
Red Hat's New Journaling File System:
ext3
Copyright © 2001 by Red Hat, Inc.

Abstract
In Red Hat Linux 7.2, Red Hat provides its
first officially supported journaling file
system: ext3. The ext3 file system is a set of
incremental enhancements to the robust ext2
file system that provide several advantages.
This paper summarizes some of those
advantages (first in general terms and then
more specifically), explains what Red Hat
has done to test the ext3 file system, and
(for advanced users only) touches on tuning.

Other journaling file systems are being
written for Linux; this paper does not
address them in any way and is not intended
to compare ext3 to any other journaling file
system.

Table of Contents

• What are the advantages of ext3?
• Why ext3?
• Why can you trust ext3?
• Tuning suggestions

What are the advantages of ext3?
Why do you want to migrate from ext2 to ext3? Four main reasons: availability, data
integrity, speed, and easy transition.

Availability
After an unclean system shutdown (unexpected power failure, system crash), each ext2
file system cannot be mounted until its consistency has been checked by the e2fsck
program. The amount of time that the e2fsck program takes is determined primarily by
the size of the file system, and for today's relatively large (many tens of gigabytes) file
systems, this takes a long time. Also, the more files you have on the file system, the

longer the consistency check takes. File systems that are several hundreds of gigabytes in
size may take an hour or more to check. This severely limits availability.

By contrast, ext3 does not require a file system check, even after an unclean system
shutdown, except for certain rare hardware failure cases (e.g. hard drive failures). This is
because the data is written to disk in such a way that the file system is always consistent.
The time to recover an ext3 file system after an unclean system shutdown does not
depend on the size of the file system or the number of files; rather, it depends on the size
of the "journal" used to maintain consistency. The default journal size takes about a
second to recover (depending on the speed of the hardware).

Data Integrity
Using the ext3 file system can provide stronger guarantees about data integrity in case of
an unclean system shutdown. You choose the type and level of protection that your data
receives. You can choose to keep the file system consistent, but allow for damage to data
on the file system in the case of unclean system shutdown; this can give a modest speed
up under some but not all circumstances. Alternatively, you can choose to ensure that the
data is consistent with the state of the file system; this means that you will never see
garbage data in recently-written files after a crash. The safe choice, keeping the data
consistent with the state of the file system, is the default.

Speed
Despite writing some data more than once, ext3 is often faster (higher throughput) than
ext2 because ext3's journaling optimizes hard drive head motion. You can choose from
three journaling modes to optimize speed, optionally choosing to trade off some data
integrity.

• One mode, data=writeback, limits the data integrity guarantees, allowing old
data to show up in files after a crash, for a potential increase in speed under some
circumstances. (This mode, which is the default journaling mode for most
journaling file systems, essentially provides the more limited data integrity
guarantees of the ext2 file system and merely avoids the long file system check at
boot time.)

• The second mode, data=ordered (the default mode), guarantees that the data is
consistent with the file system; recently-written files will never show up with
garbage contents after a crash.

• The last mode, data=journal, requires a larger journal for reasonable speed in
most cases and therefore takes longer to recover in case of unclean shutdown, but
is sometimes faster for certain database operations.

The default mode is recommended for general-purpose computing needs. To change the
mode, add the data=something option to the mount options for that file system in the
/etc/fstab file, as documented in the mount man page (man mount).

Easy Transition
It is easy to change from ext2 to ext3 and gain the benefits of a robust journaling file
system, without reformatting. That's right, there is no need to do a long, tedious, and
error-prone backup-reformat-restore operation in order to experience the advantages of
ext3. There are two ways to perform the transition:

• The Red Hat Linux installation program offers to transition your file systems
when you upgrade your system. All you have to do is select one checkbox per file
system.

• The tune2fs program can add a journal to an existing ext2 file system. If the file
system is already mounted while it is being transitioned, the journal will be visible
as the file .journal in the root directory of the file system. If the file system is
not mounted, the journal will be hidden and will not appear in the file system. Just
run

tune2fs -j /dev/hda1

• (or whatever device holds the file system you are transitioning) and change ext2
to ext3 on the matching lines in /etc/fstab. If you are transitioning your root
file system, you will have to use an initrd to boot. Run the mkinitrd program as
described in the manual and make sure that your LILO or GRUB configuration
loads the initrd. (If you fail to make that change, the system will still boot, but the
root file system will be mounted as ext2 instead of ext3 � you can tell this by
looking at the output of the command cat /proc/mounts.) More information on
tune2fs can be found in the tune2fs man page (man tune2fs).

Why ext3?
A list of reasons why Red Hat chose ext3 for our first officially supported journaling file
system follows. Note that these reasons are not necessarily each unique to ext3 (some
other journaling file systems share several of the points here), but the whole set of
reasons taken together is unique to ext3.

• ext3 is forward and backward compatible with ext2, allowing users to keep
existing file systems while very simply adding journaling capability. Any user
who wishes to un-journal a file system can do so easily (not that we expect many
to do so...). Furthermore, an ext3 file system can be mounted as ext2 without even
removing the journal, as long as a recent version of e2fsprogs (such as the one
included in Red Hat Linux 7.2) is installed.

• ext3 benefits from the long history of fixes and enhancements to the ext2 file
system, and will continue to do so. This means that ext3 shares ext2's well-known
robustness, but also that as new features are added to ext2, they can be carried
over to ext3 with little difficulty. When, for example, extended attributes or

HTrees are added to ext2, it will be relatively easy to add them to ext3. (The
extended attributes feature will enable things like access control lists; HTrees
make directory operations extremely fast and highly scalable to very large
directories.)

• ext3, like ext2, has a multi-vendor team of developers who develop it and
understand it well; its development does not depend on any one person or
organization.

• ext3 provides and makes use of a generic journaling layer (jbd) which can be used
in other contexts. ext3 can journal not only within the file system, but also to
other devices, so as NVRAM devices become available and supported under
Linux, ext3 will be able to support them.

• ext3 has multiple journaling modes. It can journal all file data and metadata
(data=journal), or it can journal metadata but not file data (data=ordered or
data=writeback). When not journaling file data, you can choose to write file
system data before metadata (data=ordered; causes all metadata to point to valid
data), or not to handle file data specially at all (data=writeback; file system will
be consistent, but old data may appear in files after an unclean system shutdown).
This gives the administrator the power to make the trade off between speed and
file data consistency, and to tune speed for specialized usage patterns.

• ext3 has broad cross-platform compatibility, working on 32- and 64- bit
architectures, and on both little-endian and big-endian systems. Any system
(currently including many Unix clones and variants, BeOS, and Windows)
capable of accessing files on an ext2 file system will also be able to access files
on an ext3 file system.

• ext3 does not require extensive core kernel changes and requires no new system
calls, thus presenting Linus Torvalds no challenges that would effecitvely prevent
him from integrating ext3 into his official Linux kernel releases. ext3 is already
integrated into Alan Cox's -ac kernels, slated for migration to Linus's official
kernel soon.

• The e2fsck file system recovery program has a long and proven track record of
successful data recovery when software or hardware faults corrupt a file system.
ext3 uses this same e2fsck code for salvaging the file system after such
corruption, and therefore it has the same robustness against catastrophic data loss
as ext2 in the presence of data-corruption faults.

Again, we do not claim that each one of these points is unique to ext3. Most of them are
shared by at least one other file system. We merely claim that the set of all of them
together is true only for ext3. The expressed needs of our customers drove our decisions
about what feature set was important for us to support right now. In our judgement, ext3
currently has the best fit for our customers' requirements. We will continue to evaluate
other file systems for inclusion in future versions of Red Hat Linux.

Why can you trust ext3?

Here are some of the things Red Hat has done to ensure that ext3 is safe for hadling user
data.

• We have performed extensive stress testing under a large set of configurations.
This has involved many thousands of hours of "contrived" load testing on a wide
variety of hardware and file system configurations, as well as many use case tests.

• We have audited ext3 for multiple conditions, including memory allocation errors
happening at any point. We test that repeatedly and often (every time the code
changes) by forcing false errors and testing file system consistency.

• We audited and tested ext3 for poor interactions with the VM subsystem, finding
and fixing several interactions. A journaling file system puts more stress on the
VM subsystem, and we found and fixed bugs both in ext3 and in the VM
subsystem in the process of this auditing and testing. After thousands of hours of
this testing, we are extremely confident in the robustness of the ext3 file system.

• We have done an extensive year-long-plus beta program, starting with ext3 on the
2.2 kernel series, and then moving forward to the 2.4 kernel series. Even before
the official beta program, ext3 was put into production use in some
circumstances; ext3 has been in production use on some widely-accessed servers,
including the rpmfind.net servers, for more than two years.

• We have arranged to allow the user to choose to check file systems consistency
after unclean system shutdown, even if the filesystem is marked "clean", in order
to deal with potential hardware-generated corruption. This is because hardware
failures, and most particularly real power failures or brownouts, can cause
"garbage" data to be written practically anywhere on disk. Hitting the reset button
is not likely to trigger this kind of problem, but a true power failure associated
with things like lightning strikes and trees falling on power lines tend to involve
spikes and brownouts that can damage date en route to disk. IDE systems tend to
be a bit more susceptible to this kind of problem than SCSI systems, in part
because IDE disks tend to implement looser cacheing algorithms.

This feature is implemented using the /.autofsck file � if the root user removes that
file during normal operation, the system will offer the choice to check file system
consistency at boot time. If /.autofsck is missing and the user elects to force file system
consistency checks, the effect will be the same as if the /forcefsck file existed.

Tuning suggestions
Choosing elevator settings
The ext3 file system acts a bit differently than the ext2 file system, and the differences
can appear in various ways. Advanced users may choose to tune the file system and I/O
system for performance. This is an introduction to some of the more common tuning that
advanced users may wish to try. All tuning, of course, needs to be done in the context of
performance testing of specific applications; there is no "one size fits all" approach to
tuning. This is, however, intended to provide some generally useful information.

Most Linux block device drivers use a generic tunable "elevator" algorithm for
scheduling block I/O. The /sbin/elvtune program can be used to trade off between
throughput and latency. Given similar loads, the ext3 file system may require smaller
latency numbers as provided to the /sbin/elvtune program in order to provide similar
results to the ext2 file system.

In some cases, attempting to tune for maximum throughput at the expense of latency (in
this case, large read latency (-r) and write latency (-w) numbers used with the
/sbin/elvtune program) can actually decrease throughput while increasing latency.
This effect is more pronounced with the ext3 file system for a variety of reasons.

• With the ext2 file system, writes are scheduled every 30 seconds; with the ext3
file system, writes are scheduled every 5 seconds. This keeps journal transactions
from having a noticeable impact on system throughput and also keeps data on
disk more up-to-date.

• The ext3 file system, by journaling all metadata changes, can magnify the effect
of atime changes significantly. You can mount a file system with the noatime
flag in order to disable atime updates. While this is not the only source of
metadata updates, on many systems, particularly highly-accessed servers with lots
of accessed files, atime updates can be responsible for the majority of metadata
updates, and on these systems, turning off atime updates may noticeably reduce
latency and increase throughput.

In order to tune for our default file system choice of ext3, Red Hat has reduced the
default read and write latency numbers to half of the default values (from 8192 read,
16384 write to 4096 read, 8192 write). We expect that in general use, you will not have to
change these numbers; we hope we have already done this for you. Our changed default
values have produced good results in our tests. However, in order to tune for specific
applications, we suggest benchmarking your applications with a variety of values, testing
interactive response during some runs if interactive response is important to you. In
general, we recommend that you set read latency (-r) to half of write latency (-w).

For example, you might run:

/sbin/elvtune -r 1024 -w 2048 /dev/sdd

to change the elevator settings for the device /dev/sdd (including all the partitions on
/dev/sdd). Changes to the elevator settings for a partition will apply to the elevator for
the device the partition is on; all partitions on a device share the same elevator.

Once you have found elvtune settings that give you your most satisfactory mix of latency
and throughput for your application set, you can add the calls to the /sbin/elvtune
program to the end of your /etc/rc.d/rc.local script so that they are set again to your
chosen values at every boot.

Choosing journaling mode

Speed

There are some characteristic loads that show very significant speed improvement with
the data=writeback option, which provides lower data consistency guarantees. In those
cases, the data consistency guarantees are essentially the same as the ext2 file system; the
difference is that the file system integrity is maintained continuously during normal
operation (this is the journaling mode used by most other journaling file systems). One of
these cases involves heavy syncronous writes. Other cases involve creating and deleting
large numbers of small files heavily, such as delivering a very large flow of small email
messages. If you switch from ext2 to ext3 and find that your application performance
drops substantially, the data=writeback option is likely to give you a significant amount
of performance back; you will still have some of the availability benefits of ext3 (file
system is always consistent) even if you do not have the more expensive data consistency
guarantees.

Red Hat is continuing to work on several performance enhancements to ext3, so you can
expect several of these cases to improve in the future. This means that if you choose
data=writeback now, you may want to retest the default data=journal with future
releases to see what changes have been made relative to your workload.

Data integrity

In most cases, users write data by extending off the end of a file. Only in a few cases
(such as databases) do users ever write into the middle of an existing file. Even
overwriting an existing file is done by first truncating the file and then extending it again.

If the system crashes during such an extend in data=ordered mode, then the data blocks
may have been partially written, but the extend will not have been, so the incompletely-
written data blocks will not be part of any file.

The only way to get mis-ordered data blocks in data=ordered mode after a crash is if a
program was overwriting in the middle of an existing file at the time of the crash. In such
a case there is no absolute guarantee about write ordering unless the program uses
fsync() or O_SYNC to force writes in a particular order.

In data=journal mode, even mid-file overwrites will be strictly ordered after a crash.

