAM Tables|, page 573.
The MySQL ISAM data and index files (‘.ISD’ and ‘*.ISM’, respectively) are architecture-
dependent and in some cases OS-dependent. If you want to move your applications to
another machine that has a different architecture or OS than your current machine, you
should not try to move a database by simply copying the files to the other machine. Use
mysqldump instead.
By default, mysqldump will create a file containing SQL statements. You can then transfer
the file to the other machine and feed it as input to the mysql client.
Try mysqldump —-help to see what options are available. If you are moving the data to a
newer version of MySQL, you should use mysqldump --opt with the newer version to get a
fast, compact dump.
The easiest (although not the fastest) way to move a database between two machines is to
run the following commands on the machine on which the database is located:

shell> mysqgladmin -h ’other hostname’ create db_name

shell> mysqldump --opt db_name \

| mysql -h ’other hostname’ db_name

If you want to copy a database from a remote machine over a slow network, you can use:

shell> mysqladmin create db_name

shell> mysqldump -h ’other hostname’ --opt --compress db_name \

| mysql db_name

You can also store the result in a file, then transfer the file to the target machine and load
the file into the database there. For example, you can dump a database to a file on the
source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.contents.gz

(The file created in this example is compressed.) Transfer the file containing the database
contents to the target machine and run these commands there:

shell> mysqladmin create db_name

shell> gunzip < db_name.contents.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For big tables,
this is much faster than simply using mysqldump. In the following commands, DUMPDIR
represents the full pathname of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:
shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the
target machine and load the files into MySQL there:

Chapter 2: MySQL Installation 129

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Also, don’t forget to copy the mysql database because that’s where the grant tables (user,
db, host) are stored. You may have to run commands as the MySQL root user on the new
machine until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.5.7 Upgrading MySQL under Windows

When upgrading MySQL under Windows, please follow these steps:

1. Download the latest Windows distribution of MySQL.

2. Choose a time of day with low usage, where a maintenance break is acceptable.
3. Alert the users that still are active about the maintenance break.
4

. Stop the running MySQL Server (for example, with NET STOP mysql if you are running
MySQL as a service, or with mysqladmin shutdown otherwise).

o

Exit the WinMySQLadmin program if it is running.

6. Run the installation script of the Windows distribution, by clicking the "Install" button
in WinZip and following the installation steps of the script.

7. You may either overwrite your old MySQL installation (usually located at ‘C:\mysql’),
or install it into a different directory, such as C:\mysql4. Overwriting the old installa-
tion is recommended.

8. The version of MySQL that is started as a service is determined by the basedir pa-
rameter in the ‘my.ini’ file of your Windows directory (for example, C:\WINNT).

9. Restart the server (for example, with NET START mysql if you run MYSQL as a service,
or by invoking mysqld directly otherwise).

Possible error situations:

A system error has occurred.
System error 1067 has occurred.
The process terminated unexpectedly.

This cryptic error means that your ‘my . cnf’ file (by default ‘C: \my.cnf’) contains an option
that cannot be recognised by MySQL. You can verify that this is the case by trying to restart
MySQL with the ‘my.cnf’ file renamed, for example, to ‘my.cnf.o0ld’ to prevent the server
from using it. Once you have verified it, you need to identify which option is the culprit.
Create a new ‘my.cnf’ file and move parts of the old file to it (restarting the server after
you move each part) until you determine which part causes server startup to fail.

2.6 Operating System Specific Notes

130 MySQL Technical Reference for Version 4.1.1-alpha

2.6.1 Linux Notes (All Linux Versions)

The following notes regarding glibc apply only to the situation when you build MySQL
yourself. If you are running Linux on an x86 machine, in most cases it is much better for
you to just use our binary. We link our binaries against the best patched version of glibc
we can come up with and with the best compiler options, in an attempt to make it suitable
for a high-load server. So if you read the following text, and are in doubt about what you
should do, try our binary first to see if it meets your needs, and worry about your own build
only after you have discovered that our binary is not good enough. In that case, we would
appreciate a note about it, so we can build a better binary next time. For a typical user,
even for setups with a lot of concurrent connections and/or tables exceeding the 2G limit,
our binary in most cases is the best choice.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn’t
have glibc2, you must install LinuxThreads before trying to compile MySQL. You can get
LinuxThreads at http://www.mysql.com/downloads/os-1linux.html.

Note: we have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems.
If you have a SMP system, we recommend you upgrade to Linux 2.4 as soon as possible.
Your system will be faster and more stable by doing this.

Note that glibc versions before and including Version 2.1.1 have a fatal bug in pthread_
mutex_timedwait handling, which is used when you do INSERT DELAYED. We recommend
that you not use INSERT DELAYED before upgrading glibc.

If you plan to have 1000+ concurrent connections, you will need to make some changes to
LinuxThreads, recompile it, and relink MySQL against the new ‘libpthread.a’. Increase
PTHREAD_THREADS_MAX in ‘sysdeps/unix/sysv/linux/bits/local_lim.h’ to 4096 and de-
crease STACK_SIZE in ‘linuxthreads/internals.h’ to 256 KB. The paths are relative to
the root of glibc Note that MySQL will not be stable with around 600-1000 connections
if STACK_SIZE is the default of 2 MB.

If MySQL can’t open enough files, or connections, it may be that you haven’t configured
Linux to handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles by doing;:

cat /proc/sys/fs/file-max
cat /proc/sys/fs/dquot-max
cat /proc/sys/fs/super-max

If you have more than 16 MB of memory, you should add something like the following to
your init scripts (for example, ‘/etc/init.d/boot.local’ on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the preceding commands from the command-line as root, but these settings
will be lost the next time your computer reboots.

Alternatively, you can set these parameters on bootup by using the sysctl tool, which is
used by many Linux distributions (SuSE has added it as well, beginning with SuSE Linux
8.0). Just put the following values into a file named ‘/etc/sysctl.conf’:

Chapter 2: MySQL Installation 131

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to ‘/etc/my.cnf’:

[mysqld_safe]
open-files-1imit=8192

This should allow MySQL to create up to 8192 connections + files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the
address space. It needs to be large enough so that there will be plenty of room for the
stack of each individual thread, but small enough to keep the stack of some threads from
running into the global mysqld data. Unfortunately, the Linux implementation of mmap(),
as we have experimentally discovered, will successfully unmap an already mapped region if
you ask it to map out an address already in use, zeroing out the data on the entire page,
instead of returning an error. So, the safety of mysqld or any other threaded application
depends on the "gentleman" behaviour of the code that creates threads. The user must
take measures to make sure the number of running threads at any time is sufficiently low
for thread stacks to stay away from the global heap. With mysqld, you should enforce this
"gentleman" behaviour by setting a reasonable value for the max_connections variable.

If you build MySQL yourself and do not want to mess with patching LinuxThreads, you
should set max_connections to a value no higher than 500. It should be even less if you
have a large key buffer, large heap tables, or some other things that make mysqld allocate a
lot of memory, or if you are running a 2.2 kernel with a 2G patch. If you are using our binary
or RPM version 3.23.25 or later, you can safely set max_connections at 1500, assuming
no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE in
LinuxThreads the more threads you can safely create. We recommend the values between
128K and 256K.

If you use a lot of concurrent connections, you may suffer from a "feature" in the 2.2
kernel that penalises a process for forking or cloning a child in an attempt to prevent a
fork bomb attack. This will cause MySQL not to scale well as you increase the number
of concurrent clients. On single-CPU systems, we have seen this manifested in a very
slow thread creation, which means it may take a long time to connect to MySQL (as
long as 1 minute), and it may take just as long to shut it down. On multiple-CPU sys-
tems, we have observed a gradual drop in query speed as the number of clients increases.
In the process of trying to find a solution, we have received a kernel patch from one of
our users, who claimed it made a lot of difference for his site. The patch is available
at http://www.mysql.com/Downloads/Patches/linux-fork.patch. We have now done
rather extensive testing of this patch on both development and production systems. It
has significantly improved MySQL performance without causing any problems and we now
recommend it to our users who are still running high-load servers on 2.2 kernels. This issue
has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of
your system, rather than patching your 2.2 kernel, it might be easier to just upgrade to 2.4,
which will also give you a nice SMP boost in addition to fixing this fairness bug.

We have tested MySQL on the 2.4 kernel on a 2-CPU machine and found MySQL scales
much better—there was virtually no slowdown on queries throughput all the way up to 1000

132 MySQL Technical Reference for Version 4.1.1-alpha

clients, and the MySQL scaling factor (computed as the ratio of maximum throughput to
the throughput with one client) was 180%. We have observed similar results on a 4-CPU
system—virtually no slowdown as the number of clients was increased up to 1000, and 300%
scaling factor. So for a high-load SMP server we would definitely recommend the 2.4 kernel
at this point. We have discovered that it is essential to run mysqld process with the highest
possible priority on the 2.4 kernel to achieve maximum performance. This can be done
by adding renice -20 $$ command to mysqld_safe. In our testing on a 4-CPU machine,
increasing the priority gave 60% increase in throughput with 400 clients.

We are currently also trying to collect more information on how well MySQL performs on 2.4
kernel on 4-way and 8-way systems. If you have access such a system and have done some
benchmarks, please send a mail to docs@mysql.com with the results - we will include them
in the manual.

There is another issue that greatly hurts MySQL performance, especially on SMP
systems. The implementation of mutex in LinuxThreads in glibc-2.1 is very bad
for programs with many threads that only hold the mutex for a short time. On an
SMP system, ironic as it is, if you link MySQL against unmodified LinuxThreads,
removing processors from the machine improves MySQL performance in many
cases. We have made a patch available for glibc 2.1.3 to correct this behaviour
(http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibe-2.2.2 MySQL version 3.23.36 will use the adaptive mutex, which is much bet-
ter than even the patched one in glibc-2.1.3. Be warned, however, that under some condi-
tions, the current mutex code in glibc-2.2.2 overspins, which hurts MySQL performance.
The chance of this condition can be reduced by renicing mysqld process to the highest
priority. We have also been able to correct the overspin behaviour with a patch, available
at http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It combines
the correction of overspin, maximum number of threads, and stack spacing all in one. You
will need to apply it in the linuxthreads directory with patch -p0 </tmp/linuxthreads-
2.2.2.patch. We hope it will be included in some form in to the future releases of glibc-
2.2. In any case, if you link against glibc-2.2.2 you still need to correct STACK_SIZE
and PTHREAD_THREADS_MAX. We hope that the defaults will be corrected to some more
acceptable values for high-load MySQL setup in the future, so that your own build can be
reduced to ./configure; make; make install.

We recommend that you use the above patches to build a special static version of
libpthread.a and use it only for statically linking against MySQL. We know that the
patches are safe for MySQL and significantly improve its performance, but we cannot say
anything about other applications. If you link other applications against the patched
version of the library, or build a patched shared version and install it on your system,
you are doing it at your own risk with regard to other applications that depend on
LinuxThreads.

If you experience any strange problems during the installation of MySQL, or with some
common utilities hanging, it is very likely that they are either library or compiler related.
If this is the case, using our binary will resolve them.

One known problem with the binary distribution is that with older Linux systems that use
libce (like Red Hat 4.x or Slackware), you will get some non-fatal problems with hostname
resolution. See Section 2.6.1.1 [Binary notes-Linux]|, page 133.

Chapter 2: MySQL Installation 133

When using LinuxThreads you will see a minimum of three processes running. These are in
fact threads. There will be one thread for the LinuxThreads manager, one thread to handle
connections, and one thread to handle alarms and signals.

Note that the Linux kernel and the LinuxThread library can by default only have 1024
threads. This means that you can only have up to 1021 connections to MySQL on an
unpatched system. The page http://www.volano.com/linuxnotes.html contains infor-
mation how to go around this limit.

If you see a dead mysqld daemon process with ps, this usually means that you have found
a bug in MySQL or you have a corrupted table. See Section A.4.1 [Crashing], page 829.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the ——core-file option. Note that you also probably need to raise the core file
size by adding ulimit -c 1000000 to mysqld_safe or starting mysqld_safe with —-core-
file-size=1000000. See Section 4.7.2 [mysqld_safe], page 318.

If you are linking your own MySQL client and get the error:

1d.so.1: ./my: fatal: libmysqlclient.so.4:
open failed: No such file or directory

When executing them, the problem can be avoided by one of the following methods:

e Link the client with the following flag (instead of -Lpath): -Wl,r/path-
libmysqlclient.so.

e Copy libmysqclient.so to ‘/usr/1ib’.

e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable before running your client.

If you are using the Fujitsu compiler (fcc / FCC) you will have some problems compiling
MySQL because the Linux header files are very gcc oriented.

The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-0 -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" CXX=FCC CXXFLAGS="-0 -K fast -K 1ib \

-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE -DCONST=const \[]
-Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \

>-D_EXTERN_INLINE=static __inline’" ./configure --prefix=/usr/local/mysql \|J
--enable-assembler --with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

2.6.1.1 Linux Notes for Binary Distributions

MySQL needs at least Linux Version 2.0.

Warning: We have reports from some MySQL users that they have got serious stability
problems with MySQL with Linux kernel 2.2.14. If you are using this kernel you should
upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multi-cpu box, then you
should seriously consider using 2.4 as this will give you a significant speed boost.

The binary release is linked with -static, which means you do not normally need to worry
about which version of the system libraries you have. You need not install LinuxThreads,
either. A program linked with —static is slightly bigger than a dynamically linked program

134 MySQL Technical Reference for Version 4.1.1-alpha

but also slightly faster (3-5%). One problem, however, is that you can’t use user-definable
functions (UDFs) with a statically linked program. If you are going to write or use UDFs
(this is something for C or C++ programmers only), you must compile MySQL yourself,
using dynamic linking.

If you are using a libc-based system (instead of a glibc2 system), you will probably get
some problems with hostname resolving and getpwnam() with the binary release. (This
is because glibc unfortunately depends on some external libraries to resolve hostnames
and getpwent (), even when compiled with -static). In this case you probably get the
following error message when you run mysql_install_db:

Sorry, the host ’xxxx’ could not be looked up
or the following error when you try to run mysqld with the --user option:
getpwnam: No such file or directory
You can solve this problem in one of the following ways:
e Get a MySQL source distribution (an RPM or the tar.gz distribution) and install this
instead.

e Execute mysql_install_db --force; this will not execute the resolveip test in
mysql_install_db. The downside is that you can’t use host names in the grant
tables; you must use IP numbers instead (except for localhost). If you are using an
old MySQL release that doesn’t support -—force, you have to remove the resolveip
test in mysql_install with an editor.

e Start mysqld with su instead of using ——user.

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible
speed. We are always trying to use the fastest stable compiler available.

MySQL Perl support requires Version Perl 5.004_03 or newer.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable
when you do a lot of new connections to a mysqld server over TCP/IP.

The problem is that Linux has a delay between when you close a TCP/IP socket and until
this is actually freed by the system. As there is only room for a finite number of TCP/IP
slots, you will get the above error if you try to do too many new TCP/IP connections during
a small time, like when you run the MySQL ‘test-connect’ benchmark over TCP/IP.

We have mailed about this problem a couple of times to different Linux mailing lists but
have never been able to resolve this properly.

The only known ’fix’ to this problem is to use persistent connections in your clients or use
sockets, if you are running the database server and clients on the same machine. We hope
that the Linux 2.4 kernel will fix this problem in the future.

2.6.1.2 Linux x86 Notes

MySQL requires 1ibc Version 5.4.12 or newer. It’s known to work with libc 5.4.46. glibc
Version 2.0.6 and later should also work. There have been some problems with the glibc
RPMs from Red Hat, so if you have problems, check whether there are any updates. The
glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

Chapter 2: MySQL Installation 135

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you should start mysqld with
the option --thread-stack=192K. (Use -0 thread_stack=192K before MySQL 4.) If you
don’t do this, mysqld will die in gethostbyaddr () because the new glibc library requires
a stack size greater than 128K for this call. This stack size is now the default on MySQL
4.0.10 and above.

If you are using gcc 3.0 and above to compile MySQL, you must install the 1ibstdc++v3
library before compiling MySQL; if you don’t do this, you will get an error about a missing
_cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the /usr/include/sched.h file.]]
See the Installation chapter in the Reference Manual.

Just do what the error message says and add an extra underscore to the _P macro that has
only one underscore, then try again.

You may get some warnings when compiling; those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o

mysqld.cc: In function ‘void init_signals()’:

mysqld.cc:315: warning: assignment of negative value ‘-1’ to
‘long unsigned int’

mysqld.cc: In function ‘void * signal_hand(void *)’:
mysqld.cc:346: warning: assignment of negative value ‘-1’ to
‘long unsigned int’

mysql.server can be found in the ‘share/mysql’ directory under the MySQL installation
directory or in the ‘support-files’ directory of the MySQL source tree.

If mysqld always core dumps when it starts up, the problem may be that you have an old
‘/1lib/libc.a’. Try renaming it, then remove ‘sql/mysqld’ and do a new make install
and try again. This problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your ‘libg++.a’ is not
installed correctly:

/usr/lib/libc.a(putc.o): In function ‘_IO_putc’:
putc.o(.text+0x0): multiple definition of ‘_IO_putc’

You can avoid using ‘libg++.a’ by running configure like this:

shell> CXX=gcc ./configure

2.6.1.3 Linux SPARC Notes

In some implementations, readdir_r () is broken. The symptom is that SHOW DATABASES al-
ways returns an empty set. This can be fixed by removing HAVE_READDIR_R from ‘config.h’
after configuring and before compiling.

Some problems will require patching your Linux installation. The patch can be found at
http://www.mysql.com/Downloads/patches/Linux-sparc-2.0.30.diff. This patch
is against the Linux distribution ‘sparclinux-2.0.30.tar.gz’ that is available at
vger.rutgers.edu (a version of Linux that was never merged with the official 2.0.30).
You must also install LinuxThreads Version 0.6 or newer.

136 MySQL Technical Reference for Version 4.1.1-alpha

2.6.1.4 Linux Alpha Notes

MySQL Version 3.23.12 is the first MySQL version that is tested on Linux-Alpha. If you
plan to use MySQL on Linux-Alpha, you should ensure that you have this version or newer.

We have tested MySQL on Alpha with our benchmarks and test suite, and it appears to
work nicely.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-
SMP, Compaq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq
DS20 machine with an Alpha EV6 processor.

You can find the above compilers at http://www.support.compaq.com/alpha-tools/. By
using these compilers, instead of gce, we get about 9-14% better performance with MySQL.

Note that until MySQL version 3.23.52 and 4.0.2 we optimised the binary for the current
CPU only (by using the -fast compile option); this meant that you could only use our
binaries if you had an Alpha EV6 processor.

Starting with all following releases we added the —~arch generic flag to our compile options,
which makes sure the binary runs on all Alpha processors. We also compile statically to
avoid library problems.

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \

CXXFLAGS="-fast -arch generic -noexceptions -nortti" \

./configure --prefix=/usr/local/mysql --disable-shared \
--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

If you want to use egcs the following configure line worked for us:

CFLAGS="-03 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-03 -fomit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--disable-shared
Some known problems when running MySQL on Linux-Alpha:
e Debugging threaded applications like MySQL will not work with gdb 4.18. You should
download and use gdb 5.1 instead!

e If you try linking mysqld statically when using gcc, the resulting image will core dump
at start. In other words, don’t use -—with-mysqld-1dflags=-all-static with gcc.
2.6.1.5 Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibe 2.0.7).

2.6.1.6 Linux MIPS Notes

To get MySQL to work on Qube2, (Linux Mips), you need the newest glibc libraries
(glibc-2.0.7-29C2 is known to work). You must also use the egcs C++ compiler (egcs-
1.0.2-9, gcc 2.95.2 or newer).

Chapter 2: MySQL Installation 137

2.6.1.7 Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following compile line: Using gcc-
2.96:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-03 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
"--with-comment=0fficial MySQL binary" --with-extra-charsets=complex

On TA-64, the MySQL client binaries use shared libraries. This means that if you in-
stall our binary distribution in some other place than ‘/usr/local/mysql’ you need to
add the path of the directory where you have ‘libmysqlclient.so’ installed either to the
‘/etc/1ld.so.conf’ file or to the value of your LD_LIBRARY_PATH environment variable.

See Section A.3.1 [Link errors], page 826.

2.6.2 Windows Notes

This section describes using MySQL on Windows. This information is also provided in the
‘README’ file that comes with the MySQL Windows distribution. See Section 2.1.2 [Windows
installation], page 73.

On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP /IP. On
NT-based systems such as Windows N'T, 2000, or XP, clients have two options. They can
use TCP/IP, or they can use a named pipe if the server supports named pipe connections.

For information about which server binary to run, see Section 2.1.2.2 [Windows prepare
environment], page 74.

The examples in this section assume that MySQL is installed under the default location of
‘C:\mysql’. Adjust the pathnames shown in the examples if you have MySQL installed in
a different location.

2.6.2.1 Starting MySQL on Windows 95, 98, or Me

On these versions of Windows, MySQL uses TCP/IP to connect a client to a server. (This
will allow any machine on your network to connect to your MySQL server.) Because of

this, you must make sure that TCP/IP support is installed on your machine before starting
MySQL. You can find TCP/IP on your Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it’s likely that
you have an old Winsock package; MySQL requires Winsock 2! You can get the newest
Winsock from http://www.microsoft.com/. Windows 98 has the new Winsock 2 library,
so it is unnecessary to update the library.

To start the mysqld server, you should start a console window (a “DOS” window) and enter
this command:

shell> C:\mysql\bin\mysqld
This will start mysqld in the background. That is, after the server starts up, you should

see another command prompt. (Note that if you start the server this way on Windows NT,
2000, or XP, the server will run in the foreground and the next command prompt will not

138 MySQL Technical Reference for Version 4.1.1-alpha

appear until the server exits. To run client programs while the server is running, you should
open another console window.)

You can stop the MySQL server by executing this command:
shell> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server as
root, which is the default administrative account in the MySQL grant system. Please note
that users in the MySQL grant system are wholly independent from any login users under
Windows.

If mysqld doesn’t start, please check the error log to see if the server wrote any messages
there to indicate the cause of the problem. The error log is located in the ‘C:\mysql\data’
directory. It is the file with a suffix of ‘.err’. You can also try to start the server as mysqld
--console; in this case, you may get some useful information on the screen that may help
solve the problem.

The last option is to start mysqld with --standalone --debug. In this case mysqld will
write a log file ‘C:\mysqld.trace’ that should contain the reason why mysqld doesn’t start.
See Section E.1.2 [Making trace files], page 970.

Use mysqld --help to display all the options that mysqld understands!

2.6.2.2 Starting MySQL on Windows NT, 2000, or XP

To get MySQL to work with TCP/IP on Windows NT 4, you must install service pack 3
(or newer)!

Normally you should install MySQL as a service on Windows NT/2000/XP. In case the
server was already running, first stop it using the following command:
shell> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server as
root, which is the default administrative account in the MySQL grant system. Please note
that users in the MySQL grant system are wholly independent from any login users under
Windows.

Now install the server as a service:
shell> C:\mysql\bin\mysqld --install

The service is installed with the name MySql. Once installed, it can be immediately started
from the Services utility, or by using the command NET START MySql.

Once running, mysqld can be stopped by using the Services utility, the command NET STOP
MySql, or the command mysqladmin shutdown.

If any startup options are required, you can place them in the [mysqld] group of any of
the standard option files. As of MySQL 4.0.3, you can place options in the [mysqld] group
of any option file and use a ——defaults-file option to tell the server the name of the file
when you install the service. For example:

shell> C:\mysql\bin\mysqld --install MySql --defaults-file=C:\my-opts.cnf]]

You can also specify options as “Start parameters” in the Windows Services utility
before you start the MySQL service.

Chapter 2: MySQL Installation 139

The Services utility (Windows Service Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000). It is advisable to close
the Services utility while performing the -—install or --remove operations, this prevents
some odd errors.

Please note that from MySQL version 3.23.44, you have the choice of setting up the service
as Manual instead (if you don’t wish the service to be started automatically during the boot
process):

shell> C:\mysql\bin\mysqld --install-manual

When MySQL is running as a service, the operating system will automatically stop the
server on computer shutdown. In MySQL versions older than 3.23.47, Windows waited
only for a few seconds for the shutdown to complete, and killed the database server process
if the time limit was exceeded. This had the potential to cause problems. (For example, at
the next startup the InnoDB storage engine had to do crash recovery.) Starting from MySQL
version 3.23.48, Windows waits longer for the MySQL server shutdown to complete. If you
notice this still is not enough for your installation, it is safest not to run the MySQL
server as a service. Instead, run it from the command-line prompt, and shut it down with
mysqladmin shutdown.

There is a problem that Windows NT (but not Windows 2000/XP) by default
only waits 20 seconds for a service to shut down, and after that kills the ser-
vice process. You can increase this default by opening the Registry Editor
‘\winnt\system32\regedt32.exe’ and editing the value of WaitToKillServiceTimeout
at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control in the Registry tree.
Specify the new larger value in milliseconds (for example, 120000 to have Windows NT
wait up to 120 seconds).

Please note that when run as a service, mysqld has no access to a console and so no messages
can be seen. Errors can be checked in the error log, which is located in the ‘C:\mysql\data’

)

directory. It is the file with a suffix of ‘.err’.

If you have problems installing mysqld as a service using just the server name, try installing
it using its full pathname:

shell> C:\mysql\bin\mysqld --install
If that doesn’t work, you can get mysqld to start properly by fixing the path in the registry!

If you don’t want to start mysqld as a service, you can start it from the command line the
same way as for Windows 95, 98, or Me. For instructions, see Section 2.6.2.1 [Win95 start],
page 137.

2.6.2.3 Running MySQL on Windows

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt
servers support named pipes on NT, 2000, and XP. The default is to use TCP/IP regardless
of the platform, because named pipes are actually slower than TCP/IP, and because some
users have experienced problems shutting down the MySQL server when named pipes are
used. Starting from 3.23.50, named pipes are only enabled for mysqld-nt and mysql-max-
nt if they are started with the -—enable-named-pipe option.

140 MySQL Technical Reference for Version 4.1.1-alpha

You can force a MySQL client to use named pipes by specifying the —-pipe option or by
specifying . as the host name. Use the —-socket option to specify the name of the pipe.
In MySQL 4.1, you should use the --protocol=PIPE option.

You can test whether the MySQL server is working by executing any of the following
commands:

C:\> C:\mysql\bin\mysqlshow

C:\> C:\mysql\bin\mysqlshow -u root mysql

C:\> C:\mysql\bin\mysqladmin version status proc
C:\> C:\mysql\bin\mysql test

If mysqld is slow to answer to connections on Windows 9x/Me, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use
only localhost and IP numbers in the Host column of the MySQL grant tables.

There are two versions of the MySQL command-line tool:

Binary Description

mysql Compiled on native Windows, offering limited text
editing capabilities.

mysqlc Compiled with the Cygnus GNU compiler and li-
braries, which offers readline editing.

If you want to use mysqlc, you must have a copy of the ‘cygwinb19.d11’ library installed
somewhere that mysqlc can find it. If your distribution of MySQL doesn’t have this library
installed in the same directory as mysqlc (the ‘bin’ directory under the base directory of
your MySQL installation, look in the 1ib directory to find it and copy it to your Windows
system directory (‘\windows\system’ or similar place).

The default privileges on Windows give all local users full privileges to all databases without
specifying a password. To make MySQL more secure, you should set a password for all users
and remove the row in the mysql.user table that has Host=’1localhost’ and User=’".

You should also add a password for the root user. The following example starts by removing
the anonymous user that has all privileges, then sets a root user password:

C:\> C:\mysql\bin\mysql mysql

mysql> DELETE FROM user WHERE Host=’localhost’ AND User=’’;
mysql> QUIT

C:\> C:\mysql\bin\mysqladmin reload

C:\> C:\mysql\bin\mysqladmin -u root password your_password

After you’ve set the password, if you want to shut down the mysqld server, you can do so
using this command:

C:\> mysqladmin --user=root --password=your_password shutdown

If you are using the old shareware version of MySQL Version 3.21 under Windows, the
above command will fail with an error: parse error near ’SET password’. The solution
to this problem is to upgrade to a newer version of MySQL.

With the current MySQL versions you can easily add new users and change privileges with
GRANT and REVOKE commands. See Section 4.3.1 [GRANT], page 248.

Chapter 2: MySQL Installation 141

2.6.2.4 Connecting to MySQL Remotely from Windows with SSH

Here is a note about how to connect to get a secure connection to remote MySQL server
with SSH (by David Carlson dcarlson@mplcomm. com):

1. Install an SSH client on your Windows machine. As a user, the best non-free one
I've found is from SecureCRT from http://www.vandyke.com/. Another option is
f-secure from http://www.f-secure.com/. You can also find some free ones on
Google at http://directory.google.com/Top/Computers/Security/Products_
and_Tools/Cryptography/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server (probably not the same as your MySQL
login/password.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_

host: yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set

port: 3306, host: localhost, remote port: 3306).

Save everything, otherwise you’ll have to redo it the next time.

Log in to your server with SSH session you just created.

On your Windows machine, start some ODBC application (such as Access).

Create a new file in Windows and link to MySQL using the ODBC driver the same
way you normally do, except type in localhost for the MySQL host server—not
yourmysqlservername.

N Ot

You should now have an ODBC connection to MySQL, encrypted using SSH.

2.6.2.5 Distributing Data Across Different Disks on Windows

Beginning with MySQL Version 3.23.16, the mysqld-max and mysql-max-nt servers in the
MySQL distribution are compiled with the -DUSE_SYMDIR option. This allows you to put a
database on a different disk by setting up a symbolic link to it (in a manner similar to the
way that symbolic links work on Unix).
On Windows, you make a symbolic link to a database by creating a file that contains the
path to the destination directory and saving this in the data directory using the filename
‘db_name.sym’, where db_name is the database name. Note that the symbolic link will not
be used if a directory with the database name exists.
For example, if the MySQL data directory is ‘C:\mysql\data’ and you want to have
database foo located at ‘D:\data\foo’, you should create the file ‘C: \mysql\data\foo.sym’
that contains the text D:\data\foo\. After that, all tables created in the database foo will
be created in ‘D:\data\foo’.
Note that because of the speed penalty you get when opening every table, we have not
enabled this by default even if you have compiled MySQL with support for this. To enable
symlinks you should put in your ‘my.cnf’ or ‘my.ini’ file the following entry:

[mysqld]

symbolic-1links
In MySQL 4.0, symbolic links are enabled by default. If you don’t need them, you can
disable them with the skip-symbolic-1links option.

142 MySQL Technical Reference for Version 4.1.1-alpha

2.6.2.6 Compiling MySQL Clients on Windows

In your source files, you should include ‘my_global.h’ before ‘mysql.h’:

#include <my_global.h>

#include <mysql.h>
‘my_global.h’ includes any other files needed for Windows compatibility (such as
‘windows.h’) if you compile your program on Windows.
You can either link your code with the dynamic ‘libmysql.lib’ library, which is just a
wrapper to load in ‘1ibmysql.d11’ on demand, or link with the static ‘mysqlclient.lib’
library.
Note that because the MySQL client libraries are compiled as threaded libraries, you should
also compile your code to be multi-threaded!

2.6.2.7 MySQL for Windows Compared to Unix MySQL

MySQL for Windows has by now proven itself to be very stable. The Windows version
of MySQL has the same features as the corresponding Unix version, with the following
exceptions:

Windows 95 and threads
Windows 95 leaks about 200 bytes of main memory for each thread creation.
Each connection in MySQL creates a new thread, so you shouldn’t run mysqld
for an extended time on Windows 95 if your server handles many connections!
Other versions of Windows don’t suffer from this bug.

Concurrent reads

MySQL depends on the pread() and pwrite() calls to be able to mix INSERT
and SELECT. Currently we use mutexes to emulate pread() /pwrite(). We
will, in the long run, replace the file level interface with a virtual interface so
that we can use the readfile() /writefile() interface on NT/2000/XP to
get more speed. The current implementation limits the number of open files
MySQL can use to 1024, which means that you will not be able to run as many
concurrent threads on NT/2000/XP as on Unix.

Blocking read
MySQL uses a blocking read for each connection, which has the following im-
plications:

e A connection will not be disconnected automatically after 8 hours, as hap-
pens with the Unix version of MySQL.

e If a connection hangs, it’s impossible to break it without killing MySQL.
e mysqladmin kill will not work on a sleeping connection.
e mysqladmin shutdown can’t abort as long as there are sleeping connections.

We plan to fix this problem when our Windows developers have figured out a
nice workaround.

DROP DATABASE
You can’t drop a database that is in use by some thread.

Chapter 2: MySQL Installation 143

Killing MySQL from the task manager
You can’t kill MySQL from the task manager or with the shutdown utility in
Windows 95. You must take it down with mysqladmin shutdown.

Case-insensitive names
Filenames are case-insensitive on Windows, so database and table names are
also case-insensitive in MySQL for Windows. The only restriction is that
database and table names must be specified using the same case throughout a
given statement. See Section 6.1.3 [Name case sensitivity], page 440.

The ¢\’ directory character
Pathname components in Windows 95 are separated by the ‘\’ character, which
is also the escape character in MySQL. If you are using LOAD DATA INFILE or
SELECT ... INTO OUTFILE, you must double the ‘\’ character:

mysql> LOAD DATA INFILE "C:\\tmp\\skr.txt" INTO TABLE skr;
mysql> SELECT * INTO OUTFILE ’C:\\tmp\\skr.txt’ FROM skr;

Alternatively, use Unix style filenames with ‘/’ characters:

mysql> LOAD DATA INFILE "C:/tmp/skr.txt" INTO TABLE skr;
mysql> SELECT * INTO OUTFILE °C:/tmp/skr.txt’ FROM skr;

Problems with pipes.
Pipes doesn’t work reliably in the Windows command-line prompt. If the pipe
includes the character “Z / CHAR(24), Windows will think it has encountered
end-of-file and abort the program.

This is mainly a problem when you try to apply a binary log as follows:
mysqlbinlog binary-log-name | mysql --user=root
If you get a problem applying the log and suspect it’s because of an ~Z /
CHAR(24) character you can use the following workaround:
mysqlbinlog binary-log-file --result-file=/tmp/bin.sql
mysql --user=root --execute "source /tmp/bin.sql"
The latter command also can be used to reliably read in any SQL file that may
contain binary data.

Can’t open named pipe error
If you use a MySQL 3.22 version on NT with the newest mysql-clients you will
get the following error:

error 2017: can’t open named pipe to host: . pipe...

This is because the release version of MySQL uses named pipes on NT by
default. You can avoid this error by using the —-host=localhost option to
the new MySQL clients or create an option file ‘C:\my.cnf’ that contains the
following information:

[client]
host = localhost

Starting from 3.23.50, named pipes are enabled only if mysqld-nt or mysqld-
max-nt is started with --enable-named-pipe.

144 MySQL Technical Reference for Version 4.1.1-alpha

Access denied for user error
If you get the error Access denied for user: ’some-user@unknown’ to
database ’mysql’ when accessing a MySQL server on the same machine, this
means that MySQL can’t resolve your host name properly.

To fix this, you should create a file ‘\windows\hosts’ with the following infor-
mation:

127.0.0.1 localhost

ALTER TABLE
While you are executing an ALTER TABLE statement, the table is locked from
usage by other threads. This has to do with the fact that on Windows, you
can’t delete a file that is in use by another threads. (In the future, we may find
some way to work around this problem.)

DROP TABLE
DROP TABLE on a table that is in use by a MERGE table will not work on Windows
because the MERGE handler does the table mapping hidden from the upper layer
of MySQL. Because Windows doesn’t allow you to drop files that are open, you
first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table
before dropping the table. We will fix this at the same time we introduce VIEWS.

DATA DIRECTORY and INDEX DIRECTORY
The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ig-
nored on Windows, because Windows doesn’t support symbolic links.
Here are some open issues for anyone who might want to help us with the Windows release:
e Add some nice start and shutdown icons to the MySQL installation.

e It would be really nice to be able to kill mysqld from the task manager. For the
moment, you must use mysqladmin shutdown.

e Port readline to Windows for use in the mysql command-line tool.

e GUI versions of the standard MySQL clients (mysql, mysqlshow, mysqladmin, and
mysqldump) would be nice.

e It would be nice if the socket read and write functions in ‘net.c’ were interruptible.
This would make it possible to kill open threads with mysqladmin kill on Windows.

e mysqld always starts in the "C" locale and not in the default locale. We would like to
have mysqld use the current locale for the sort order.

e Add macros to use the faster thread-safe increment/decrement methods provided by
Windows.

Other Windows-specific issues are described in the ‘README’ file that comes with the Win-
dows distribution of MySQL.

2.6.3 Solaris Notes

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked!
Solaris tar can’t handle long file names, so you may see an error like this when you unpack

MySQL:

Chapter 2: MySQL Installation 145

x mysql-3.22.12-beta/bench/Results/ATIS-mysql_odbc-NT_4.0-cmp-db2,\
informix,ms-sql,mysql,oracle,solid,sybase, O bytes, O tape blocks
tar: directory checksum error
In this case, you must use GNU tar (gtar) to unpack the distribution. You can find a
precompiled copy for Solaris at http://www.mysql.com/downloads/os-solaris.html.

Sun native threads only work on Solaris 2.5 and higher. For Version 2.4 and earlier, MySQL
will automatically use MIT-pthreads. See Section 2.3.6 [MIT-pthreads], page 108.
If you get the following error from configure:
checking for restartable system calls... configure: error can not run test]]

programs while cross compiling

This means that you have something wrong with your compiler installation! In this case
you should upgrade your compiler to a newer version. You may also be able to solve this
problem by inserting the following row into the ‘config.cache’ file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls=’no’}
If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You

can find this at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 don’t work
reliably on SPARC!

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-03" \
CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory --enable-assembler]]

If you have an UltraSPARC, you can get 4% more performance by adding "-mcpu=v8
-Wa,-xarch=v8plusa" to CFLAGS and CXXFLAGS.
If you have Sun’s Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

You can create a 64 bit binary using Sun’s Forte compiler with the following compile flags:
CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS. Note that
this only works with MySQL 4.0 and up - MySQL 3.23 does not include the required
modifications to support this.

In the MySQL benchmarks, we got a 4% speedup on an UltraSPARC when using Forte 5.0
in 32 bit mode compared to using gec 3.2 with -mcpu flags.

If you create a 64 bit binary, it’s 4 % slower than the 32 bit binary, but mysqld can instead
handle more treads and memory.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-1rt
to the configure line

The following paragraph is only relevant for older compilers than WorkShop 5.3:

You may also have to edit the configure script to change this line:

146 MySQL Technical Reference for Version 4.1.1-alpha

#if !defined(__STDC__) || __STDC__ !'=1
to this:
#if !defined(__STDC__)
If you turn on __STDC__ with the -Xc option, the Sun compiler can’t compile with the

Solaris ‘pthread.h’ header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the error message shown here when you run it, you have tried to compile
MySQL with the Sun compiler without enabling the multi-thread option (-mt):

libc internal error: _rmutex_unlock: rmutex not held
Add -mt to CFLAGS and CXXFLAGS and try again.

If you are using the SFW version of gee (which comes with Solaris 8), you must add
‘/opt/sfw/1ib’ to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems.
You should recompile gcc and GNU binutils on the machine you will be running them from
to avoid any problems.

If you get the following error when compiling MySQL with gcc, it means that your gcc is
not configured for your version of Solaris:

shell> gcc -03 -g -02 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function ‘signal_hand’:
./thr_alarm.c:556: too many arguments to function ‘sigwait’

The proper thing to do in this case is to get the newest version of gcc and compile it with
your current gcc compiler! At least for Solaris 2.5, almost all binary versions of gcc have
old, unusable include files that will break all programs that use threads (and possibly other
programs)!

Solaris doesn’t provide static versions of all system libraries (1ibpthreads and 1ibdl), so
you can’t compile MySQL with --static. If you try to do so, you will get the error:

1d: fatal: library -1dl: not found
or

undefined reference to ‘dlopen’

or

cannot find -1rt

If too many processes try to connect very rapidly to mysqld, you will see this error in the
MySQL log:

Error in accept: Protocol error
You might try starting the server with the --set-variable back_log=50 option as a

workaround for this. Please note that --set-variable is deprecated since MySQL 4.0,
just use —-back_log=50 on its own. See Section 4.1.1 [Command-line options|, page 205.

If you are linking your own MySQL client, you might get the following error when you try
to execute it:

Chapter 2: MySQL Installation 147

ld.so.1: ./my: fatal: libmysqlclient.so.#:
open failed: No such file or directory

The problem can be avoided by one of the following methods:

e Link the client with the following flag (instead of -Lpath): -Wl,r/full-path-to-
libmysqglclient.so.

e Copy ‘libmysqclient.so’ to ‘/usr/1ib’.
e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable before running your client.
If you have problems with configure trying to link with -1z and you don’t have zlib
installed, you have two options:

e If you want to be able to use the compressed communication protocol, you need to get
and install zlib from ftp.gnu.org.

e Configure with —-with-named-z-1libs=no.
If you are using gec and have problems with loading user defined functions (UDFs) into
MySQL, try adding -1gcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy ‘support-files/mysql.server’]
to ‘/etc/init.d’ and create a symbolic link to it named ‘/etc/rc3.d/S99mysql.server’.

As Solaris doesn’t support core files for setuid () applications, you can’t get a core file from
mysqld if you are using the ——user option.

2.6.3.1 Solaris 2.7/2.8 Notes

You can normally use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6
issues also apply for Solaris 2.7 and 2.8.
Note that MySQL Version 3.23.4 and above should be able to autodetect new versions of
Solaris and enable workarounds for the following problems!
Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when
you use gcc:
/usr/include/widec.h:42: warning: ‘getwc’ redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition
If this occurs, you can do the following to fix the problem:
Copy /usr/include/widec.hto .../1lib/gcc-1lib/os/gcc-version/include and change
line 41 from:

#if ldefined(1int) && !defined(__lint)
to
#if ldefined(lint) && !'defined(__lint) && !defined(getwc)

Alternatively, you can edit ‘/usr/include/widec.h’ directly. Either way, after you make
the fix, you should remove ‘config.cache’ and run configure again!

If you get errors like this when you run make, it’s because configure didn’t detect the
‘curses.h’ file (probably because of the error in ‘/usr/include/widec.h’):

148 MySQL Technical Reference for Version 4.1.1-alpha

In file included from mysql.cc:50:
«

/usr/include/term.h:1060: syntax error before °,

/usr/include/term.h:1081: syntax error before ¢;’

The solution to this is to do one of the following;:
e Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.
e Edit ‘/usr/include/widec.h’ as indicted above and rerun configure.
e Remove the #define HAVE_TERM line from ‘config.h’ file and run make again.

If you get a problem that your linker can’t find -1z when linking your client program, the

problem is probably that your ‘1ibz.so’ file is installed in ‘/usr/local/1lib’. You can fix
this by one of the following methods:

e Add ‘/usr/local/lib’ to LD_LIBRARY_PATH.
e Add a link to ‘1libz.so’ from ‘/1ib’.

e If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD
distribution.

e Configure MySQL with the ——with-named-z-1ibs=no option.
2.6.3.2 Solaris x86 Notes

On Solaris 8 on x86, mysqld will dump core if you remove the debug symbols using strip.

If you are using gcc or eges on Solaris x86 and you experience problems with core dumps
under load, you should use the following configure command:

CC=gcc CFLAGS="-03 -fomit-frame-pointer -DHAVE_CURSES_H" \

CXX=gcc \

CXXFLAGS="-03 -fomit-frame-pointer -felide-constructors -fno-exceptions \|]
-fno-rtti -DHAVE_CURSES_H" \

./configure --prefix=/usr/local/mysql

This will avoid problems with the 1libstdc++ library and with C++ exceptions.

If this doesn’t help, you should compile a debug version and run it with a trace file or under
gdb. See Section E.1.3 [Using gdb on mysqld], page 971.

2.6.4 BSD Notes

This section provides information for the various BSD flavours, as well as specific versions
within those.

2.6.4.1 FreeBSD Notes

FreeBSD 4.x is recommended for running MySQL since the thread package is much more
integrated.

The easiest and therefore the preferred way to install is to use the mysql-server and mysql-
client ports available on http://www.freebsd.org/.

Using these gives you:

Chapter 2: MySQL Installation 149

A working MySQL with all optimisations known to work on your version of FreeBSD
enabled.

e Automatic configuration and build.
e Startup scripts installed in /usr/local/etc/rc.d.

e Ability to see which files that are installed with pkg_info -L. And to remove them all
with pkg_delete if you no longer want MySQL on that machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x and native threads on Versions
3 and up. It is possible to run with native threads on some late 2.2.x versions but you may
encounter problems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe, most notably
the gethostbyname () function, which is used by MySQL to convert host names into IP
addresses. Under certain circumstances, the mysqld process will suddenly cause 100% CPU
load and will be unresponsive. If you encounter this, try to start up MySQL using the
--skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library,
which avoids a few of the problems that the native FreeBSD thread implementation
has. For a very good comparison of LinuxThreads vs. native threads have a look
at Jeremy Zawodny’s article "FreeBSD or Linux for your MySQL Server?" at
http://jeremy.zawodny.com/blog/archives/000203.html.

The MySQL ‘Makefile’s require GNU make (gmake) to work. If you want to compile
MySQL you need to install GNU make first.

Be sure to have your name resolver setup correct. Otherwise, you may experience resolver
delays or failures when connecting to mysqld.

Make sure that the localhost entry in the ‘/etc/hosts’ file is correct (otherwise, you will
have problems connecting to the database). The ‘/etc/hosts’ file should start with a line:

127.0.0.1 localhost localhost.your.domain

The recommended way to compile and install MySQL on FreeBSD with gce (2.95.2 and up)
is:

CC=gcc CFLAGS="-02 -fno-strength-reduce" \

CXX=gcc CXXFLAGS="-02 -fno-rtti -fno-exceptions -felide-constructors \
-fno-strength-reduce" \

./configure --prefix=/usr/local/mysql --enable-assembler

gmake

gmake install

./scripts/mysql_install_db

cd /usr/local/mysql

./bin/mysqld_safe &

If you notice that configure will use MIT-pthreads, you should read the MIT-pthreads
notes. See Section 2.3.6 [MIT-pthreads], page 108.

If you get an error from make install that it can’t find ‘/usr/include/pthreads’,
configure didn’t detect that you need MIT-pthreads. This is fixed by executing these
commands:

shell> rm config.cache

150 MySQL Technical Reference for Version 4.1.1-alpha

shell> ./configure --with-mit-threads

FreeBSD is also known to have a very low default file handle limit. See Section A.2.17
[Not enough file handles], page 826. Uncomment the ulimit -n section in mysqld_safe
or raise the limits for the mysqld user in /etc/login.conf (and rebuild it with cap_mkdb
/etc/login.conf). Also be sure you set the appropriate class for this user in the password
file if you are not using the default (use: chpass mysqld-user-name). See Section 4.7.2
[mysqld_safe], page 318.

If you have a lot of memory you should consider rebuilding the kernel to allow MySQL to
take more than 512M of RAM. Take a look at option MAXDSIZ in the LINT config file for
more info.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix F [Environment variables], page 981.

To get a secure and stable system you should only use FreeBSD kernels that are marked
-RELEASE.

2.6.4.2 NetBSD Notes

To compile on NetBSD you need GNU make. Otherwise, the compile will crash when make
tries to run lint on C++ files.

2.6.4.3 OpenBSD 2.5 Notes

On OpenBSD Version 2.5, you can compile MySQL with native threads with the following
options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.6.4.4 OpenBSD 2.8 Notes

Our users have reported that OpenBSD 2.8 has a threading bug which causes problems
with MySQL. The OpenBSD Developers have fixed the problem, but as of January 25th,
2001, it’s only available in the “-current” branch. The symptoms of this threading bug are:
slow response, high load, high CPU usage, and crashes.

If you get an error like Error in accept:: Bad file descriptor or error 9 when trying to
open tables or directories, the problem is probably that you haven’t allocated enough file
descriptors for MySQL.

In this case, try starting mysqld_safe as root with the following options:

shell> mysqld_safe --user=mysql --open-files-1imit=2048 &
2.6.4.5 BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory
is too low:

Chapter 2: MySQL Installation 151

item_func.h: In method ‘Item_func_ge::Item_func_ge(const Item_func_ge &)’ :|}
item_func.h:28: virtual memory exhausted
make[2]: #*x* [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn’t work and you are using
bash, try switching to csh or sh; some BSDI users have reported problems with bash and
ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for
configure to be able to compile ‘sql_yacc.cc’.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix F [Environment variables], page 981.

2.6.4.6 BSD/OS Version 3.x Notes

Upgrade to BSD/OS Version 3.1. If that is not possible, install BSDIpatch M300-038.
Use the following command when configuring MySQL:

shell> env CXX=shlicc++ CC=shlicc2 \
./configure \
--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

shell> env CC=gcc CXX=gcc CXXFLAGS=-03 \
./configure \
—--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying
any locations.

If you have problems with performance under heavy load, try using the --skip-thread-
priority option to mysqld! This will run all threads with the same priority; on BSDI
Version 3.1, this gives better performance (at least until BSDI fixes their thread scheduler).

If you get the error virtual memory exhausted while compiling, you should try using
ulimit -v 80000 and run make again. If this doesn’t work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

2.6.4.7 BSD/OS Version 4.x Notes

BSDI Version 4.x has some thread-related bugs. If you want to use MySQL on this, you
should install all thread-related patches. At least M400-023 should be installed.

On some BSDI Version 4.x systems, you may get problems with shared libraries. The
symptom is that you can’t execute any client programs, for example, mysqladmin. In this
case you need to reconfigure not to use shared libraries with the --disable-shared option
to configure.

152 MySQL Technical Reference for Version 4.1.1-alpha

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while
can’t open tables. This is because some library /system related bug causes mysqld to change
current directory without asking for this!

The fix is to either upgrade to 3.23.34 or after running configure remove the line #define
HAVE_REALPATH from config.h before running make.

Note that the above means that you can’t symbolic link a database directories to another
database directory or symbolic link a table to another database on BSDI! (Making a sym-
bolic link to another disk is okay).

2.6.5 Mac OS X Notes

2.6.5.1 Mac OS X 10.x

MySQL should work without any problems on Mac OS X 10.x (Darwin). You don’t need
the pthread patches for this OS!
This also applies to Mac OS X 10.x Server. Compiling for the Server platform is the same
as for the client version of Mac OS X. However please note that MySQL comes preinstalled
on the Server!
Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-03 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.1.3 [Mac OS X installation], page 76.

2.6.5.2 Mac OS X Server 1.2 (Rhapsody)

Before trying to configure MySQL on Mac OS X Server 1.2 (aka Rhapsody) you must first
install the pthread package from http://www.prnet.de/RegEx/mysql.html.

See Section 2.1.3 [Mac OS X installation], page 76.

2.6.6 Other Unix Notes

2.6.6.1 HP-UX Notes for Binary Distributions

Some of the binary distributions of MySQL for HP-UX are distributed as an HP depot file
and as a tar file. To use the depot file you must be running at least HP-UX 10.x to have
access to HP’s software depot tools.

The HP version of MySQL was compiled on an HP 9000/8xx server under HP-UX 10.20,
and uses MIT-pthreads. It is known to work well under this configuration. MySQL Version
3.22.26 and newer can also be built with HP’s native thread package.

Other configurations that may work:

Chapter 2: MySQL Installation 153

e HP 9000/7xx running HP-UX 10.20+
e HP 9000/8xx running HP-UX 10.30

The following configurations almost definitely won’t work:
e HP 9000/7xx or 8xx running HP-UX 10.x where x < 2
e HP 9000/7xx or 8xx running HP-UX 9.x
To install the distribution, use one of the commands here, where /path/to/depot is the
full pathname of the depot file:
e To install everything, including the server, client and development tools:
shell> /usr/sbin/swinstall -s /path/to/depot mysql.full
e To install only the server:
shell> /usr/sbin/swinstall -s /path/to/depot mysql.server
e To install only the client package:
shell> /usr/sbin/swinstall -s /path/to/depot mysql.client
e To install only the development tools:
shell> /usr/sbin/swinstall -s /path/to/depot mysql.developer
The depot places binaries and libraries in ‘/opt/mysql’ and data in ‘/var/opt/mysql’. The

depot also creates the appropriate entries in ‘/etc/init.d’ and ‘/etc/rc2.d’ to start the
server automatically at boot time. Obviously, this entails being root to install.

To install the HP-UX tar.gz distribution, you must have a copy of GNU tar.
2.6.6.2 HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend
that you use gcc instead of the HP-UX native compiler, because gcc produces better code!

We recommend using gcc 2.95 on HP-UX. Don’t use high optimisation flags (like -O6) as
this may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \

CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" CXX=gcc ./configure --with-pthread \
--with-named-thread-1ibs=’-1dce’ --prefix=/usr/local/mysql --disable-shared]]

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -03 -fPIC" CXX=gcc \

CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors -fno-exceptions \Jj
-fno-rtti -03 -fPIC" ./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \

--with-named-thread-libs=-1ldce --with-lib-ccflags=-fPIC

--disable-shared

154 MySQL Technical Reference for Version 4.1.1-alpha

2.6.6.3 HP-UX Version 11.x Notes

For HP-UX Version 11.x, we recommend MySQL Version 3.23.15 or later.

Because of some critical bugs in the standard HP-UX libraries, you should install the fol-
lowing patches before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This will solve the problem of getting EWOULDBLOCK from recv () and EBADF from accept ()
in threaded applications.
If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you will get the error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:
/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,
from mysql_priv.h:158,
from item.cc:19:
The problem is that HP-UX doesn’t define pthreads_atfork() consis-
tently. It has conflicting prototypes in ‘/usr/include/sys/unistd.h’:184 and
‘/usr/include/sys/pthread.h’:440 (details below).

One solution is to copy ‘/usr/include/sys/unistd.h’ into ‘mysql/include’ and edit
‘unistd.h’ and change it to match the definition in ‘pthread.h’. Here’s the diff:

183,184c183,184

< extern int pthread_atfork(void (*prepare) (), void (*parent) (),

< void (*child) ());

> extern int pthread_atfork(void (*prepare)(void), void (*parent) (void),[i
> void (*child) (void));

After this, the following configure line should work:
CFLAGS="-fomit-frame-pointer -03 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -03" \
./configure --prefix=/usr/local/mysql --disable-shared
If you are using MySQL 4.0.5 with the HP-UX compiler you can use: (tested with cc
B.11.11.04):
CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --with-extra-character-set=co
You can ignore any errors of the following type:
aCC: warning 901: unknown option: ‘-3’: use +help for online documentation]]
If you get the following error from configure

checking for cc option to accept ANSI C... no
configure: error: MySQL requires a ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Chapter 2: MySQL Installation 155

Check that you don’t have the path to the K&R compiler before the path to the HP-UX C
and C++ compiler.

Another reason for not beeing able to compile is that you didn’t define the +DD64 flags
above.

Another possibility for HP-UX 11 is to use MySQL binaries for HP-UX 10.20. We have
received reports from some users that these binaries work fine on HP-UX 11.00. If you
encounter problems, be sure to check your HP-UX patch level.

2.6.6.4 IBM-AIX notes

Automatic detection of x1C is missing from Autoconf, so a configure command something
like this is needed when compiling MySQL (This example uses the IBM compiler):

export CC="xlc_r -ma -03 -gstrict -qoptimize=3 -gmaxmem=8192 "
export CXX="x1lC_r -ma -03 -gstrict -qoptimize=3 -gmaxmem=8192"
export CFLAGS="-I /usr/local/include"

export LDFLAGS="-L /usr/local/lib"

export CPPFLAGS=$CFLAGS

export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
--localstatedir=/var/mysql \
--sysconfdir=/etc/mysql \
--sbindir=’/usr/local/bin’ \
--libexecdir=’/usr/local/bin’ \
--enable-thread-safe-client \
--enable-large-files

Above are the options used to compile the MySQL distribution that can be found at
http://www-frec.bull.com/.

If you change the -03 to =02 in the above configure line, you must also remove the -qstrict
option (this is a limitation in the IBM C compiler).

If you are using gcc or eges to compile MySQL, you must use the ~-fno-exceptions flag,
as the exception handling in gcc/eges is not thread-safe! (This is tested with eges 1.1.)
There are also some known problems with IBM’s assembler, which may cause it to generate
bad code when used with gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:
CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many is necessary for the compile to be successful. IBM is aware of this problem
but is in to hurry to fix it because of the workaround available. We don’t know if the
-fno-exceptions is required with gcc 2.95, but as MySQL doesn’t use exceptions and the
above option generates faster code, we recommend that you should always use this option
with egcs / gcc.

156 MySQL Technical Reference for Version 4.1.1-alpha

If you get a problem with assembler code try changing the -mcpu=xxx to match your CPU.
Typically power2, power, or powerpc may need to be used, alternatively you might need
to use 604 or 604e. I'm not positive but I would think using "power" would likely be safe
most of the time, even on a power2 machine.
If you don’t know what your CPU is then do a "uname -m", this will give you back a
string that looks like "000514676700", with a format of xxyyyyyymmss where xx and ss are
always 0’s, yyyyyy is a unique system id and mm is the id of the CPU Planar. A chart of
these values can be found at http://publib.boulder.ibm.com/doc_link/en_US/a_doc_
lib/cmds/aixcmds5/uname.htm. This will give you a machine type and a machine model
you can use to determine what type of CPU you have.
If you have problems with signals (MySQL dies unexpectedly under high load) you may
have found an OS bug with threads and signals. In this case you can tell MySQL not to
use signals by configuring with:
shell> CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug --with-low-memoryl}
This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill
clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.
Instead, the client will die when it issues its next command.

On some versions of AIX, linking with 1ibbind.a makes getservbyname core dump. This
is an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc you have to do the following changes.
After configuring, edit ‘config.h’ and ‘include/my_config.h’ and change the line that
says
#define HAVE_SNPRINTF 1
to
#undef HAVE_SNPRINTF
And finally, in ‘mysqld.cc’ you need to add a prototype for initgoups.

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it’s not enough to just set
‘ulimit -d unlimited’. You may also have to set in mysqld_safe something like:

export LDR_CNTRL=’MAXDATA=0x80000000°

You can find more about using a lot of memory at: http://publib16.boulder.ibm.com/pseries/en_|i
US/aixprggd/genprogc/lrg_prg_support.htm.

2.6.6.5 SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL, which in turn means you will
need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and 1ibtool. You can use
the following configure line to avoid this problem:

Chapter 2: MySQL Installation 157

shell> ./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These may be
ignored.

When compiling mysqld, there will be some implicit declaration of function warnings.
These may be ignored.

2.6.6.6 Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, as egcs on
DEC has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends
using the -pthread option for cc and cxx and the libraries -1mach -lexc (in addition to
-lpthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -0" \
./configure --with-named-thread-libs="-1lpthread -lmach -lexc -1lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()’:
mysqld.cc:626: passing long unsigned int *’ as argument 3 of
accept(int,sockadddr *, int *)’

You can safely ignore these warnings. They occur because configure can detect only errors,
not warnings.

If you start the server directly from the command-line, you may have problems with it dying
when you log out. (When you log out, your outstanding processes receive a SIGHUP signal.)
If so, try starting the server like this:

shell> nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal.
Alternatively, start the server by running mysqld_safe, which invokes mysqld using nohup
for you. See Section 4.7.2 [mysqld_safe|, page 318.

If you get a problem when compiling mysys/get_opt.c, just remove the line #define
_NO_PROTO from the start of that file!

If you are using Compaq’s CC compiler, the following configure line should work:

CC="cc -pthread"

CFLAGS="-04 -ansi_alias -ansi_args -fast -inline speed all -arch host"
CXX="cxx -pthread"

CXXFLAGS="-04 -ansi_alias -ansi_args -fast -inline speed all -arch host \J]
-noexceptions -nortti"

export CC CFLAGS CXX CXXFLAGS

./configure \

—--prefix=/usr/local/mysql \

--with-low-memory \

--enable-large-files \

--enable-shared=yes \

--with-named-thread-libs="-1lpthread -lmach -lexc -1lc"

gnumake

158 MySQL Technical Reference for Version 4.1.1-alpha

If you get a problem with libtool, when compiling with shared libraries as above, when
linking mysql, you should be able to get around this by issuing:
cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -03 -DDBUG_OFF \
-04 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME R \
-0 mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.1libs/libmysqlclient.so -1m
cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.6.6.7 Alpha-DEC-OSF /1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure
like this:

CC=cc CFLAGS=-0 CXX=gcc CXXFLAGS=-03 \
./configure --prefix=/usr/local/mysql

If you get problems with the ‘c_asm.h’ file, you can create and use a ’dummy’ ‘c_asm.h’
file with:

touch include/c_asm.h

CC=gcc CFLAGS=-I./include \

CXX=gcc CXXFLAGS=-03 \

./configure --prefix=/usr/local/mysql

Note that the following problems with the 1d program can be fixed by downloading the
latest DEC (Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)" the
compiler had some strange behaviour (undefined asm symbols). /bin/1d also appears to
be broken (problems with _exit undefined errors occurring while linking mysqld). On
this system, we have managed to compile MySQL with the following configure line, after
replacing /bin/1d with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
With the Digital compiler "C++ V6.1-029", the following should work:

CC=cc -pthread

CFLAGS=-04 -ansi_alias -ansi_args -fast -inline speed -speculate all \
—arch host

CXX=cxx -pthread

CXXFLAGS=-04 -ansi_alias -ansi_args -fast -inline speed -speculate all \

—arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql --with-mysqld-ldflags=-all-static \Jj
--disable-shared --with-named-thread-libs="-lmach -lexc -1lc"

Chapter 2: MySQL Installation 159

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line

in ‘config.h’ that defines "HAVE_ALLOCA’.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h.

This warning resulting from this can be ignored.

configure will use the following thread libraries automatically: --with-named-thread-

libs="-1lpthread -1mach -lexc -1c".

When using gcc, you can also try running configure like this:
shell> CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-03 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may

have found an OS bug with threads and signals. In this case you can tell MySQL not to

use signals by configuring with:
shell> CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill

clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.

Instead, the client will die when it issues its next command.

With gce 2.95.2, you will probably run into the following compile error:
sql_acl.cc:1456: Internal compiler error in ‘scan_region’, at except.c:2566]]
Please submit a full bug report.

To fix this you should change to the sql directory and do a “cut and paste” of the last gcc

line, but change -03 to -00 (or add -00 immediately after gcc if you don’t have any -0

option on your compile line). After this is done you can just change back to the top-level
directly and run make again.

2.6.6.8 SGI Irix Notes

If you are using Irix Version 6.5.3 or newer mysqld will only be able to create threads if you
run it as a user with CAP_SCHED_MGT privileges (like root) or give the mysqld server this
privilege with the following shell command:

shell> chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld
You may have to undefine some things in ‘config.h’ after running configure and before
compiling.
In some Irix implementations, the alloca() function is broken. If the mysqld server dies
on some SELECT statements, remove the lines from ‘config.h’ that define HAVE_ALLOC and
HAVE_ALLOCA_H. If mysqladmin create doesn’t work, remove the line from ‘config.h’ that
defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all of the patches on this page as a set:
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and
the latest 1ibc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

160 MySQL Technical Reference for Version 4.1.1-alpha

If you get the something like the following error when compiling ‘mysql.cc’:
"/usr/include/curses.h", line 82: error(1084): invalid combination of typel}
Type the following in the top-level directory of your MySQL source tree:

shell> extra/replace bool curses_bool < /usr/include/curses.h \
> include/curses.h
shell> make

There have also been reports of scheduling problems. If only one thread is running, things
go slow. Avoid this by starting another client. This may lead to a 2-to-10-fold increase in
execution speed thereafter for the other thread. This is a poorly understood problem with
Irix threads; you may have to improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-03 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \
--with-named-thread-libs=-1pthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported
to work

CC=cc CXX=CC CFLAGS=’-03 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib’ CXXFLAGS=’-03 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib’ ./configure \
—--prefix=/usr/local/mysql --with-innodb --with-berkeley-db \
--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

2.6.6.9 SCO Notes

The current port is tested only on “sc03.2v5.0.5”, “sc03.2v5.0.6” and “sco3.2v5.0.7” systems.
There has also been a lot of progress on a port to “sco 3.2v4.2”.

For the moment the recommended compiler on OpenServer is gcc 2.95.2. With this you
should be able to compile MySQL with just:

CC=gcc CXX=gcc ./configure ... (options)

1. For OpenServer 5.0.x you need to use gcc-2.95.2pl or newer from the Skunkware.
http://www.sco.com/skunkware/ and choose browser OpenServer packages or by ftp
to ftp2.caldera.com in the pub/skunkware/osr5/devtools/gcc directory.

2. You need the port of GCC 2.5.x for this product and the Development system. They
are required on this version of SCO Unix. You cannot just use the GCC Dev system.

3. You should get the FSU Pthreads package and install it first. This can be found at
http://moss.csc.ncsu.edu/ " mueller/ftp/pub/PART/pthreads.tar.gz. You can
also get a precompiled package from http://www.mysql.com/Downloads/SCO/FSU-threads-3.5c.tar

4. FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip. Or OpenServer 3.0
or Open Desktop 3.0 (OS 3.0 ODT 3.0), with the SCO Development System installed
using a good port of GCC 2.5.x ODT or OS 3.0 you will need a good port of GCC 2.5.x
There are a lot of problems without a good port. The port for this product requires
the SCO Unix Development system. Without it, you are missing the libraries and the
linker that is needed.

Chapter 2: MySQL Installation 161

5. To build FSU Pthreads on your system, do the following:

1. Run ./configure in the ‘threads/src’ directory and select the SCO OpenServer
option. This command copies ‘Makefile.SC05’ to ‘Makefile’.

2. Run make.

3. To install in the default ‘/usr/include’ directory, login as root, then cd to the
‘thread/src’ directory, and run make install.

6. Remember to use GNU make when making MySQL.
7. If you don’t start mysqld_safe as root, you probably will get only the default 110
open files per process. mysqld will write a note about this in the log file.
8. With SCO 3.2V5.0.5, you should use FSU Pthreads version 3.5¢ or newer. You should
also use gece 2.95.2 or newer!
The following configure command should work:
shell> ./configure --prefix=/usr/local/mysql --disable-shared
9. With SCO 3.2V4.2, you should use FSU Pthreads version 3.5¢ or newer. The following
configure command should work:
shell> CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \
--prefix=/usr/local/mysql \
--with-named-thread-1ibs="-1lgthreads -lsocket -lgen -lgthreads" \J]
--with-named-curses-libs="-lcurses"
You may get some problems with some include files. In this case, you can find new SCO-
specific include files at http://www.mysql.com/Downloads/SC0/SC0-3.2v4.2-includes. tar.gz.|
You should unpack this file in the ‘include’ directory of your MySQL source tree.

SCO development notes:

e MySQL should automatically detect FSU Pthreads and link mysqld with -1gthreads
-lsocket -lgthreads.

e The SCO development libraries are re-entrant in FSU Pthreads. SCO claim’s that its
libraries’ functions are re-entrant, so they must be reentrant with FSU Pthreads. FSU
Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

e FSU Pthreads (at least the version at http://www.mysql.com/) comes linked with
GNU malloc. If you encounter problems with memory usage, make sure that
‘gmalloc.o’ is included in ‘libgthreads.a’ and ‘libgthreads.so’.

e In FSU Pthreads, the following system calls are pthreads-aware: read(), write(),
getmsg (), connect (), accept (), select(), and wait().

e The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap se-
curity patch (version 2.0.0) breaks FSU threads and makes mysqld unstable. You have
to remove this one if you want to run mysqld on an OpenServer 5.0.6 machine.

e SCO provides Operating Systems Patches at ftp://ftp.sco.com/pub/openserverb
for OpenServer 5.0.x

e SCO provides secruity fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer]]
and ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x

e pre-OSR5H06 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/opense:
or ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SC0.10/ as

162 MySQL Technical Reference for Version 4.1.1-alpha

both libsocket.so.2 and libresolv.so.1 with instructions for installing on pre-OSR506
systems.

It’s probably a good idea to install the above patches before trying to compile/use
MySQL.
If you want to install DBI on SCO, you have to edit the ‘Makefile’ in DBI-xxx and each

subdirectory.

Note that the following assumes gcc 2.95.2 or newer:

OLD: NEW:

CC = cc CC = gcc

CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic

CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = 14 LD = gcc -G -fpic

LDDLFLAGS = -G -L/usr/local/1lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib
LD = 1d LD = gcc -G -fpic

OPTIMISE = -0d OPTIMISE = -01

OLD:

CCCFLAGS = -belf -dy -wO -U M_XENIX -DPERL_SC05 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SC05 -I/usr/local/include

This is because the Perl dynaloader will not load the DBI modules if they were compiled
with icc or cc.

Perl works best when compiled with cc.

2.6.6.10 SCO UnixWare Version 7.1.x Notes

You must use a version of MySQL at least as recent as Version 3.22.13 and of UnixWare
7.1.0 because these version fixes some portability and OS problems under UnixWare.

We have been able to compile MySQL with the following configure command on UnixWare
Version 7.1.x:

CC=cc CXX=CC ./configure --prefix=/usr/local/mysql
If you want to use gcc, you must use gcc 2.95.2 or newer.
CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

1. SCO provides Operating Systems Patches at ftp://ftp.sco.com/pub/unixware? for
UnixWare 7.1.1 and 7.1.3 ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0

2. SCO provides information about Security Fixes at ftp://ftp.sco.com/pub/security/0OpenUNIX]]
for OpenUNIX ftp://ftp.sco.com/pub/security/UnixWare for UnixWare

Chapter 2: MySQL Installation 163

2.6.7 OS/2 Notes

MySQL uses quite a few open files. Because of this, you should add something like the
following to your ‘CONFIG.SYS’ file:

SET EMXOPT=-c -n -h1024
If you don’t do this, you will probably run into the following error:
File ’xxxx’ not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp
4, FixPack 4 or above is required. This is a requirement of the Pthreads library. MySQL
must be installed in a partition that supports long filenames such as HPFS, FAT32, etc.

The ‘INSTALL.CMD’ script must be run from OS/2’s own ‘CMD.EXE’ and may not work with
replacement shells such as ‘40S2.EXE’.

The ‘scripts/mysql-install-db’ script has been renamed. It is now called ‘install.cmd’
and is a REXX script, which will set up the default MySQL security settings and create
the WorkPlace Shell icons for MySQL.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be
compiled using the Pthreads run-time library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
-0 example udf_example.cc -L../1ib -lmysqlclient udf_example.def
mv example.dll example.udf

Note: Due to limitations in OS/2, UDF module name stems must not exceed 8 characters.
Modules are stored in the ‘/mysql2/udf’ directory; the safe-mysqld. cmd script will put this
directory in the BEGINLIBPATH environment variable. When using UDF modules, specified
extensions are ignored—it is assumed to be ‘.udf’. For example, in Unix, the shared module
might be named ‘example.so’ and you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "example.so";

In OS/2, the module would be named ‘example.udf’, but you would not specify the module
extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "example';
2.6.8 Novell NetWare Notes

Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers will be
pleased to note that NetWare 6.5 will ship with bundled MySQL binaries, complete with
an automatic commercial use license for all servers running that version of NetWare.

See Section 2.1.4 [NetWare installation], page 78.

MySQL for NetWare is compiled using a combination of Metrowerks Codewarrior for
NetWare and special cross-compilation versions of the GNU autotools. Check back here in
the future for more information on building and optimising MySQL for NetWare.

164 MySQL Technical Reference for Version 4.1.1-alpha

2.6.9 BeOS Notes

We are really interested in getting MySQL to work on BeOS, but unfortunately we don’t
have any person who knows BeOS or has time to do a port.

We are interested in finding someone to do a port, and we will help them with any technical
questions they may have while doing the port.

We have previously talked with some BeOS developers that have said that MySQL is 80%
ported to BeOS, but we haven’t heard from them in a while.

2.7 Perl Installation Comments

2.7.1 Installing Perl on Unix

Perl support for MySQL is provided by means of the DBI/DBD client interface. See Section 9.5
[Perl], page 757. The Perl DBD/DBI client code requires Perl Version 5.004 or later. The
interface will not work if you have an older version of Perl.

MySQL Perl support also requires that you’ve installed MySQL client programming sup-
port. If you installed MySQL from RPM files, client programs are in the client RPM, but
client programming support is in the developer RPM. Make sure you've installed the latter
RPM.

As of Version 3.22.8, Perl support is distributed separately from the main MySQL distri-
bution. If you want to install Perl support, the files you will need can be obtained from
http://www.mysql.com/downloads/api-dbi.html.

The Perl distributions are provided as compressed tar archives and have names like
‘MODULE-VERSION.tar.gz’, where MODULE is the module name and VERSION is the version
number. You should get the Data-Dumper, DBI, and DBD-mysql distributions and install
them in that order. The installation procedure is shown here. The example shown is for
the Data-Dumper module, but the procedure is the same for all three distributions:

1. Unpack the distribution into the current directory:
shell> gunzip < Data-Dumper-VERSION.tar.gz | tar xvf -
This command creates a directory named ‘Data-Dumper-VERSION’.
2. Change into the top-level directory of the unpacked distribution:
shell> cd Data-Dumper-VERSION
3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make

shell> make test

shell> make install

The make test command is important because it verifies that the module is working. Note
that when you run that command during the DBD-mysql installation to exercise the interface
code, the MySQL server must be running or the test will fail.

Chapter 2: MySQL Installation 165

It is a good idea to rebuild and reinstall the DBD-mysql distribution whenever you install
a new release of MySQL, particularly if you notice symptoms such as all your DBI scripts
dumping core after you upgrade MySQL.

If you don’t have the right to install Perl modules in the system directory or if you to install
local Perl modules, the following reference may help you:

http://wuw.iserver.com/support/contrib/perl5/modules.html

Look wunder the heading Installing New Modules that Require Locally Installed
Modules.

2.7.2 Installing ActiveState Perl on Windows

To install the MySQL DBD module with ActiveState Perl on Windows, you should do the
following;:

o Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/
and install it.

e Open a DOS shell.

e If required, set the HT'TP_proxy variable. For example, you might try:
set HTTP_proxy=my.proxy.com:3128

e Start the PPM program:
C:\> c:\perl\bin\ppm.pl

e If you have not already done so, install DBI:
ppm> install DBI

e If this succeeds, run the following command:
install \
ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd}

The above should work at least with ActiveState Perl Version 5.6.

If you can’t get the above to work, you should instead install the MyODBC driver and connect
to MySQL server through ODBC:

use DBI;
$dbh= DBI->connect ("DBI:0DBC:$dsn","$user","$password") ||
die "Got error $DBI::errstr when connecting to $dsn\n";

2.7.3 Installing the MySQL Perl Distribution on Windows

The MySQL Perl distribution contains DBI, DBD:MySQL and DBD:0DBC.
e Get the Perl distribution for Windows from http://www.mysql.com/downloads/os-win32.html.|]
e Unzip the distribution in C: so that you get a ‘C:\PERL’ directory.
e Add the directory ‘C:\PERL\BIN’ to your path.

e Add the directory ‘C: \PERL\BIN\MSWIN32-x86-thread’ or ‘C: \PERL\BIN\MSWIN32-x386’}
to your path.

o Test that perl works by executing perl -v in a DOS shell.

166 MySQL Technical Reference for Version 4.1.1-alpha

2.7.4 Problems Using the Perl DBI/DBD Interface

If Perl reports that it can’t find the ‘../mysql/mysql.so’ module, then the problem is
probably that Perl can’t locate the shared library ‘libmysqlclient.so’.

You can fix this by any of the following methods:

e Compile the DBD-mysql distribution with perl Makefile.PL -static -config rather
than perl Makefile.PL.

e Copy ‘libmysqlclient.so’ to the directory where your other shared libraries are lo-
cated (probably ‘/usr/1ib’ or ‘//1ib’).

e On Linux you can add the pathname of the directory where ‘libmysqlclient.so’ is
located to the ‘/etc/1d.so.conf’ file.

e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable.

If you get the following errors from DBD-mysql, you are probably using gcc (or using an old
binary compiled with gcc):

/usr/bin/perl: can’t resolve symbol ’__moddi3’

/usr/bin/perl: can’t resolve symbol ’__divdi3’

Add -L/usr/1lib/gcc-1ib/... -1lgcc to the link command when the ‘mysql.so’ library
gets built (check the output from make for ‘mysql.so’ when you compile the Perl client).
The -L option should specify the pathname of the directory where ‘1ibgcc.a’ is located on
your system.
Another cause of this problem may be that Perl and MySQL aren’t both compiled with
gcce. In this case, you can solve the mismatch by compiling both with gcc.
If you get the following error from DBD-mysql when you run the tests:
t/00base............ install_driver(mysql) failed:
Can’t load ’../blib/arch/auto/DBD/mysql/mysql.so’ for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-1inux/Dynaloader.pm line 169.

it means that you need to include the compression library, -1z, to the link line. This can be
doing the following change in the file ‘1ib/DBD/mysql/Install.pm’:

$sysliblist .= " -1m";
to
$sysliblist .= " -1lm -1z";

After this, you must run 'make realclean’ and then proceed with the installation from the
beginning.

If you want to use the Perl module on a system that doesn’t support dynamic linking (like
SCO) you can generate a static version of Perl that includes DBI and DBD-mysql. The way
this works is that you generate a version of Perl with the DBI code linked in and install it
on top of your current Perl. Then you use that to build a version of Perl that additionally
has the DBD code linked in, and install that.

On SCO, you must have the following environment variables set:

Chapter 2: MySQL Installation 167

shell> LD_LIBRARY_PATH=/1ib:/usr/lib:/usr/local/lib:/usr/progressive/lib
or

shell> LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/1lib:\
/usr/progressive/lib:/usr/skunk/lib

shell> LIBPATH=/usr/1ib:/lib:/usr/local/lib:/usr/ccs/1ib:\
/usr/progressive/lib:/usr/skunk/lib

shell> MANPATH=scohelp:/usr/man:/usr/locall/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI by running these commands in the
directory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make

shell> make install

shell> make perl

Then you must install the new Perl. The output of make perl will indicate the exact make
command you will need to execute to perform the installation. On SCO, this is make -f
Makefile.aperl inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically-linked
DBD: :mysql by running these commands in the directory where your DBD-mysql distribution
is located:

shell> perl Makefile.PL -static -config

shell> make

shell> make install

shell> make perl

Finally, you should install this new Perl. Again, the output of make perl indicates the
command to use.

168 MySQL Technical Reference for Version 4.1.1-alpha

3 Tutorial Introduction

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql
client program to create and use a simple database. mysql (sometimes referred to as the
“terminal monitor” or just “monitor”) is an interactive program that allows you to connect
to a MySQL server, run queries, and view the results. mysql may also be used in batch
mode: you place your queries in a file beforehand, then tell mysql to execute the contents
of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the —-help option:
shell> mysql --help
This chapter assumes that mysql is installed on your machine and that a MySQL server is

available to which you can connect. If this is not true, contact your MySQL administrator.
(If you are the administrator, you will need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are
interested only in accessing an already-existing database, you may want to skip over the
sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily left out. Consult the
relevant sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you’ll usually need to provide a MySQL user name when you
invoke mysql and, most likely, a password. If the server runs on a machine other than the
one where you log in, you’ll also need to specify a hostname. Contact your administrator
to find out what connection parameters you should use to connect (that is, what host, user
name, and password to use). Once you know the proper parameters, you should be able to
connect like this:

shell> mysql -h host -u user -p
Enter password: dkiskkxx

The ***x**** represents your password; enter it when mysql displays the Enter password:
prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p

Enter password: s kxskkkkx

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 459 to server version: 3.22.20a-log

Type ’help’ for help.

mysql>
The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the
server running on the local host. If this is the case on your machine, you should be able to
connect to that server by invoking mysql without any options:

Chapter 3: Tutorial Introduction 169

shell> mysql
After you have connected successfully, you can disconnect any time by typing QUIT at the
mysql> prompt:

mysql> QUIT

Bye
You can also disconnect by pressing Control-D.

Most examples in the following sections assume you are connected to the server. They
indicate this by the mysql> prompt.

3.2 Entering Queries

Make sure you are connected to the server, as discussed in the previous section. Doing so
will not in itself select any database to work with, but that’s okay. At this point, it’s more
important to find out a little about how to issue queries than to jump right in creating
tables, loading data into them, and retrieving data from them. This section describes the
basic principles of entering commands, using several queries you can try out to familiarise
yourself with how mysql works.

Here’s a simple command that asks the server to tell you its version number and the current
date. Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;

e Fomm - +
| VERSIONQ) | CURRENT_DATE |
et Fommm - +
| 3.22.20a-log | 1999-03-19 |
Fmmm Fomm e +

1 row in set (0.01 sec)
mysql>
This query illustrates several things about mysql:

e A command normally consists of an SQL statement followed by a semicolon. (There
are some exceptions where a semicolon is not needed. QUIT, mentioned earlier, is one
of them. We’ll get to others later.)

e When you issue a command, mysql sends it to the server for execution and displays the
results, then prints another mysql> to indicate that it is ready for another command.

e mysql displays query output as a table (rows and columns). The first row contains
labels for the columns. The rows following are the query results. Normally, column
labels are the names of the columns you fetch from database tables. If you're retrieving
the value of an expression rather than a table column (as in the example just shown),
mysql labels the column using the expression itself.

e mysql shows how many rows were returned and how long the query took to execute,
which gives you a rough idea of server performance. These values are imprecise because
they represent wall clock time (not CPU or machine time), and because they are affected
by factors such as server load and network latency. (For brevity, the “rows in set” line
is not shown in the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

170 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;
Here’s another query. It demonstrates that you can use mysql as a simple calculator:
mysql> SELECT SIN(PI()/4), (4+1)%5;

Fommm Fomm +
| SIN(PI()/4) | (4+1)*5 |
pom— fo———— +
| 0.707107 | 25 |
Fommmmm o +

The commands shown thus far have been relatively short, single-line statements. You can
even enter multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();

- +
| VERSION() I
e +
| 3.22.20a-log |
Fmm————————— +
o +
| NOWQ) I
R et +
| 1999-03-19 00:15:33 |
R +

A command need not be given all on a single line, so lengthy commands that require several
lines are not a problem. mysql determines where your statement ends by looking for the
terminating semicolon, not by looking for the end of the input line. (In other words, mysql
accepts free-format input: it collects input lines but does not execute them until it sees the
semicolon.)

Here’s a simple multiple-line statement:

mysql> SELECT

-> USER(Q)

_> s

-> CURRENT_DATE;
e Tt e Fomm +
| USERQ) | CURRENT_DATE |
e Fomm +
| joesmith@localhost | 1999-03-18 |
Tt B Fomm o +

In this example, notice how the prompt changes from mysql> to -> after you enter the first
line of a multiple-line query. This is how mysql indicates that it hasn’t seen a complete
statement and is waiting for the rest. The prompt is your friend, because it provides valuable
feedback. If you use that feedback, you will always be aware of what mysql is waiting for.

If you decide you don’t want to execute a command that you are in the process of entering,
cancel it by typing \c:

Chapter 3: Tutorial Introduction 171

mysql> SELECT
-> USERQ)
-> \c
mysql>
Here, too, notice the prompt. It switches back to mysql> after you type \c, providing
feedback to indicate that mysql is ready for a new command.
The following table shows each of the prompts you may see and summarises what they
mean about the state that mysql is in:

Prompt Meaning

mysql> Ready for new command.
-> Waiting for next line of multiple-line command.
> Waiting for next line, collecting a string that begins with a single quote

(7).

"> Waiting for next line, collecting a string that begins with a double
quote (‘“"7).
Multiple-line statements commonly occur by accident when you intend to issue a command
on a single line, but forget the terminating semicolon. In this case, mysql waits for more
input:
mysql> SELECT USER()
->
If this happens to you (you think you’ve entered a statement but the only response is a
-> prompt), most likely mysql is waiting for the semicolon. If you don’t notice what the
prompt is telling you, you might sit there for a while before realising what you need to do.
Enter a semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USER()

e +
| USERQO) |
T +
| joesmith@localhost |
e +

The >> and "> prompts occur during string collection. In MySQL, you can write strings
surrounded by either **” or ‘"’ characters (for example, hello’ or "goodbye"), and mysql
lets you enter strings that span multiple lines. When you see a ’> or "> prompt, it means
that you’ve entered a line containing a string that begins with a ‘>’ or ‘"’ quote character,
but have not yet entered the matching quote that terminates the string. That’s fine if you
really are entering a multiple-line string, but how likely is that? Not very. More often,
the >> and "> prompts indicate that you’'ve inadvertantly left out a quote character. For
example:
mysql> SELECT * FROM my_table WHERE name = "Smith AND age < 30;
">

If you enter this SELECT statement, then press Enter and wait for the result, nothing will
happen. Instead of wondering why this query takes so long, notice the clue provided by the
"> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do
you see the error in the statement? The string "Smith is missing the second quote.)

172 MySQL Technical Reference for Version 4.1.1-alpha

At this point, what do you do? The simplest thing is to cancel the command. However,
you cannot just type \c in this case, because mysql interprets it as part of the string that
it is collecting! Instead, enter the closing quote character (so mysql knows you’ve finished
the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = "Smith AND age < 30;

"ns II\C

mysql>
The prompt changes back to mysql>, indicating that mysql is ready for a new command.
It’s important to know what the >> and "> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type will appear to be ignored by mysql—

including a line containing QUIT! This can be quite confusing, especially if you don’t know
that you need to supply the terminating quote before you can cancel the current command.

3.3 Creating and Using a Database

Now that you know how to enter commands, it’s time to access a database.

Suppose you have several pets in your home (your menagerie) and you’d like to keep track
of various types of information about them. You can do so by creating tables to hold your
data and loading them with the desired information. Then you can answer different sorts
of questions about your animals by retrieving data from the tables. This section shows you
how to:

e Create a database

e Create a table

e Load data into the table

e Retrieve data from the table in various ways

e Use multiple tables

The menagerie database will be simple (deliberately), but it is not difficult to think
of real-world situations in which a similar type of database might be used. For
example, a database like this could be used by a farmer to keep track of livestock,
or by a veterinarian to keep track of patient records. A menagerie distribution
containing some of the queries and sample data used in the following sections can be
obtained from the MySQL web site. It’s available in either compressed tar format
(http://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz) or Zip
format (http://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip).

Use the SHOW statement to find out what databases currently exist on the server:
mysql> SHOW DATABASES;

- +
| Database |
Fmm +
| mysql |
| test |
| tmp I

Chapter 3: Tutorial Introduction 173

The list of databases is probably different on your machine, but the mysql and test
databases are likely to be among them. The mysql database is required because it de-
scribes user access privileges. The test database is often provided as a workspace for users
to try things out.

Note that you may not see all databases if you don’t have the SHOW DATABASES privilege.
See Section 4.3.1 [GRANT], page 248.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements
with a semicolon if you like; it does no harm.) The USE statement is special in another way,
too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but
anything you create in that database can be removed by anyone else with access to it. For
this reason, you should probably ask your MySQL administrator for permission to use a
database of your own. Suppose you want to call yours menagerie. The administrator needs
to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO your_mysql_name;

where your_mysql_name is the MySQL user name assigned to you.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you
can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always
refer to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant.
This is also true for table names. (Under Windows, this restriction does not apply, although
you must refer to databases and tables using the same lettercase throughout a given query.)

Creating a database does not select it for use; you must do that explicitly. To make
menagerie the current database, use this command:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time
you begin a mysql session. You can do this by issuing a USE statement as shown above.
Alternatively, you can select the database on the command-line when you invoke mysql.
Just specify its name after any connection parameters that you might need to provide. For
example:

shell> mysql -h host -u user -p menagerie
Enter password: ¥kkkkkx

Note that menagerie is not your password on the command just shown. If you want to
supply your password on the command-line after the -p option, you must do so with no
intervening space (for example, as -pmypassword, not as -p mypassword). However, putting

174 MySQL Technical Reference for Version 4.1.1-alpha

your password on the command-line is not recommended, because doing so exposes it to
snooping by other users logged in on your machine.

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it’s empty, as SHOW TABLES will
tell you:

mysql> SHOW TABLES;

Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you
will need and what columns will be in each of them.

You’ll want a table that contains a record for each of your pets. This can be called the pet
table, and it should contain, as a bare minimum, each animal’s name. Because the name
by itself is not very interesting, the table should contain other information. For example,
if more than one person in your family keeps pets, you might want to list each animal’s
owner. You might also want to record some basic descriptive information such as species
and sex.

How about age? That might be of interest, but it’s not a good thing to store in a database.
Age changes as time passes, which means you’d have to update your records often. Instead,
it’s better to store a fixed value such as date of birth. Then, whenever you need age, you can
calculate it as the difference between the current date and the birth date. MySQL provides
functions for doing date arithmetic, so this is not difficult. Storing birth date rather than
age has other advantages, too:

e You can use the database for tasks such as generating reminders for upcoming pet
birthdays. (If you think this type of query is somewhat silly, note that it is the same
question you might ask in the context of a business database to identify clients to whom
you’ll soon need to send out birthday greetings, for that computer-assisted personal
touch.)

e You can calculate age in relation to dates other than the current date. For example, if
you store death date in the database, you can easily calculate how old a pet was when
it died.

You can probably think of other types of information that would be useful in the pet table,

but the ones identified so far are sufficient for now: name, owner, species, sex, birth, and
death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column
values will vary in length. The lengths of those columns need not all be the same, and
need not be 20. You can pick any length from 1 to 255, whatever seems most reasonable to
you. (If you make a poor choice and it turns out later that you need a longer field, MySQL
provides an ALTER TABLE statement.)

Several types of values can be chosen to represent sex in animal records, such as "m" and
"f" or perhaps "male" and "female". It’s simplest to use the single characters "m" and
n f n .

Chapter 3: Tutorial Introduction 175

The use of the DATE datatype for the birth and death columns is a fairly obvious choice.
Now that you have created a table, SHOW TABLES should produce some output:
mysql> SHOW TABLES;

To verify that your table was created the way you expected, use a DESCRIBE statement:
mysql> DESCRIBE pet;

o o R — PR T —— S —— +
| Field | Type | Null | Key | Default | Extra |
fomm— T I R — I I +
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	I
death	date	YES		NULL	
fomm o R — PR T — SR —— +

You can use DESCRIBE any time, for example, if you forget the names of the columns in
your table or what types they are.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements
are useful for this.

Suppose your pet records can be described as shown here. (Observe that MySQL expects
dates in ’YYYY-MM-DD’ format; this may be different from what you are used to.)

name owner species sex birth death
Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1998-08-31 1995-07-29
Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a
text file containing a row for each of your animals, then load the contents of the file into
the table with a single statement.

You could create a text file ‘pet.txt’ containing one record per line, with values separated
by tabs, and given in the order in which the columns were listed in the CREATE TABLE
statement. For missing values (such as unknown sexes or death dates for animals that
are still living), you can use NULL values. To represent these in your text file, use \N.

176 MySQL Technical Reference for Version 4.1.1-alpha

For example, the record for Whistler the bird would look like this (where the whitespace
between values is a single tab character):

name owner species sex birth death
Whistler Gwen bird \N 1997-12- \N
09

To load the text file ‘pet.txt’ into the pet table, use this command:
mysql> LOAD DATA LOCAL INFILE "pet.txt" INTO TABLE pet;

You can specify the column value separator and end of line marker explicitly in the LOAD
DATA statement if you wish, but the defaults are tab and linefeed. These are sufficient for
the statement to read the file ‘pet.txt’ properly.

When you want to add new records one at a time, the INSERT statement is useful. In its
simplest form, you supply values for each column, in the order in which the columns were
listed in the CREATE TABLE statement. Suppose Diane gets a new hamster named Puffball.
You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES (’Puffball’,’Diane’,’hamster’,’f’,’1999-03-30’,NULL);
Note that string and date values are specified as quoted strings here. Also, with INSERT,
you can insert NULL directly to represent a missing value. You do not use \N like you do
with LOAD DATA.
From this example, you should be able to see that there would be a lot more typing involved

to load your records initially using several INSERT statements rather than a single LOAD DATA
statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the
statement is:

SELECT what_to_select

FROM which_table

WHERE conditions_to_satisfy
what_to_select indicates what you want to see. This can be a list of columns, or * to
indicate “all columns.” which_table indicates the table from which you want to retrieve
data. The WHERE clause is optional. If it’s present, conditions_to_satisfy specifies
conditions that rows must satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:
mysql> SELECT * FROM pet;

pomm o pommmm o i e +
| name | owner | species | sex | birth | death |
Fmmm Fo—— S o Fomm Fomm +
| Fluffy | Harold | cat | £ | 1993-02-04 | NULL |
| Claws | Gwen | cat | m | 1994-03-17 | NULL |

Chapter 3: Tutorial Introduction 177

Buffy	Harold	dog	£	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1998-08-31	1995-07-29
Chirpy	Gwen	bird	£	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
fommm o pomm pommm o e e +

This form of SELECT is useful if you want to review your entire table, for instance, after
you’ve just loaded it with your initial dataset. As it happens, the output just shown reveals
an error in your datafile: Bowser appears to have been born after he died! Consulting your
original pedigree papers, you find that the correct birth year is 1989, not 1998.

There are least a couple of ways to fix this:

e FKdit the file ‘pet.txt’ to correct the error, then empty the table and reload it using
DELETE and LOAD DATA:

mysql> SET AUTOCOMMIT=1; # Used for quick re-create of the table
mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE "pet.txt" INTO TABLE pet;
However, if you do this, you must also re-enter the record for Puffball.
e Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = "1989-08-31" WHERE name = "Bowser";

As shown above, it is easy to retrieve an entire table. But typically you don’t want to do
that, particularly when the table becomes large. Instead, you’re usually more interested in
answering a particular question, in which case you specify some constraints on the informa-
tion you want. Let’s look at some selection queries in terms of questions about your pets
that they answer.

3.3.4.2 Selecting Particular Rows

You can select only particular rows from your table. For example, if you want to verify the
change that you made to Bowser’s birth date, select Bowser’s record like this:

mysql> SELECT * FROM pet WHERE name = "Bowser";

Hmmmm o Hmmmm Hmm o o mm e +
| name | owner | species | sex | birth | death |
o +———— - o e e +
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
tmmmm Hmmmm Hmmmm o e S Hmmmm +

The output confirms that the year is correctly recorded now as 1989, not 1998.

String comparisons are normally case-insensitive, so you can specify the name as "bowser",
"BOWSER", etc. The query result will be the same.

You can specify conditions on any column, not just name. For example, if you want to know
which animals were born after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= "1998-1-1";

178 MySQL Technical Reference for Version 4.1.1-alpha

pomm o fomm e e o +
| name | owner | species | sex | birth | death |
pomm o= e o Fomm oo +
| Chirpy | Gwen | bird | £ | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
Fmmm o= e o Fomm o +

You can combine conditions, for example, to locate female dogs:
mysql> SELECT * FROM pet WHERE species = "dog" AND sex = "f";

oo o Fomm o Fomm oo +
| name | owner | species | sex | birth | death |
Fomm e pommm Fommmm o e Fomm e +
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
o o e o Fomm o +

The preceding query uses the AND logical operator. There is also an OR operator:
mysql> SELECT * FROM pet WHERE species = "snake" OR species = "bird";

Fomm o= e o fomm o +
| name | owner | species | sex | birth | death |
Fmmm o fomm e e i o +
Chirpy	Gwen	bird	£	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m 1996-04-29	NULL	
pomm o oo o Fomm o +

AND and OR may be intermixed. If you do that, it’s a good idea to use parentheses to indicate
how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = "cat" AND sex = "m")
-> OR (species = "dog" AND sex = "f");

o o o o Fomm o +
| name | owner | species | sex | birth | death |
oo pomm - Fommmm o Fo—mm - oo +
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
o o o o Fomm oo +

3.3.4.3 Selecting Particular Columns

If you don’t want to see entire rows from your table, just name the columns in which you’re
interested, separated by commas. For example, if you want to know when your animals
were born, select the name and birth columns:

mysql> SELECT name, birth FROM pet;

mmm o +
| name | birth |
S ———— N —— +
| Fluffy 1993-02-04 |

I
| Claws | 1994-03-17 |
| Buffy | 1989-05-13 |

Chapter 3: Tutorial Introduction 179

Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
e e +

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
| owner |

Harold
Gwen
Harold
Benny
Diane
Gwen
Gwen
Benny
Diane

However, notice that the query simply retrieves the owner field from each record, and some
of them appear more than once. To minimise the output, retrieve each unique output record
just once by adding the keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;

fomm +
| owner |
R — +
| Benny |
| Diane |
| Gwen I
| Harold |
R —— +

You can use a WHERE clause to combine row selection with column selection. For example,
to get birth dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = "dog" OR species = "cat";

o Fomm Fomm +
| name | species | birth |
pomm Hommmm fomm o +
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27

180 MySQL Technical Reference for Version 4.1.1-alpha

| Bowser | dog | 1989-08-31 |
o o Fomm +

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no
particular order. However, it’s often easier to examine query output when the rows are
sorted in some meaningful way. To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:
mysql> SELECT name, birth FROM pet ORDER BY birth;

o o +
| name | birth |
Fm————————— o +
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
Fm————————— Fmm————————— +

On character type columns, sorting—Ilike all other comparison operations—is normally per-
formed in a case-insensitive fashion. This means that the order will be undefined for columns
that are identical except for their case. You can force a case-sensitive sort by using the BI-
NARY cast: ORDER BY BINARY(field).

To sort in reverse order, add the DESC (descending) keyword to the name of the column you
are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;

fomm S +
| name | birth |
o o +
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
o o +

You can sort on multiple columns. For example, to sort by type of animal, then by birth
date within animal type with youngest animals first, use the following query:

Chapter 3: Tutorial Introduction 181

mysql> SELECT name, species, birth FROM pet ORDER BY species, birth DESC;J}

Fomm Fo—m Fomm +
| name | species | birth I
pomm - o e +
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
pomm o Fomm o +

Note that the DESC keyword applies only to the column name immediately preceding it
(birth); species values are still sorted in ascending order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for
example, to calculate ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year
part of the current date and the birth date, then subtract one if the current date occurs
earlier in the calendar year than the birth date. The following query shows, for each pet,
the birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURRENT_DATE,

-> (YEAR(CURRENT_DATE)-YEAR(birth))
-> - (RIGHT(CURRENT_DATE,5)<RIGHT (birth,5))

-> AS age

-> FROM pet;
Fm————————— Fmm—————————— Fmm——————————— Fm———— +
| name | birth | CURRENT_DATE | age |
o o o - +
Fluffy	1993-02-04	2001-08-29	8
Claws	1994-03-17	2001-08-29	7
Buffy	1989-05-13	2001-08-29	12
Fang	1990-08-27	2001-08-29	11
Bowser	1989-08-31	2001-08-29	11
Chirpy	1998-09-11	2001-08-29	2
Whistler	1997-12-09	2001-08-29	3
Slim	1996-04-29	2001-08-29	5
Puffball	1999-03-30	2001-08-29	2
o o o - +

Here, YEAR() pulls out the year part of a date and RIGHT () pulls off the rightmost five

characters that represent the MM-DD (calendar year) part of the date

The part of the

expression that compares the MM-DD values evaluates to 1 or 0, which adjusts the year

182

difference down a year if CURRENT_DATE occurs earlier in the year than birth. The full
expression is somewhat ungainly, so an alias (age) is used to make the output column label

more meaningful.

The query works, but the result could be scanned more easily if the rows were presented
in some order. This can be done by adding an ORDER BY name clause to sort the output by

+
I
+
I
I
I
I
I
I
I
I
I

MySQL Technical Reference for Version 4.1.1-alpha

2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29

name:
mysql>
->
->
-> AS age
-> FROM pet ORDER BY name;
domm - o
| name | birth
e R ntat
| Bowser | 1989-08-31
| Buffy | 1989-05-13
| Chirpy | 1998-09-11
| Claws | 1994-03-17
| Fang | 1990-08-27
| Fluffy | 1993-02-04
| Puffball | 1999-03-30
| Slim | 1996-04-29
| Whistler | 1997-12-09
o Fomm e

To sort the output by age rather than name, just use a different ORDER BY clause:
SELECT name, birth, CURRENT_DATE,
(YEAR (CURRENT_DATE) -YEAR (birth))
- (RIGHT (CURRENT_DATE,5)<RIGHT (birth,5))

+

+
I
+
I
I
I
I
I
I
I
I
I

2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29
2001-08-29

mysql>

->

->

-> AS age

-> FROM pet ORDER BY age;
o ————— o
| name | birth
o ——— o ——————
| Chirpy | 1998-09-11
| Puffball | 1999-03-30
| Whistler | 1997-12-09
| Slim | 1996-04-29
| Claws | 1994-03-17
| Fluffy | 1993-02-04
| Fang | 1990-08-27
| Bowser | 1989-08-31
| Buffy | 1989-05-13
o ——— o ————

A similar query can be used to determine age at death for animals that have died. You
determine which animals these are by checking whether the death value is NULL. Then, for
those with non-NULL values, compute the difference between the death and birth values:

+

SELECT name, birth, CURRENT_DATE,
(YEAR (CURRENT_DATE) -YEAR (birth))
- (RIGHT(CURRENT_DATE,5)<RIGHT (birth,5))

+
I

+
I
I
I
I
I
I
I
I
I

+

Chapter 3: Tutorial Introduction 183

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))

-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;
e Fommm e o +
| name | birth | death | age |
Fommm - Fommmm e Rt e e +
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
Fommm Fommmmmm Fommmm e +

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value. This is explained later. See Section 3.3.4.6 [Working with NULL], page 184.

What if you want to know which animals have birthdays next month? For this type of
calculation, year and day are irrelevant; you simply want to extract the month part of the
birth column. MySQL provides several date-part extraction functions, such as YEAR(),
MONTH(), and DAYOFMONTH(). MONTH(Q) is the appropriate function here. To see how it
works, run a simple query that displays the value of both birth and MONTH (birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;

e ——————— Fm—— e ———— e +
| name | birth | MONTH(birth) |
- e - +
| Fluffy | 1993-02-04 | 2 |
| Claws | 1994-03-17 | 3 |
| Buffy | 1989-05-13 | 5 |
| Fang | 1990-08-27 | 8 |
| Bowser | 1989-08-31 | 8 |
| Chirpy | 1998-09-11 | 9 |
| Whistler | 1997-12-09 | 12 |
| Slim | 1996-04-29 | 4 |
| Puffball | 1999-03-30 | 3
o o o +

Finding animals with birthdays in the upcoming month is easy, too. Suppose the current
month is April. Then the month value is 4 and you look for animals born in May (month
5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;

Fmm———— Fmm e ————— +
| name | birth |
o o +
| Buffy | 1989-05-13 |
Fm————— e ——— +

There is a small complication if the current month is December, of course. You don’t just
add one to the month number (12) and look for animals born in month 13, because there
is no such month. Instead, you look for animals born in January (month 1).

You can even write the query so that it works no matter what the current month is. That
way you don’t have to use a particular month number in the query. DATE_ADD () allows you
to add a time interval to a given date. If you add a month to the value of CURRENT_DATE,

184 MySQL Technical Reference for Version 4.1.1-alpha

then extract the month part with MONTH(), the result produces the month in which to look
for birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURRENT_DATE, INTERVAL 1 MONTH));H

A different way to accomplish the same task is to add 1 to get the next month after the
current one (after using the modulo function (MOD) to wrap around the month value to O if
it is currently 12):

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURRENT_DATE), 12) + 1;

Note that MONTH returns a number between 1 and 12. And MOD(something,12) returns a
number between 0 and 11. So the addition has to be after the MOD(), otherwise we would
go from November (11) to January (1).

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means missing
value or unknown value and it is treated somewhat differently than other values. To test
for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>. To
demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;

Fomm e ——— Fomm e ——— Fomm e ——— o —————e +
| 1 =NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
t————— - - - +
I NULL | NULL | NULL | NULL |
tomm Fomm tommm————— o +

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT
NULL operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;

Fomm et +
| 1 IS NULL | 1 IS NOT NULL |
- e +
I 0 | 1]
Fmmm e ——— o +

Note that in MySQL, 0 or NULL means false and anything else means true. The default
truth value from a boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine
which animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and
last if you do ORDER BY ... DESC.

Note that between MySQL 4.0.2 - 4.0.10, NULL values incorrectly were always sorted first
regardless of the sort direction.

Chapter 3: Tutorial Introduction 185

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching
based on extended regular expressions similar to those used by Unix utilities such as vi,
grep, and sed.

SQL pattern matching allows you to use ‘_’ to match any single character and ‘%’ to match
an arbitrary number of characters (including zero characters). In MySQL, SQL patterns
are case-insensitive by default. Some examples are shown here. Note that you do not use =
or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with ‘b’
mysql> SELECT * FROM pet WHERE name LIKE "b%";

pomm - Fomm oo o Fomm Fmmm +
| name | owner | species | sex | birth | death |
pomm mmm o o e e +
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
pomm Fomm o o Fomm - T +
To find names ending with ‘fy’:
mysql> SELECT * FROM pet WHERE name LIKE "Y%fy";
o o Fo———————— o Fomm o +
| name | owner | species | sex | birth | death |
pomm - Fomm - oo o fomm - o +
| Fluffy | Harold | cat | £ | 1993-02-04 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
o o Fo———————— o Fomm o +
To find names containing a ‘w’:
mysql> SELECT * FROM pet WHERE name LIKE "Yw’%";
pomm o o o Fomm e +
| name | owner | species | sex | birth | death |
Fomm o= fomm o Fomm Fmmm +
| Claws | Gwen | cat | m | 1994-03-17 | NULL I
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
o o= e o Fomm Fmmm +

To find names containing exactly five characters, use the ‘_’ pattern character:
mysql> SELECT * FROM pet WHERE name LIKE " "

o e Fomm - Fmm Fo— +
| name | owner | species | sex | birth | death |
e O S e o e +
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
Fo—m— e Fomm o Fmm Fo—m— +

The other type of pattern matching provided by MySQL uses extended regular expressions.
When you test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators
(or RLIKE and NOT RLIKE, which are synonyms).

186 MySQL Technical Reference for Version 4.1.1-alpha

Some characteristics of extended regular expressions are:
e ‘.’ matches any single character.

e A character class ‘[...]" matches any character within the brackets. For example,
‘[abc]’ matches ‘a’, ‘b’, or ‘c’. To name a range of characters, use a dash. ‘[a-z]’
matches any lowercase letter, whereas ‘[0-9]’ matches any digit.

e ‘x’ matches zero or more instances of the thing preceding it. For example, ‘x*’ matches
any number of ‘x’ characters, ‘[0-9]*’ matches any number of digits, and ‘. *” matches
any number of anything.

e The pattern matches if it occurs anywhere in the value being tested. (SQL patterns
match only if they match the entire value.)

e To anchor a pattern so that it must match the beginning or end of the value being
tested, use ‘~’ at the beginning or ‘$’ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously
are rewritten here to use REGEXP.
To find names beginning with ‘b’, use ‘~’ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP "~“b";

Fommm - e Rt Fom— - e e et Fommmm +
| name | owner | species | sex | birth | death |
fommm fommm pomm o= pommm fommmmmm +
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
Fommm - Fommm - e e e Fommm +

Prior to MySQL Version 3.23.4, REGEXP is case-sensitive, and the previous query will return
no rows. To match either lowercase or uppercase ‘b’, use this query instead:

mysql> SELECT * FROM pet WHERE name REGEXP "~ [bB]";

From MySQL 3.23.4 on, to force a REGEXP comparison to be case-sensitive, use the BINARY
keyword to make one of the strings a binary string. This query will match only lowercase
‘D’ a