
SECURITY, TOOLS & TECHNIQUES

LINUX
SECURITY

COOKBOOK

DANIEL J. BARRETT, RICHARD E. SILVERMAN &
ROBERT G. BYRNES

LINUX
SECURITY

COOKBOOK

Other Linux resources from O’Reilly

Related titles Linux in a Nutshell

Linux Network Adminis-
trator's Guide

Running Linux

Linux Device Drivers

Understanding the Linux
Kernel

Building Secure Servers with
Linux

LPI Linux Certification in a
Nutshell

Learning Red Hat Linux

Linux Server Hacks

Linux Security Cookbook

Managing RAID on Linux

Linux Web Server CD
Bookshelf

Building Embedded Linux
Systems

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL and either Perl, Python, or PHP.

Conferences O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

LINUX
SECURITY

COOKBOOK

Daniel J. Barrett,
Richard E. Silverman, and

Robert G. Byrnes

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 9: Testing and Monitoring

9.1 Testing Login Passwords (John the Ripper)

Problem
You want to check that all login passwords in your system password database are
strong.

Solution
Use John the Ripper, a password-cracking utility from the Openwall Project (http://
www.openwall.com). After the software is installed, run:

cd /var/lib/john

umask 077

unshadow /etc/passwd /etc/shadow > mypasswords

john mypasswords

Cracked passwords will be written into the file john.pot. Cracked username/pass-
word pairs can be shown after the fact (or during cracking) with the -show option:

john -show mypasswords

You can instruct john to crack the passwords of only certain users or groups with the
options -users:u1,u2,... or -groups:g1,g2,..., e.g.:

john -users:smith,jones,akhmed mypasswords

Running john with no options will print usage information.

Discussion
SuSE distributes John the Ripper, but Red Hat does not. If you need it, download the
software in source form for Unix from http://www.openwall.com/john, together with
its signature, and check the signature before proceeding. [7.15]

Unpack the source:

$ tar xvzpf john-*.tar.gz

Prepare to compile:

$ cd `ls -d john-* | head -1`/src

$ make

This will print out a list of targets for various systems; choose the appropriate one for
your host, e.g.:

linux-x86-any-elf Linux, x86, ELF binaries

and run make to build your desired target, e.g.:

$ make linux-x86-any-elf

Install the software, as root:

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.1 Testing Login Passwords (John the Ripper) | 205

cd ../run

mkdir -p /usr/local/sbin

umask 077

cp -d john un* /usr/local/sbin

mkdir -p /var/lib/john

cp *.* mailer /var/lib/john

Then use the recipe we’ve provided.

By default, Red Hat 8.0 uses MD5-hashed passwords stored in /etc/shadow, rather
than the traditional DES-based crypt() hashes stored in /etc/passwd; this is effected
by the md5 and shadow directives in /etc/pam.d/system-auth:

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

The unshadow command gathers the account and hash information together again for
cracking. This information should not be publicly available for security reasons—
that’s why it is split up in the first place—so be careful with this re-integrated file. If
your passwords change, you will have to re-run the unshadow command to build an
up-to-date password file for cracking.

In general, cracking programs use dictionaries of common words when attempting to
crack a password, trying not only the words themselves but also permutations, mis-
spellings, alternate capitalizations, and so forth. The default dictionary (/var/lib/john/
password.lst) is small, so obtain larger ones for effective cracking. Also, add words
appropriate to your environment, such as the names of local projects, machines,
companies, and people. Some available dictionaries are:

ftp://ftp.ox.ac.uk/pub/wordlists/
ftp://ftp.cerias.purdue.edu/pub/dict/wordlists

Concatenate your desired word lists into a single file, and point to it with the
wordlist directive in /var/lib/john/john.ini.

john operates on a file of account records, so you can gather the password data from
many machines and process them in one spot. You must ensure, however, that they
all use the same hashing algorithms compiled into the version you built on your
cracking host. For security, it might be wise to gather your account databases, then
perform the cracking on a box off the network, in a secure location.

There are other crackers available, notably Crack by Alec Muffet. [9.2] We feature
John the Ripper here not because it’s necessarily better, but because it’s simpler to
use on Red Hat 8.0, automatically detecting and supporting the default MD5 hashes.

See Also
See the doc directory of the John the Ripper distribution for full documentation and
examples.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 9: Testing and Monitoring

Learn about Alec Muffet’s Crack utility at http://www.users.dircon.co.uk/~crypto/
download/c50-faq.HTML.

The Red Hat Guide to Password Security is at http://www.redhat.com/docs/manuals/
linux/RHL-8.0-Manual/security-guide/s1-wstation-pass.html.

9.2 Testing Login Passwords (CrackLib)

Problem
You want assurance that your login passwords are secure.

Solution
Write a little program that calls the FascistCheck function from CrackLib:

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <crack.h>

#define DICTIONARY "/usr/lib/cracklib_dict"

int main(int argc, char *argv[]) {

char *password;

char *problem;

int status = 0;

printf("\nEnter an empty password or Ctrl-D to quit.\n");

while ((password = getpass("\nPassword: ")) != NULL && *password) {

if ((problem = FascistCheck(password, DICTIONARY)) != NULL) {

printf("Bad password: %s.\n", problem);

status = 1;

} else {

printf("Good password!\n");

}

}

exit(status);

}

Compile and link it thusly:

$ gcc cracktest.c -lcrack -o cracktest

Run it (the passwords you type will not appear on the screen):

$./cracktest

Enter an empty password or Ctrl-D to quit.

Password: xyz
Bad password: it's WAY too short.

Password: elephant
Bad password: it is based on a dictionary word.

Password: kLu%ziF7
Good password!

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.3 Finding Accounts with No Password | 207

Discussion
CrackLib is an offshoot of Alec Muffet’s password cracker, Crack. It is designed to
be embedded in other programs, and hence is provided only as a library (and dictio-
nary). The FascistCheck function subjects a password to a variety of tests, to ensure
that it is not vulnerable to guessing.

See Also
Learn more about CrackLib at http://www.crypticide.org/users/alecm.

Perl for System Administration (O’Reilly), section 10.5, shows how to make a Perl
module to use CrackLib.

PAM can use CrackLib to force users to choose good passwords. [4.2]

9.3 Finding Accounts with No Password

Problem
You want to detect local login accounts that can be accessed without a password.

Solution
awk -F: '$2 == "" { print $1, "has no password!" }' /etc/shadow

Discussion
The worst kind of password is no password at all, so you want to make sure every
account has one. Any good password-cracking program can be employed here—they
often try to find completely unprotected accounts first—but you can also look for
missing passwords directly.

Encrypted passwords are stored in the second field of each entry in the shadow pass-
word database, just after the username. Fields are separated by colons.

Note that the shadow password file is readable only by superusers.

See Also
shadow(5).

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 9: Testing and Monitoring

9.4 Finding Superuser Accounts

Problem
You want to list all accounts with superuser access.

Solution
$ awk -F: '$3 == 0 { print $1, "is a superuser!" }' /etc/passwd

Discussion
A superuser, by definition, has a numerical user ID of zero. Be sure your system has
only one superuser account: root. Multiple superuser accounts are a very bad idea
because they are harder to control and track. (See Chapter 5 for better ways to share
root privileges.)

Numerical user IDs are stored in the third field of each entry in the passwd database.
The username is stored in the first field. Fields are separated by colons.

See Also
passwd(5).

9.5 Checking for Suspicious Account Use

Problem
You want to discover unusual or dangerous usage of accounts on your system: dor-
mant user accounts, recent logins to system accounts, etc.

Solution
To print information about the last login for each user:

$ lastlog [-u username]

To print the entire login history:

$ last [username]

To print failed login attempts:

$ lastb [username]

To enable recording of bad logins:

touch /var/log/btmp

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.5 Checking for Suspicious Account Use | 209

chown --reference=/var/log/wtmp /var/log/btmp

chmod --reference=/var/log/wtmp /var/log/btmp

Discussion
Attackers look for inactive accounts that are still enabled, in the hope that intrusions
will escape detection for long periods of time. If Joe retired and left the organization
last year, will anyone notice if his account becomes compromised? Certainly not Joe!
To avoid problems like this, examine all accounts on your system for unexpected
usage patterns.

Linux systems record each user’s last login time in the database /var/log/lastlog. The
terminal (or X Window System display name) and remote system name, if any, are
also noted. The lastlog command prints this information in a convenient, human-
readable format.

/var/log/lastlog is a database, not a log file. It does not grow continu-
ously, and therefore should not be rotated. The apparent size of the
file (e.g., as displayed by ls -l) is often much larger than the actual
size, because the file contains “holes” for ranges of unassigned user
IDs.

Access is restricted to the superuser by recent versions of Red Hat (8.0
or later). If this seems too paranoid for your system, it is safe to make
the file world-readable:

chmod a+r /var/log/lastlog

In contrast, the btmp log file will grow slowly (unless you are under
attack!), but it should be rotated like other log files. You can either
add btmp to the wtmp entry in /etc/logrotate.conf, or add a similar
entry in a separate file in the /etc/logrotate.d directory. [9.30]

A history of all logins and logouts (interspersed with system events like shutdowns,
reboots, runlevel changes, etc.) is recorded in the log file /var/log/wtmp. The last

command scans this log file to produce a report of all login sessions, in reverse chro-
nological order, sorted by login time.

Failed login attempts can also be recorded in the log file /var/log/btmp, but this is not
done by default. To enable recording of bad logins, create the btmp file manually,
using the same owner, group, and permissions as for the wtmp file. The lastb com-
mand prints a history of bad logins.

The preceding methods do not scale well to multiple systems, so see our more gen-
eral solution. [9.6]

See Also
lastlog(1), last(1), lastb(1).

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 9: Testing and Monitoring

9.6 Checking for Suspicious Account Use,
Multiple Systems

Problem
You want to scan multiple computers for unusual or dangerous usage of accounts.

Solution
Merge the lastlog databases from several systems, using Perl:

use DB_File;

use Sys::Lastlog;

use Sys::Hostname;

my %omnilastlog;

tie(%omnilastlog, "DB_File", "/share/omnilastlog");

my $ll = Sys::Lastlog->new();

while (my ($user, $uid) = (getpwent())[0, 2]) {

if (my $llent = $ll->getlluid($uid)) {

$omnilastlog{$user} = pack("Na*", $llent->ll_time(),

 join("\0", $llent->ll_line(),

 $llent->ll_host(),

 hostname))

if $llent->ll_time() >

(exists($omnilastlog{$user}) ?

unpack("N", $omnilastlog{$user}) : -1);

}

}

untie(%omnilastlog);

exit(0);

To read the merged lastlog database, omnilastlog, use another Perl script:

use DB_File;

my %omnilastlog;

tie(%omnilastlog, "DB_File", "/share/omnilastlog");

while (my ($user, $record) = each(%omnilastlog)) {

my ($time, $rest) = unpack("Na*", $record);

my ($line, $host_from, $host_to) = split("\0", $rest, -1);

printf("%-8.8s %-16.16s -> %-16.16s %-8.8s %s\n",

$user, $host_from, $host_to, $line,

$time ? scalar(localtime($time)) : "**Never logged in**");

}

untie(%omnilastlog);

exit(0);

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.6 Checking for Suspicious Account Use, Multiple Systems | 211

Discussion
Perusing the output from the lastlog, last, and lastb commands [9.5] might be suf-
ficient to monitor activity on a single system with a small number of users, but the
technique doesn’t scale well in the following cases:

• If accounts are shared among many systems, you probably want to know a user’s
most recent login on any of your systems.

• Some system accounts intended for special purposes, such as bin or daemon,
should never be used for routine logins.

• Disabled accounts should be monitored to make sure they have no login activity.

Legitimate usage patterns vary, and your goal should be to notice deviations from the
norm. We need more flexibility than the preceding tools provide.

We can solve this dilemma through automation. The Perl modules Sys::Lastlog and
Sys::Utmp, which are available from CPAN, can parse and display a system’s last-
login data. Despite its name, Sys::Utmp can process the wtmp and btmp files; they
have the same format as /var/log/utmp, the database containing a snapshot of cur-
rently logged-in users.

Our recipe merges lastlog databases from several systems into a single database,
which we call omnilastlog, using Perl. The script steps through each entry in the pass-
word database on each system, looks up the corresponding entry in the lastlog data-
base using the Sys::Lastlog module, and updates the entry in the merged omnilastlog
database if the last login time is more recent than any other we have previously seen.

The merged omnilastlog database is tied to a hash for easy access. We use the Berke-
ley DB format because it is byte-order–independent and therefore portable: this
would be important if your Linux systems run on different architectures. If all of
your Linux systems are of the same type (e.g., Intel x86 systems), then any other Perl
database module could be used in place of DB_File.

Our hash is indexed by usernames rather than numeric user IDs, in case the user IDs
are not standardized among the systems (a bad practice that, alas, does happen). The
record for each user contains the time, terminal (ll_line), and remote and local host-
names. The time is packed as an integer in network byte order (another nod to porta-
bility: for homogeneous systems, using the native “L” packing template instead of
“N” would work as well). The last three values are glued together with null charac-
ters, which is safe because the strings never contain nulls.

Run the merge script on all of your systems, as often as desired, to update the merged
omnilastlog database. Our recipe assumes a shared filesystem location, /share/
omnilastlog; if this is not convenient, copy the file to each system, update it, and then
copy it back to a central repository. The merged database is compact, often smaller
than the individual lastlog databases.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 9: Testing and Monitoring

An even simpler Perl script reads and analyzes the merged omnilastlog database. Our
recipe steps through and unpacks each record in the database, and then prints all of
the information, like the lastlog command.

This script can serve as a template for checking account usage patterns, according
to your own conventions. For example, you might notice dormant accounts by
insisting that users with valid shells (as listed in the file /etc/shells, with the excep-
tion of /sbin/nologin) must have logged in somewhere during the last month. Con-
versely, you might require that system accounts (recognized by their low numeric
user IDs) with invalid shells must never login, anywhere. Finally, you could main-
tain a database of the dates when accounts are disabled (e.g., as part of a standard
procedure when people leave your organization), and demand that no logins occur
for such accounts after the termination date for each.

Run a script frequently to verify your assumptions about legitimate account usage
patterns. This way, you will be reminded promptly after Joe’s retirement party that
his account should be disabled, hopefully before crackers start guessing his
password.

See Also
The Sys::Lastlog and Sys::Utmp Perl modules are found at http://www.cpan.org.

Perl for System Administration (section 9.2) from O’Reilly shows how to unpack the
utmp records used for wtmp and btmp files. O’Reilly’s Perl Cookbook also has sam-
ple programs for reading records from lastlog and wtmp files: see the laston and
tailwtmp scripts in Chapter 8 of that book.

9.7 Testing Your Search Path

Problem
You want to avoid invoking the wrong program of a given name.

Solution
Ensure that your search path contains no relative directories:

$ perl -e 'print "PATH contains insecure relative directory \"$_\"\n"

 foreach grep ! m[^/], split /:/, $ENV{"PATH"}, -1;'

Discussion
Imagine you innocently type ls while your current working directory is /tmp, and
you discover to your chagrin that you have just run a malicious program, /tmp/ls,

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.8 Searching Filesystems Effectively | 213

instead of the expected /bin/ls. Worse, you might not notice at all, if the rogue pro-
gram behaves like the real version while performing other nefarious activities silently.

This can happen if your search path contains a period (“.”), meaning the current
working directory. The possibility of unexpected behavior is higher if “.” is early in
your search path, but even the last position is not safe: consider the possibility of
misspellings. A cracker could create a malicious /tmp/hwo, a misspelling of the com-
mon who command, and hope you type “hwo” sometime while you’re in /tmp. As
there is no earlier “hwo” in your search path, you’ll unintentionally run the cracker’s
./hwo program. (Which no doubt prints, `basename $SHELL`: hwo: command not

found to stderr while secretly demolishing your filesystem.) Play it safe and keep “.”
out of your search path.

An empty search path element—two adjacent colons, or a leading or trailing colon—
also refers to the current working directory. These are sometimes created inadvert-
ently by scripts that paste together the PATH environment variable with “:” separa-
tors, adding one too many, or adding an extra separator at the beginning or end.

In fact, any relative directories in your search path are dangerous, as they implicitly
refer to the current working directory. Remove all of these relative directories: you
can still run programs (securely!) by explicitly typing their relative directory, as in:

./myprogram

Our recipe uses a short Perl script to split the PATH environment variable, complain-
ing about any directory that is not absolute (i.e., that does not start with a “/” char-
acter). The negative limit (-1) for split is important for noticing troublesome empty
directories at the end of the search path.

See Also
environ(5).

9.8 Searching Filesystems Effectively

Problem
You want to locate files of interest to detect security risks.

Solution
Use find and xargs, but be knowledgeable of their important options and
limitations.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 9: Testing and Monitoring

Discussion
Are security risks lurking within your filesystems? If so, they can be hard to detect,
especially if you must search through mountains of data. Fortunately, Linux pro-
vides the powerful tools find and xargs to help with the task. These tools have so
many options, however, that their flexibility can make them seem daunting to use.
We recommend the following good practices:

Know your filesystems
Linux supports a wide range of filesystem types. To see the ones configured in
your kernel, read the file /proc/filesystems. To see which filesystems are currently
mounted (and their types), run:

$ mount

/dev/hda1 on / type ext2 (rw)

/dev/hda2 on /mnt/windows type vfat (rw)

remotesys:/export/spool/mail on /var/spool/mail type nfs

(rw,hard,intr,noac,addr=192.168.10.13)

//MyPC/C$ on /mnt/remote type smbfs (0)

none on /proc type proc (rw)

...

with no options or arguments. We see a traditional Linux ext2 filesystem (/dev/
hda1), a Windows FAT32 filesystem (/dev/hda2), a remotely mounted NFS file-
system (remotesys:/export/spool/mail), a Samba filesystem (//MyPC/C$) mounted
remotely, and the proc filesystem provided by the kernel. See mount(8) for more
details.

Know which filesystems are local and which are remote
Searching network filesystems like NFS partitions can be quite slow. Further-
more, NFS typically maps your local root account to an unprivileged user on the
mounted filesystem, so some files or directories might be inaccessible even to
root. To avoid these problems when searching a filesystem, run find locally on
the server that physically contains it.

Be aware that some filesystem types (e.g., for Microsoft Windows) use different
models for owners, groups, and permissions, while other filesystems (notably
some for CD-ROMs) do not support these file attributes at all. Consider scan-
ning “foreign” filesystems on servers that recognize them natively, and just skip
read-only filesystems like CD-ROMs (assuming you know and trust the source).

The standard Linux filesystem type is ext2. If your local filesystems are of this
type only,* you can scan them all with a command like:

find / ! -fstype ext2 -prune -o ... (other find options) ...

This can be readily extended to multiple local filesystem types (e.g., ext2 and
ext3):

* And if they are not mounted on filesystems of other types, which would be an unusual configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.8 Searching Filesystems Effectively | 215

find / ! \(-fstype ext2 -o -fstype ext3 \) -prune -o ...

The find -prune option causes directories to be skipped, so we prune any filesys-
tems that do not match our desired types (ext2 or ext3). The following -o (“or”)
operator causes the filesystems that survive the pruning to be scanned.

The find -xdev option prevents crossing filesystem boundaries, and can be use-
ful for avoiding uninteresting filesystems that might be mounted. Our recipes
use this option as a reminder to be conscious of filesystem types.

Carefully examine permissions
The find -perm option can conveniently select a subset of the permissions,
optionally ignoring the rest. In the most common case, we are interested in test-
ing for any of the permissions in the subset: use a “+” prefix with the permis-
sion argument to specify this. Occasionally, we want to test all of the
permissions: use a “-” prefix instead.* If no prefix is used, then the entire set of
permissions is tested; this is rarely useful.

Handle filenames safely
If you scan enough filesystems, you will eventually encounter filenames with
embedded spaces or unusual characters like newlines, quotation marks, etc. The
null character, however, never appears in filenames, and is therefore the only
safe separator to use for lists of filenames that are passed between programs.

The find -print0 option produces null-terminated filenames; xargs and perl

both support a -0 (zero) option to read them. Useful filters like sort and grep

also understand a -z option to use null separators when they read and write
data, and grep has a separate -Z option that produces null-terminated filenames
(with the -l or -L options). Use these options whenever possible to avoid misin-
terpreting filenames, which can be disastrous when modifying filesystems as
root!

Avoid long command lines
The Linux kernel imposes a 128 KB limit on the combined size of command-line
arguments and the environment. This limit can be exceeded by using shell com-
mand substitution, e.g.:

$ mycommand `find ...`

Use the xargs program instead to collect filename arguments and run com-
mands repeatedly, without exceeding this limit:

$ find ... -print0 | xargs -0 -r mycommand

* Of course, if the subset contains only a single permission, then there is no difference between “any” and
“all,” so either prefix can be used.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 9: Testing and Monitoring

The xargs -r option avoids running the command if the output of find is empty,
i.e., no filenames were found. This is usually desirable, to prevent errors like:

$ find ... -print0 | xargs -0 rm

rm: too few arguments

It can occasionally be useful to connect multiple xargs invocations in a pipeline,
e.g.:

$ find ... -print0 | xargs -0 -r grep -lZ pattern | xargs -0 -r mycommand

The first xargs collects filenames from find and passes them to grep, as com-
mand-line arguments. grep then searches the file contents (which find cannot
do) for the pattern, and writes another list of filenames to stdout. This list is then
used by the second xargs to collect command-line arguments for mycommand.

If you want grep to select filenames (instead of contents), insert it directly into
the pipe:

$ find ... -print0 | grep -z pattern | xargs -0 -r mycommand

In most cases, however, find -regex pattern is a more direct way to select file-
names using a regular expression.

Note how grep -Z refers to writing filenames, while grep -z refers to reading and
writing data.

xargs is typically much faster than find -exec, which runs the command sepa-
rately for each file and therefore incurs greater start-up costs. However, if you
need to run a command that can process only one file at a time, use either find

-exec or xargs -n 1:
$ find ... -exec mycommand '{}' \;

$ find ... -print0 | xargs -0 -r -n 1 mycommand

These two forms have a subtle difference, however: a command run by find -exec

uses the standard input inherited from find, while a command run by xargs uses
the pipe as its standard input (which is not typically useful).

See Also
find(1), xargs(1), mount(8).

9.9 Finding setuid (or setgid) Programs

Problem
You want to check for potentially insecure setuid (or setgid) programs.

Solution
To list all setuid or setgid files (programs and scripts):

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.9 Finding setuid (or setgid) Programs | 217

$ find /dir -xdev -type f -perm +ug=s -print

To list only setuid or setgid scripts:

$ find /dir -xdev -type f -perm +ug=s -print0 | \
perl -0ne 'chomp;

 open(FILE, $_);

 read(FILE, $magic, 2);

 print $_, "\n" if $magic eq "#!";

 close(FILE)'

To remove setuid or setgid bits from a file:

$ chmod u-s file Remove the setuid bit
$ chmod g-s file Remove the setgid bit

To find and interactively fix setuid and setgid programs:

$ find /dir -xdev -type f \
\(-perm +u=s -printf "setuid: %p\n" -ok chmod -v u-s {} \; , \

 -perm +g=s -printf "setgid: %p\n" -ok chmod -v g-s {} \; \)

To ignore the setuid or setgid attributes for executables in a filesystem, mount it with
the nosuid option. To prohibit executables entirely, use the noexec mount option.
These options can appear on the command line:

mount -o nosuid ...

mount -o noexec ...

or in /etc/fstab:

/dev/hdd3 /home ext2 rw,nosuid 1 2

/dev/hdd7 /data ext2 rw,noexec 1 3

Be aware of the important options and limitations of find, so you don’t inadvert-
ently overlook important files. [9.8]

Discussion
If your system has been compromised, it is quite likely that an intruder has installed
backdoors. A common ploy is to hide a setuid root program in one of your filesystems.

The setuid permission bit changes the effective user ID to the owner of the file (even
root) when a program is executed; the setgid bit performs the same function for the
group. These two attributes are independent: either or both may be set.

Programs (and especially scripts) that use setuid or setgid bits must be written very
carefully to avoid security holes. Whether you are searching for backdoors or audit-
ing your own programs, be aware of any activity that involves these bits.

Many setuid and setgid programs are legitimately included in standard Linux distri-
butions, so do not panic if you detect them while searching directories like /usr. You
can maintain a list of known setuid and setgid programs, and then compare the list

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 9: Testing and Monitoring

with results from more recent filesystem scans. Tripwire (Chapter 1) is an even bet-
ter tool for keeping track of such changes.

Our recipe uses find to detect the setuid and setgid bits. By restricting attention to
regular files (with -type f), we avoid false matches for directories, which use the set-
gid bit for an unrelated purpose. In addition, our short Perl program identifies
scripts, which contain “#!” in the first two bytes (the magic number).

The chmod command removes setuid or setgid bits (or both) for individual files. We
can also combine detection with interactive repair using find: our recipe tests each
bit separately, prints a message if it is found, asks (using -ok) if a chmod command
should be run to remove the bit, and finally confirms each repair with chmod -v.
Commands run by find -ok (or -exec) must be terminated with a “\;” argument, and
the “{}” argument is replaced by the filename for each invocation. The separate “,”
(comma) argument causes find to perform the tests and actions for the setuid and
setgid bits independently.

Finally, mount options can offer some protection against misuse of setuid or setgid
programs. The nosuid option prevents recognition of either bit, which might be
appropriate for network filesystems mounted from a less trusted server, or for local
filesystems like /home or /tmp.* The even more restrictive noexec option prevents exe-
cution of any programs on the filesystem, which might be useful for filesystems that
should contain only data files.

See Also
find(1), xargs(1), chmod(1), perlsec(1).

9.10 Securing Device Special Files

Problem
You want to check for potentially insecure device special files.

Solution
To list all device special files (block or character):

$ find /dir -xdev \(-type b -o -type c \) -ls

To list any regular files in /dev (except the MAKEDEV program):

$ find /dev -type f ! -name MAKEDEV -print

* Note that Perl’s suidperl program does not honor the nosuid option for filesystems that contain setuid Perl
scripts.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.11 Finding Writable Files | 219

To prohibit device special files on a filesystem, use mount -o nodev or add the nodev

option to entries in /etc/fstab.

Be aware of the important options and limitations of find, so you don’t inadvert-
ently overlook important files. [9.8]

Discussion
Device special files are objects that allow direct access to devices (either real or vir-
tual) via the filesystem. For the security of your system, you must carefully control
this access by maintaining appropriate permissions on these special files. An intruder
who hides extra copies of important device special files can use them as backdoors to
read—or even modify—kernel memory, disk drives, and other critical devices.

Conventionally, device special files are installed only in the /dev directory, but they
can live anywhere in the filesystem, so don’t limit your searches to /dev. Our recipe
looks for the two flavors of device special files: block and character (using -type b

and -type c, respectively). We use the more verbose -ls (instead of -print) to list the
major and minor device numbers for any that are found: these can be compared to
the output from ls -l /dev to determine the actual device (the filename is
irrelevant).

It is also worthwhile to monitor the /dev directory, to ensure that no regular files
have been hidden there, either as replacements for device special files, or as rogue
(perhaps setuid) programs. An exception is made for the /dev/MAKEDEV program,
which creates new entries in /dev.

The mount option nodev prevents recognition of device special files. It is a good idea
to use this for any filesystem that does not contain /dev, especially network filesys-
tems mounted from less trusted servers.

See Also
find(1).

9.11 Finding Writable Files

Problem
You want to locate world-writable files and directories on your machine.

Solution
To find world-writable files:

$ find /dir -xdev -perm +o=w ! \(-type d -perm +o=t \) ! -type l -print

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 9: Testing and Monitoring

To disable world write access to a file:

$ chmod o-w file

To find and interactively fix world-writable files:

$ find /dir -xdev -perm +o=w ! \(-type d -perm +o=t \) ! -type l -ok chmod -v o-w {} \;

To prevent newly created files from being world-writable:

$ umask 002

Be aware of the important options and limitations of find, so you don’t inadvert-
ently overlook important files. [9.8]

Discussion
Think your system is free of world-writable files? Check anyway: you might be sur-
prised. For example, files extracted from Windows Zip archives are notorious for
having insecure or screwed-up permissions.

Our recipe skips directories that have the sticky bit set (e.g., /tmp). Such directories
are often world-writable, but this is safe because of restrictions on removing and
renaming files. [7.2]

We also skip symbolic links, since their permission bits are ignored (and are usually
all set). Only the permissions of the targets of symbolic links are relevant for access
control.

The chmod command can disable world-write access. Combine it with find -ok and
you can interactively detect and repair world-writable files.

You can avoid creating world-writable files by setting a bit in your umask. You also
can set other bits for further restrictions. [7.1] Note that programs like unzip are free
to override the umask, however, so you still need to check.

See Also
find(1), chmod(1). See your shell documentation for information on umask: bash(1),
tcsh(1), etc.

9.12 Looking for Rootkits

Problem
You want to check for evidence that a rootkit—a program to create or exploit secu-
rity holes—has been run on your system.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.12 Looking for Rootkits | 221

Solution
Use chkrootkit. Download the tarfile from http://www.chkrootkit.org, verify its
checksum:

$ md5sum chkrootkit.tar.gz

unpack it:

$ tar xvzpf chkrootkit.tar.gz

build it:

$ cd chkrootkit-*

$ make sense

and run it as root:

./chkrootkit

More securely, run it using known, good binaries you have previously copied to a
secure medium, such as CD-ROM, e.g.:

./chkrootkit -p /mnt/cdrom

Discussion
chkrootkit tests for the presence of certain rootkits, worms, and trojans on your sys-
tem. If you suspect you’ve been hacked, this is a good first step toward confirmation
and diagnosis.

chkrootkit invokes a handful of standard Linux commands. At press time they are
awk, cut, egrep, find, head, id, ls, netstat, ps, strings, sed, and uname. If these pro-
grams have been compromised on your system, chkrootkit’s output cannot be
trusted. So ideally, you should keep around a CD-ROM or write-protected floppy
disk with these programs, and run chkrootkit with the -p option to use these known
good binaries.

Be sure to use the latest version of chkrootkit, which will be aware of the most
recently discovered threats.

See Also
The README file included with chkrootkit explains the tests conducted, and lists
the full usage information.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 9: Testing and Monitoring

9.13 Testing for Open Ports

Problem
You want a listing of open network ports on your system.

Solution
Probe your ports from a remote system.

To test a specific TCP port (e.g., SSH):

$ telnet target.example.com ssh

$ nc -v -z target.example.com ssh

To scan most of the interesting TCP ports:

nmap -v target.example.com

To test a specific UDP port (e.g., 1024):

$ nc -v -z -u target.example.com 1024

To scan most of the interesting UDP ports (slowly!):

nmap -v -sU target.example.com

To do host discovery (only) for a range of addresses, without port scanning:

nmap -v -sP 10.12.104.200-222

To do operating system fingerprinting:

nmap -v -O target.example.com

For a handy (but less flexible) GUI, run nmapfe instead of nmap.

Discussion
When attackers observe your systems from the outside, what do they see? Obvi-
ously, you want to present an image of an impenetrable fortress, not a vulnerable tar-
get. You’ve designed your defenses accordingly: a carefully constructed firewall,
secure network services, etc. But how can you really be sure?

You don’t need to wait passively to see what will happen next. Instead, actively test
your own armor with the same tools the attackers will use.

Your vulnerability to attack is influenced by several interacting factors:

The vantage point of the attacker
Firewalls sometimes make decisions based on the source IP address (or the
source port).

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.13 Testing for Open Ports | 223

All intervening firewalls
You have your own, of course, but your ISP might impose additional restric-
tions on incoming or even outgoing traffic from your site.

The network configuration of your systems
Which servers listen for incoming connections and are willing to accept them?

Start by testing the last two subsystems in isolation. Verify your firewall operation by
simulating the traversal of packets through ipchains. [2.21] Examine the network
state on your machines with netstat. [9.14]

Next, the acid test is to probe from the outside. Use your own accounts on distant
systems, if you have them (and if you have permission to do this kind of testing, of
course). Alternatively, set up a temporary test system immediately outside your fire-
wall, which might require cooperation from your ISP.

The nmap command is a powerful and widely used tool for network security testing. It
gathers information about target systems in three distinct phases, in order:

Host discovery
Initial probes to determine which machines are responding within an address
range

Port scanning
More exhaustive tests to find open ports that are not protected by firewalls, and
are accepting connections

Operating system fingerprinting
An analysis of network behavioral idiosyncrasies can reveal a surprising amount
of detailed information about the targets

Use nmap to test only systems that you maintain. Many system admin-
istrators consider port scanning to be hostile and antisocial. If you
intend to use nmap’s stealth features, obtain permission from third par-
ties that you employ as decoys or proxies.

Inform your colleagues about your test plans, so they will not be
alarmed by unexpected messages in system logs. Use the logger com-
mand [9.31] to record the beginning and end of your tests.

Use caution when probing mission-critical, production systems. You
should test these important systems, but nmap deliberately violates net-
work protocols, and this behavior can occasionally confuse or even
crash target applications and kernels.

To probe a single target, specify the hostname or address:

nmap -v target.example.com

nmap -v 10.12.104.200

We highly recommend the -v option, which provides a more informative report.
Repeat the option (-v -v...) for even more details.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 9: Testing and Monitoring

You can also scan a range of addresses, e.g., those protected by your firewall. For a
class C network, which uses the first three bytes (24 bits) for the network part of
each address, the following commands are all equivalent:

nmap -v target.example.com/24

nmap -v 10.12.104.0/24

nmap -v 10.12.104.0-255

nmap -v "10.12.104.*"

Lists of addresses (or address ranges) can be scanned as well:

nmap -v 10.12.104.10,33,200-222,250

nmapfe is a graphical front end that runs nmap with appropriate com-
mand-line options and displays the results. nmapfe is designed to be
easy to use, though it does not provide the full flexibility of all the nmap

options.

By default, nmap uses both TCP and ICMP pings for host discovery. If these are
blocked by an intervening firewall, the nmap -P options provide alternate ping strate-
gies. Try these options when evaluating your firewall’s policies for TCP or ICMP.
The goal of host discovery is to avoid wasting time performing port scans for unused
addresses (or machines that are down). If you know that your targets are up, you can
disable host discovery with the -P0 (that’s a zero) option.

The simplest way to test an individual TCP port is to try to connect with telnet. The
port might be open:

$ telnet target.example.com ssh

Trying 10.12.104.200...

Connected to target.example.com.

Escape character is '^]'.

SSH-1.99-OpenSSH_3.1p1

or closed (i.e., passed by the firewall, but having no server accepting connections on
the target):

$ telnet target.example.com 33333

Trying 10.12.104.200...

telnet: connect to address 10.12.104.200: Connection refused

or blocked (filtered) by a firewall:

$ telnet target.example.com 137

Trying 10.12.104.200...

telnet: connect to address 10.12.104.200: Connection timed out

Although telnet’s primary purpose is to implement the Telnet protocol, it is also a
simple, generic TCP client that connects to arbitrary ports.

The nc command is an even better way to probe ports:

$ nc -z -vv target.example.com ssh 33333 137

target.example.com [10.12.104.200] 22 (ssh) open

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.13 Testing for Open Ports | 225

target.example.com [10.12.104.200] 33333 (?) : Connection refused

target.example.com [10.12.104.200] 137 (netbios-ns) : Connection timed out

The -z option requests a probe, without transferring any data. The repeated -v

options control the level of detail, as for nmap.

Port scans are a tour de force for nmap:

nmap -v target.example.com

Starting nmap V. 3.00 (www.insecure.org/nmap/)

No tcp,udp, or ICMP scantype specified, assuming SYN Stealth scan.

Use -sP if you really don't want to portscan (and just want to see what hosts are

up).

Host target.example.com (10.12.104.200) appears to be up ... good.

Initiating SYN Stealth Scan against target.example.com (10.12.104.200)

Adding open port 53/tcp

Adding open port 22/tcp

The SYN Stealth Scan took 21 seconds to scan 1601 ports.

Interesting ports on target.example.com (10.12.104.200):

(The 1595 ports scanned but not shown below are in state: closed)

Port State Service

22/tcp open ssh

53/tcp open domain

137/tcp filtered netbios-ns

138/tcp filtered netbios-dgm

139/tcp filtered netbios-ssn

1080/tcp filtered socks

Nmap run completed -- 1 IP address (1 host up) scanned in 24 seconds

In all of these cases, be aware that intervening firewalls can be configured to return
TCP RST packets for blocked ports, which makes them appear closed rather than fil-
tered. Caveat prober.

nmap can perform more sophisticated (and efficient) TCP probes than ordinary con-
nection attempts, such as the SYN or “half-open” probes in the previous example,
which don’t bother to do the full initial TCP handshake for each connection. Differ-
ent probe strategies can be selected with the -s options: these might be interesting if
you are reviewing your firewall’s TCP policies, or you want to see how your firewall
logs different kinds of probes.

Run nmap as root if possible. Some of its more advanced tests inten-
tionally violate IP protocols, and require raw sockets that only the
superuser is allowed to access.

If nmap can’t be run as root, it will still work, but it may run more
slowly, and the results may be less informative.

UDP ports are harder to probe than TCP ports, because packet delivery is not guar-
anteed, so blocked ports can’t be reliably distinguished from lost packets. Closed
ports can be detected by ICMP responses, but scanning is often very slow because
many systems limit the rate of ICMP messages. Nevertheless, your firewall’s UDP

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 9: Testing and Monitoring

policies are important, so testing is worthwhile. The nc -u and nmap -sU options per-
form UDP probes, typically by sending a zero-byte UDP packet and noting any
responses.

By default, nmap scans all ports up to 1024, plus well-known ports in its extensive col-
lection of services (used in place of the more limited /etc/services). Use the -F option
to quickly scan only the well-known ports, or the -p option to select different, spe-
cific, numeric ranges of ports. If you want to exhaustively scan all ports, use -p 0-

65535.

If you are interested only in host discovery, disable port scanning entirely with the
nmap -sP option. This might be useful to determine which occasionally-connected
laptops are up and running on an internal network.

Finally, the nmap -O option enables operating system fingerprinting and related tests
that reveal information about the target:

nmap -v -O target.example.com

...

For OSScan assuming that port 22 is open and port 1 is closed and neither are

firewalled

...

Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20

Uptime 3.167 days (since Mon Feb 21 12:22:21 2003)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=4917321 (Good luck!)

IPID Sequence Generation: All zeros

Nmap run completed -- 1 IP address (1 host up) scanned in 31 seconds

Fingerprinting requires an open and a closed port, which are chosen automatically
(so a port scan is required). nmap then determines the operating system of the target
by noticing details of its IP protocol implementation: Linux is readily recognized
(even the version!). It guesses the uptime using the TCP timestamp option. The TCP
and IPID Sequence tests measure vulnerability to forged connections and other
advanced attacks, and Linux performs well here.

It is sobering to see how many details nmap can learn about a system, particularly by
attackers with no authorized access. Expect that attacks on your Linux systems will
focus on known Linux-specific vulnerabilities, especially if you are using an out-
dated kernel. To protect yourself, keep up to date with security patches.

nmap can test for other vulnerabilities of specific network services. If you run an open
FTP server, try nmap -b to see if it can be exploited as a proxy. Similarly, if you allow
access to an IDENT server, use nmap -I to determine if attackers can learn the user-
name (especially root!) that owns other open ports. The -sR option displays informa-
tion about open RPC services, even without direct access to your portmapper.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.14 Examining Local Network Activities | 227

If your firewall makes decisions based on source addresses, run nmap on different
remote machines to test variations in behavior. Similarly, if the source port is con-
sulted by your firewall policies, use the nmap -g option to pick specific source ports.

The nmap -o options save results to log files in a variety of formats. The XML format
(-oX) is ideal for parsing by scripts: try the XML::Simple Perl module for an especially
easy way to read the structured data. Alternately, the -oG option produces results in a
simplified format that is designed for searches using grep. The -oN option uses the
same human-readable format that is printed to stdout, and -oA writes all three for-
mats to separate files.

nmap supports several stealth options that attempt to disguise the source of attacks by
using third-parties as proxies or decoys, or to escape detection by fragmenting pack-
ets, altering timing parameters, etc. These can occasionally be useful for testing your
logging and intrusion detection mechanisms, like Snort. [9.20]

See Also
nmap(1), nmapfe(1), nc(1), telnet(1). The nmap home page is http://www.insecure.
org/nmap.The XML::Simple Perl module is found on CPAN, http://www.cpan.org.

9.14 Examining Local Network Activities

Problem
You want to examine network use occurring on your local machine.

Solution
To print a summary of network use:

$ netstat --inet Connected sockets
$ netstat --inet --listening Server sockets
$ netstat --inet --all Both
netstat --inet ... -p Identify processes

To print dynamically assigned ports for RPC services:

$ rpcinfo -p [host]

To list network connections for all processes:

lsof -i[TCP|UDP][@host][:port]

To list all open files for specific processes:

lsof -p pid
lsof -c command
lsof -u username

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 9: Testing and Monitoring

The /proc Filesystem
Programs like ps, netstat, and lsof obtain information from the Linux kernel via the
/proc filesystem. Although /proc looks like an ordinary file hierarchy (e.g., you can
run /bin/ls for a directory listing), it actually contains simulated files. These files are
like windows into the kernel, presenting its data structures in an easy-to-read man-
ner for programs and users, generally in text format. For example, the file /proc/
mounts contains the list of currently mounted filesystems:

$ cat /proc/mounts

/dev/root / ext2 rw 0 0

/proc /proc proc rw 0 0

/dev/hda9 /var ext2 rw 0 0

...

but if you examine the file listing:

$ ls -l /proc/mounts

-r--r--r-- 1 root root 0 Feb 23 17:07 /proc/mounts

you’ll see several curious things. The file has zero size, yet it “contains” the mounted
filesystem data, because it’s a simulated file. Also its “last modified” timestamp is the
current time. The permission bits are accurate: this file is world-readable but not writ-
able.a The kernel enforces these access restrictions just as for ordinary files.

You can read /proc files directly, but it’s usually more convenient to use programs like
ps, netstat, and lsof because:

• They combine data from a wide range of /proc files into an informative report.

• They have options to control the output format or select specific information.

• Their output format is usually more portable than the format of the correspond-
ing /proc files, which are Linux-specific and can change between kernel versions
(although considerable effort is expended to provide backward compatibility).
For instance, the output of lsof -F is in a standardized format, and therefore
easily parsed by other programs.

Nevertheless, /proc files are sometimes ideal for scripts or interactive use. The most
important files for networking are /proc/net/tcp and /proc/net/udp, both consulted by
netstat. Kernel parameters related to networking can be found in the /proc/sys/net
directory.

Information for individual processes is located in /proc/<pid> directories, where <pid>
is the process ID. For example, the file /proc/12345/cmdline contains the original com-
mand line that invoked the (currently running) process 12345. Programs like ps sum-
marize the data in these files. Each process directory contains a /proc/<pid>/fd
subdirectory with links for open files: this is used by the lsof command.

For more details about the format of files in the /proc filesystem, see the proc(5)
manpage, and documentation in the Linux kernel source distribution, specifically:

/usr/src/linux*/Documentation/filesystems/proc.txt

a Imagine the havoc one could wreak by writing arbitrary text into a kernel data structure.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.14 Examining Local Network Activities | 229

To list all open files (and network connections) for all processes:

lsof

To trace network system calls, use strace. [9.15]

Discussion
Suppose you see a process with an unfamiliar name running on your system. Should
you be concerned? What is it doing? Could it be surreptitiously transmitting data to
some other machine on a distant continent?

To answer these kinds of questions, you need tools for observing network use and
for correlating activities with specific processes. Use these tools frequently so you
will be familiar with normal network usage, and equipped to focus on suspicious
behavior when you encounter it.

The netstat command prints a summary of the state of networking on your
machine, and is a good way to start investigations. The --inet option prints active
connections:

$ netstat --inet

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 240 myhost.example.com:ssh client.example.com:3672 ESTABLISHED

tcp 0 0 myhost.example.com:4099 server.example.com:ssh TIME_WAIT

This example shows inbound and outbound ssh connections; the latter is shutting
down (as indicated by TIME_WAIT). If you see an unusually large number of connec-
tions in the SYN_RECV state, your system is probably being probed by a port scanner
like nmap. [9.13]

Add the --listening option to instead see server sockets that are ready to accept new
connections (or use --all to see both kinds of sockets):

$ netstat --inet --listening

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 *:http *:* LISTEN

tcp 0 0 *:814 *:* LISTEN

udp 0 0 *:ntp *:*

udp 0 0 *:811 *:*

This example shows the ssh daemon, a web server (http), a network time server
(which uses udp), and two numerical mystery ports, which might be considered sus-
picious. On a typical system, you would expect to see many more server sockets, and
you should try to understand the purpose of each. Consider disabling services that
you don’t need, as a security precaution.

Port numbers for RPC services are assigned dynamically by the portmapper. The
rpcinfo command shows these assignments:

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 9: Testing and Monitoring

$ rpcinfo -p | egrep -w "port|81[14]"

 program vers proto port

 100007 2 udp 811 ypbind

 100007 1 udp 811 ypbind

 100007 2 tcp 814 ypbind

 100007 1 tcp 814 ypbind

This relieves our concerns about the mystery ports found by netstat.

You can even query the portmapper on a different machine, by specifying the host-
name on the command line. This is one reason why your firewall should block access
to your portmapper, and why you should run it only if you need RPC services.

The netstat -p option adds a process ID and command name for each socket, and
the -e option adds a username.

Only the superuser can examine detailed information for processes
owned by others. If you need to observe a wide variety of processes,
run these commands as root.

The lsof command lists open files for individual processes, including network con-
nections. With no options, lsof reports on all open files for all processes, and you
can hunt for information of interest using grep or your favorite text editor. This tech-
nique can be useful when you don’t know precisely what you are looking for,
because all of the information is available, which provides context. The voluminous
output, however, can make specific information hard to notice.

lsof provides many options to select files or processes for more refined searches. By
default, lsof prints information that matches any of the selections. Use the -a option
to require matching all of them instead.

The -i option selects network connections: lsof -i is more detailed than but similar
to netstat --inet --all -p. The -i option can be followed by an argument of the
form [TCP|UDP][@host][:port] to select specific network connections—any or all of
the components can be omitted. For example, to view all ssh connections (which use
TCP), to or from any machine:

lsof -iTCP:ssh

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sshd 678 root 3u IPv4 1279 TCP *:ssh (LISTEN)

sshd 7122 root 4u IPv4 211494 TCP myhost:ssh->client:367 (ESTABLISHED)

sshd 7125 katie 4u IPv4 211494 TCP myhost:ssh->client:3672 (ESTABLISHED)

ssh 8145 marianne 3u IPv4 254706 TCP myhost:3933->server:ssh (ESTABLISHED)

Note that a single network connection (or indeed, any open file) can be shared by
several processes, as shown in this example. This detail is not revealed by netstat -p.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.14 Examining Local Network Activities | 231

Both netstat and lsof convert IP addresses to hostnames, and port
numbers to service names (e.g., ssh), if possible. You can inhibit these
conversions and force printing of numeric values, e.g., if you are have
many network connections and some nameservers are responding
slowly. Use the netstat --numeric-hosts or --numeric-ports options,
or the lsof -n, -P, or -l options (for host addresses, port numbers,
and user IDs, respectively) to obtain numeric values, as needed.

To examine processes that use RPC services, the +M option is handy for displaying
portmapper registrations:

lsof +M -iTCP:814 -iUDP:811

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

ypbind 633 root 6u IPv4 1202 UDP *:811[ypbind]

ypbind 633 root 7u IPv4 1207 TCP *:814[ypbind] (LISTEN)

ypbind 635 root 6u IPv4 1202 UDP *:811[ypbind]

ypbind 635 root 7u IPv4 1207 TCP *:814[ypbind] (LISTEN)

ypbind 636 root 6u IPv4 1202 UDP *:811[ypbind]

ypbind 636 root 7u IPv4 1207 TCP *:814[ypbind] (LISTEN)

ypbind 637 root 6u IPv4 1202 UDP *:811[ypbind]

ypbind 637 root 7u IPv4 1207 TCP *:814[ypbind] (LISTEN)

This corresponds to rpcinfo -p output from our earlier example. The RPC program
names are enclosed in square brackets, after the port numbers.

You can also select processes by ID (-p), command name (-c), or username (-u):

lsof -a -c myprog -u tony

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

myprog 8387 tony cwd DIR 0,15 4096 42329 /var/tmp

myprog 8387 tony rtd DIR 8,1 4096 2 /

myprog 8387 tony txt REG 8,2 13798 31551 /usr/local/bin/myprog

myprog 8387 tony mem REG 8,1 87341 21296 /lib/ld-2.2.93.so

myprog 8387 tony mem REG 8,1 90444 21313 /lib/libnsl-2.2.93.so

myprog 8387 tony mem REG 8,1 11314 21309 /lib/libdl-2.2.93.so

myprog 8387 tony mem REG 8,1 170910 81925 /lib/i686/libm-2.2.93.so

myprog 8387 tony mem REG 8,1 10421 21347 /lib/libutil-2.2.93.so

myprog 8387 tony mem REG 8,1 42657 21329 /lib/libnss_files-2.2.93.so

myprog 8387 tony mem REG 8,1 15807 21326 /lib/libnss_dns-2.2.93.so

myprog 8387 tony mem REG 8,1 69434 21341 /lib/libresolv-2.2.93.so

myprog 8387 tony mem REG 8,1 1395734 81923 /lib/i686/libc-2.2.93.so

myprog 8387 tony 0u CHR 136,3 2 /dev/pts/3

myprog 8387 tony 1u CHR 136,3 2 /dev/pts/3

myprog 8387 tony 2u CHR 136,3 2 /dev/pts/3

myprog 8387 tony 3r REG 8,5 0 98315 /var/tmp/foo

myprog 8387 tony 4w REG 8,5 0 98319 /var/tmp/bar

myprog 8387 tony 5u IPv4 274331 TCP myhost:2944->www:http (ESTABLISHED)

Note that the arrow does not indicate the direction of data transfer for network con-
nections: the order displayed is always local->remote.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 9: Testing and Monitoring

The letters following the file descriptor (FD) numbers show that myprog has opened
the file foo for reading (r), the file bar for writing (w), and the network connection
bidirectionally (u).

The complete set of information printed by lsof can be useful when investigating
suspicious processes. For example, we can see that myprog’s current working direc-
tory (cwd) is /var/tmp, and the pathname for the program (txt) is /usr/local/bin/
myprog. Be aware that rogue programs may try to disguise their identity: if you find
sshd using the executable /tmp/sshd instead of /usr/sbin/sshd, that is cause for alarm.
Similarly, it would be troubling to discover a program called “ls” with network con-
nections to unfamiliar ports!*

See Also
netstat(8), rpcinfo(8), lsof(8).

9.15 Tracing Processes

Problem
You want to know what an unfamiliar process is doing.

Solution
To attach to a running process and trace system calls:

strace -p pid

To trace network system calls:

strace -e trace=network,read,write ...

Discussion
The strace command lets you observe a given process in detail, printing its system
calls as they occur. It expands all arguments, return values, and errors (if any) for the
system calls, showing all information passed between the process and the kernel. (It
can also trace signals.) This provides a very complete picture of what the process is
doing.

Use the strace -p option to attach to and trace a process, identified by its process
ID, say, 12345:

strace -p 12345

* Even ls can legitimately use the network, however, if your system uses NIS for user or group ID lookups.
You need to know what to expect in each case.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.15 Tracing Processes | 233

To detach and stop tracing, just kill strace. Other than a small performance penalty,
strace has no effect on the traced process.

Tracing all system calls for a process can produce overwhelming output, so you can
select sets of interesting system calls to print. For monitoring network activity, the -e

trace=network option is appropriate. Network sockets often use the generic read and
write system calls as well, so trace those too:

$ strace -e trace=network,read,write finger katie@server.example.com

...
socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 4

connect(4, {sin_family=AF_INET,

 sin_port=htons(79),

 sin_addr=inet_addr("10.12.104.222")}, 16) = 0

write(4, "katie", 5) = 5

write(4, "\r\n", 2) = 2

read(4, "Login: katie \t\t\tName: K"..., 4096) = 244

read(4, "", 4096) = 0

...

The trace shows the creation of a TCP socket, followed by a connection to port 79
for the finger service at the IP address for the server. The program then follows the
finger protocol by writing the username and reading the response.

By default, strace prints only 32 characters of string arguments, which can lead to
the truncated output shown. For a more complete trace, use the -s option to specify
a larger maximum data size. Similarly, strace abbreviates some large structure argu-
ments, such as the environment for new processes: supply the -v option to print this
information in full.

You can trace most network activity effectively by following file descriptors: in the
previous example, the value is 4 (returned by the socket-creation call, and used as the
first argument for the subsequent system calls). Then match these values to the file
descriptors displayed in the FD column by lsof. [9.14]

When you identify an interesting file descriptor, you can print the transferred data in
both hexadecimal and ASCII using the options -e [read|write]=fd:

$ strace -e trace=read -e read=4 finger katie@server.example.com

...
read(4, "Login: katie \t\t\tName: K"..., 4096) = 244

 | 00000 4c 6f 67 69 6e 3a 20 6b 61 74 69 65 20 20 20 20 Login: k atie |

 | 00010 20 20 20 20 20 20 09 09 09 4e 61 6d 65 3a 20 4b .. .Name: K |

...

strace watches data transfers much like network packet sniffers do, but it also can
observe input/output involving local files and other system activities.

If you trace programs for long periods, ask strace to annotate its output with times-
tamps. The -t option records absolute times (repeat the option for more detail), the
-r option records relative times between system calls, and -T records time spent in

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 9: Testing and Monitoring

the kernel within system calls. Finally, add the strace -f option to follow child
processes.*

Each line of the trace has the process ID added for children. Alternatively, you can
untangle the system calls by directing the trace for each child process to a separate
file, using the options:

$ strace -f -ff -o filename ...

See Also
strace(1), and the manpages for the system calls appearing in strace output.

9.16 Observing Network Traffic

Problem
You want to watch network traffic flowing by (or through) your machine.

Solution
Use a packet sniffer such as tcpdump.†

To sniff packets and save them in a file:

tcpdump -w filename [-c count] [-i interface] [-s snap-length] [expression]

To read and display the saved network trace data:

$ tcpdump -r filename [expression]

To select packets related to particular TCP services to or from a host:

tcpdump tcp port service [or service] and host server.example.com

For a convenient and powerful GUI, use Ethereal. [9.17]

To enable an unconfigured interface, for a “stealth” packet sniffer:

ifconfig interface-name 0.0.0.0 up

To print information about all of your network interfaces with loaded drivers: [3.1]

$ ifconfig -a

* To follow child processes created by vfork, include the -F option as well, but this requires support from the
kernel that is not widely available at press time. Also, strace does not currently work well with multi-
threaded processes: be sure you have the latest version, and a kernel Version 2.4 or later, before attempting
thread tracing.

† In spite of its name, tcpdump is not restricted to TCP. It can capture entire packets, including the link-level
(Ethernet) headers, IP, UDP, etc.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.16 Observing Network Traffic | 235

Discussion
Is your system under attack? Your firewall is logging unusual activities, you see lots
of half-open connections, and the performance of your web server is degrading. How
can you learn what is happening so you can take defensive action? Use a packet
sniffer to watch traffic on the network!

In normal operation, network interfaces are programmed to receive only the following:

• Unicast packets, addressed to a specific machine

• Multicast packets, targeted to systems that choose to subscribe to services like
streaming video or sound

• Broadcast packets, for when an appropriate destination is not known, or for
important information that is probably of interest to all machines on the
network

The term “unicast” is not an oxymoron: all packets on networks like Ethernet are in
fact sent (conceptually) to all systems on the network. Each system simply ignores
unicast packets addressed to other machines, or uninteresting multicast packets.

A packet sniffer puts a network interface into promiscuous mode, causing it to receive
all packets on the network, like a wiretap. Almost all network adapters support this
mode nowadays. Linux restricts the use of promiscuous mode to the superuser, so
always run packet-sniffing programs as root. Whenever you switch an interface to
promiscuous mode, the kernel logs the change, so we advise running the logger com-
mand [9.27] to announce your packet-sniffing activities.

If promiscuous mode doesn’t seem to be working, and your kernel is
sending complaints to the system logger (usually in /var/log/messages)
that say:

modprobe: can't locate module net-pf-17

then your kernel was built without support for the packet socket pro-
tocol, which is required for network sniffers.

Rebuild your kernel with the option CONFIG_PACKET=y (or CONFIG_

PACKET=m to build a kernel module). Red Hat and SuSE distribute ker-
nels with support for the packet socket protocol enabled, so network
sniffers should work.

Network switches complicate this picture. Unlike less intelligent hubs, switches
watch network traffic, attempt to learn which systems are connected to each net-
work segment, and then send unicast packets only to ports known to be connected
to the destination systems, which defeats packet sniffing. However, many network
switches support packet sniffing with a configuration option to send all traffic to des-
ignated ports. If you are running a network sniffer on a switched network, consult
the documentation for your switch.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 9: Testing and Monitoring

The primary purpose of network switches is to improve performance,
not to enhance security. Packet sniffing is more difficult on a switched
network, but not impossible: dsniff [9.19] is distributed with a collec-
tion of tools to demonstrate such attacks. Do not be complacent about
the need for secure protocols, just because your systems are con-
nected to switches instead of hubs.

Similarly, routers and gateways pass traffic to different networks based on the desti-
nation address for each packet. If you want to watch traffic between machines on dif-
ferent networks, attach your packet sniffer somewhere along the route between the
source and destination.

Packet sniffers tap into the network stack at a low level, and are therefore immune to
restrictions imposed by firewalls. To verify the correct operation of your firewall, use
a packet sniffer to watch the firewall accept or reject traffic.

Your network interface need not even be configured in order to watch traffic (it does
need to be up, however). Use the ifconfig command to enable an unconfigured
interface by setting the IP address to zero:

ifconfig eth2 0.0.0.0 up

Unconfigured interfaces are useful for dedicated packet-sniffing machines, because
they are hard to detect or attack. Such systems are often used on untrusted networks
exposed to the outside (e.g., right next to your web servers). Use care when these
“stealth” packet sniffers are also connected (by normally configured network inter-
faces) to trusted, internal networks: for example, disable IP forwarding. [2.3]

Promiscuous mode can degrade network performance. Avoid running
a packet sniffer for long periods on important, production machines:
use a separate, dedicated machine instead.

Almost all Linux packet-sniffing programs use libpcap, a packet capture library dis-
tributed with tcpdump. As a fortunate consequence, network trace files share a com-
mon format, so you can use one tool to capture and save packets, and others to
display and analyze the traffic. The file command recognizes and displays informa-
tion about libpcap-format network trace files:

$ file trace.pcap

trace.pcap: tcpdump capture file (little-endian) - version 2.4 (Ethernet, capture

length 96)

Kernels of Version 2.2 or higher can send warnings to the system log-
ger like:

tcpdump uses obsolete (PF_INET,SOCK_PACKET)

These are harmless, and can be safely ignored. To avoid the warnings,
upgrade to a more recent version of libpcap.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.16 Observing Network Traffic | 237

To sniff packets and save them in a file, use the tcpdump -w option:

tcpdump -w trace.pcap [-c count] [-i interface] [-s snap-length] [expression]

Just kill tcpdump when you are done, or use the -c option to request a maximum
number of packets to record.

If your system is connected to multiple networks, use the -i option to listen on a spe-
cific interface (e.g., eth2). The ifconfig command prints information about all of
your network interfaces with loaded drivers: [3.1]

$ ifconfig -a

The special interface name “any” denotes all of the interfaces by any
program that uses libpcap, but these interfaces are not put into promis-
cuous mode automatically. Before using tcpdump -i any, use ifconfig

to enable promiscuous mode for specific interfaces of interest:

ifconfig interface promisc

Remember to disable promiscuous mode when you are done sniffing:

ifconfig interface -promisc

Support for the “any” interface is available in kernel Versions 2.2 or
later.

Normally, tcpdump saves only the first 68 bytes of each packet. This snapshot length
is good for analysis of low-level protocols (e.g., TCP or UDP), but for higher-level
ones (like HTTP) use the -s option to request a larger snapshot. To capture entire
packets and track all transmitted data, specify a snapshot length of zero. Larger snap-
shots consume dramatically more disk space, and can impact network performance
or even cause packet loss under heavy load.

By default, tcpdump records all packets seen on the network. Use a capture filter
expression to select specific packets: the criteria can be based on any data in the pro-
tocol headers, using a simple syntax described in the tcpdump(8) manpage. For
example, to record FTP transfers to or from a server:

tcpdump -w trace.pcap tcp port ftp or ftp-data and host server.example.com

By restricting the kinds of packets you capture, you can reduce the performance
implications and storage requirements of larger snapshots.

To read and display the saved network trace data, use the tcpdump -r option:

$ tcpdump -r trace.pcap [expression]

Root access is not required to analyze the collected data, since it is stored in ordi-
nary files. You may want to protect those trace files, however, if they contain sensi-
tive data.

Use a display filter expression to print information only about selected packets; dis-
play filters use the same syntax as capture filters.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 9: Testing and Monitoring

The capture and display operations can be combined, without saving data to a file, if
neither the -w nor -r options are used, but we recommend saving to a file, because:

• Protocol analysis often requires displaying the data multiple times, in different
formats, and perhaps using different tools.

• You might want to analyze data captured at some earlier time.

• It is hard to predict selection criteria in advance. Use more inclusive filter expres-
sions at capture time, then more discriminating ones at display time, when you
understand more clearly which data is interesting.

• Display operations can be inefficient. Memory is consumed to track TCP
sequence numbers, for example. Your packet sniffer should be lean and mean if
you plan to run it for long periods.

• Display operations sometimes interfere with capture operations. Converting IP
addresses to hostnames often involves DNS lookups, which can be confusing if
you are watching traffic to and from your nameservers! Similarly, if you tunnel
tcpdump output through an SSH connection, that generates additional SSH traffic.

Saving formatted output from tcpdump is an even worse idea. It consumes large
amounts of space, is difficult for other programs to parse, and discards much of the
information saved in the libpcap-format trace file. Use tcpdump -w to save network
traces.

tcpdump prints information about packets in a terse, protocol-dependent format
meticulously described in the manpage. Suppose a machine 10.6.6.6 is performing a
port scan of another machine, 10.9.9.9, by running nmap -r. [9.13] If you use
tcpdump to observe this port scan activity, you’ll see something like this:

tcpdump -nn

...

23:08:14.980358 10.6.6.6.6180 > 10.9.9.9.20: S 5498218:5498218(0) win 4096 [tos 0x80]

23:08:14.980436 10.9.9.9.20 > 10.6.6.6.6180: R 0:0(0) ack 5498219 win 0 (DF) [tos 0x80]

23:08:14.980795 10.6.6.6.6180 > 10.9.9.9.21: S 5498218:5498218(0) win 4096 [tos 0x80]

23:08:14.980893 10.9.9.9.21 > 10.6.6.6.6180: R 0:0(0) ack 5498219 win 0 (DF) [tos 0x80]

23:08:14.983496 10.6.6.6.6180 > 10.9.9.9.22: S 5498218:5498218(0) win 4096

23:08:14.984488 10.9.9.9.22 > 10.6.6.6.6180: S 3458349:3458349(0) ack 5498219 win 5840

<mss 1460> (DF)

23:08:14.983907 10.6.6.6.6180 > 10.9.9.9.23: S 5498218:5498218(0) win 4096 [tos 0x80]

23:08:14.984577 10.9.9.9.23 > 10.6.6.6.6180: R 0:0(0) ack 5498219 win 0 (DF) [tos 0x80]

23:08:15.060218 10.6.6.6.6180 > 10.9.9.99.22: R 5498219:5498219(0) win 0 (DF)

23:08:15.067712 10.6.6.6.6180 > 10.9.9.99.24: S 5498218:5498218(0) win 4096

23:08:15.067797 10.9.9.9.24 > 10.6.6.6.6180: R 0:0(0) ack 5498219 win 0 (DF)

23:08:15.068201 10.6.6.6.6180 > 10.9.9.9.25: S 5498218:5498218(0) win 4096 [tos 0x80]

23:08:15.068282 10.9.9.9.25 > 10.6.6.6.6180: R 0:0(0) ack 5498219 win 0 (DF) [tos 0x80]

...

The nmap -r process scans the ports sequentially. For each closed port, we see an
incoming TCP SYN packet, and a TCP RST reply from the target. An open SSH port
(22) instead elicits a TCP SYN+ACK reply, indicating that a server is listening: the

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.17 Observing Network Traffic (GUI) | 239

scanner responds a short time later with a TCP RST packet (sent out of order) to tear
down the half-open SSH connection. Protocol analysis is especially enlightening
when a victim is confronted by sneakier probes and denial of service attacks that
don’t adhere to the usual network protocol rules.

The previous example used -nn to print everything numerically. The -v option
requests additional details; repeat it (-v -v ...) for increased verbosity. Timestamps
are recorded by the kernel (and saved in libpcap-format trace files), and you can
select a variety of formats by specifying the -t option one or more times. Use the -e

option to print link-level (Ethernet) header information.

See Also
ifconfig(8), tcpdump(8), nmap(8). The tcpdump home page is http://www.tcpdump.
org, and the nmap home page is http://www.insecure.org/nmap.

A good reference on Internet protocols is found at http://www.protocols.com. Also, the
book Internet Core Protocols: The Definitive Guide (O’Reilly) covers similar material.

9.17 Observing Network Traffic (GUI)

Problem
You want to watch network traffic via a graphical interface.

Solution
Use Ethereral and tethereal.

Discussion
Prolonged perusing of tcpdump output [9.16] can lead to eyestrain. Fortunately, alter-
natives are available, and Ethereal is one of the best.

Ethereal is a GUI network sniffer that supports a number of enhancements beyond
the capabilities of tcpdump. When Ethereal starts, it presents three windows:

Packet List
A summary line for each packet, in a format similar to tcpdump.

Tree View
An expandable protocol tree for the packet selected in the previous window. An
observer can drill down to reveal individual fields at each protocol level. Ethe-
real understands and can display an astounding number of protocols in detail.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 9: Testing and Monitoring

Data View
Hexadecimal and ASCII dumps of all bytes captured in the selected packet.
Bytes are highlighted according to selections in the protocol tree.

Ethereal uses the same syntax as tcpdump for capture filter expressions. However, it
uses a different, more powerful syntax for display filter expressions. Our previous
tcpdump example, to select packets related to FTP transfers to or from a server: [9.16]

tcp port ftp or ftp-data and host server.example.com

would be rewritten using Ethereal’s display filter syntax as:

ftp or ftp-data and ip.addr == server.example.com

The display filter syntax is described in detail in the ethereal(1) manpage.

If you receive confusing and uninformative syntax error messages,
make sure you are not using display filter syntax for capture filters, or
vice-versa.

Ethereal provides a GUI to construct and update display filter expressions, and can
use those expressions to find packets in a trace, or to colorize the display.

Ethereal also provides a tool to follow a TCP stream, reassembling (and reordering)
packets to construct an ASCII or hexadecimal dump of an entire TCP session. You
can use this to view many protocols that are transmitted as clear text.

Menus are provided as alternatives for command-line options (which are very similar
to those of tcpdump). Ethereal does its own packet capture (using libpcap), or reads
and writes network trace files in a variety of formats. On Red Hat systems, the pro-
gram is installed with a wrapper that asks for the root password (required for packet
sniffing), and allows running as an ordinary user (if only display features are used).

The easiest way to start using Ethereal is:

1. Launch the program.

2. Use the Capture Filters item in the Edit menu to select the traffic of interest, or
just skip this step to capture all traffic.

3. Use the Start item in the Capture menu. Fill out the Capture Preferences dialog
box, which allows specification of the interface for listening, the snapshot (or
“capture length”), and whether you want to update the display in real time, as
the packet capture happens. Click OK to begin sniffing packets.

4. Watch the dialog box (and the updated display, if you selected the real time
update option) to see the packet capture in progress. Click the Stop button when
you are done.

5. The display is now updated, if it was not already. Try selecting packets in the
Packet List window, drill down to expand the Tree View, and select parts of the

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.18 Searching for Strings in Network Traffic | 241

protocol tree to highlight the corresponding sections of the Data View. This is a
great way to learn about internal details of network protocols!

6. Select a TCP packet, and use the Follow TCP Stream item in the Tools menu to
see an entire session displayed in a separate window.

Ethereal is amazingly flexible, and this is just a small sample of its functionality. To
learn more, browse the menus and see the Ethereal User’s Guide for detailed expla-
nations and screen shots.

tethereal is a text version of Ethereal, and is similar in function to tcpdump, except it
uses Ethereal’s enhanced display filter syntax. The -V option prints the protocol tree
for each packet, instead of a one-line summary.

Use the tethereal -b option to run in “ring buffer” mode (Ethereal also supports this
option, but the mode is designed for long-term operation, when the GUI is not as
useful). In this mode, tethereal maintains a specified number of network trace files,
switching to the next file when a maximum size (determined by the -a option) is
reached, and discarding the oldest files, similar to logrotate. [9.30] For example, to
keep a ring buffer with 10 files of 16 megabytes each:

tethereal -w ring-buffer -b 10 -a filesize:16384

See Also
ethereal(1), tethereal(1). The Ethereal home page is http://www.ethereal.com.

9.18 Searching for Strings in Network Traffic

Problem
You want to watch network traffic, searching for strings in the transmitted data.

Solution
Use ngrep.

To search for packets containing data that matches a regular expression and proto-
cols that match a filter expression:

ngrep [grep-options] regular-expression [filter-expression]

To search instead for a sequence of binary data:

ngrep -X hexadecimal-digits [filter-expression]

To sniff packets and save them in a file:

ngrep -O filename [-n count] [-d interface] [-s snap-length] \
 regular-expression [filter-expression]

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 9: Testing and Monitoring

To read and display the saved network trace data:

$ ngrep -I filename regular-expression [filter-expression]

Discussion
ngrep is supplied with SuSE but not Red Hat; however, it is easy to obtain and install
if you need it. Download it from http://ngrep.sourceforge.net and unpack it:

$ tar xvpzf ngrep-*.tar.gz

compile it:

$ cd ngrep

$./configure --prefix=/usr/local

$ make

and install it into /usr/local as root:*

mkdir -p /usr/local/bin /usr/local/man/man8

make install

Sometimes we are interested in observing the data delivered by network packets,
known as the payload. Tools like tcpdump [9.16] and especially Ethereal [9.17] can
display the payload, but they are primarily designed for protocol analysis, so their
ability to select packets based on arbitrary data is limited.†

The ngrep command searches network traffic for data that matches extended regular
expressions, in the same way that the egrep command (or grep -E) searches files. In
fact, ngrep supports many of the same command-line options as egrep, such as -i

(case-insensitive), -w (whole words), or -v (nonmatching). In addition, ngrep can
select packets using the same filter expressions as tcpdump. To use ngrep as an ordi-
nary packet sniffer, use the regular expression “.”, which matches any nonempty
payload.

ngrep is handy for detecting the use of insecure protocols. For example, we can
observe FTP transfers to or from a server, searching for FTP request command
strings to reveal usernames, passwords, and filenames that are transmitted as clear
text:

$ ngrep -t -x 'USER|PASS|RETR|STOR' tcp port ftp and host server.example.com

interface: eth0 (10.44.44.0/255.255.255.0)

filter: ip and (tcp port ftp)

* We explicitly install in /usr/local, because otherwise the configure script would install into /usr, based on the
location of gcc. We recommend /usr/local to avoid clashes with vendor-supplied software in /usr; this recom-
mendation is codified in the Filesystem Hierarchy Standard (FHS), http://www.pathname.com/fhs. The
configure script used for ngrep is unusual—such scripts typically install into /usr/local by default, and there-
fore do not need an explicit --prefix option. We also create the installation directories if they don’t already
exist, to overcome deficiencies in the make install command.

† The concept of a packet’s payload is subjective. Each lower-level protocol regards the higher-level protocols
as its payload. The highest-level protocol delivers the user data; for example, the files transferred by FTP.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.18 Searching for Strings in Network Traffic | 243

match: USER|PASS|RETR|STOR

#############

T 2003/02/27 23:31:20.303636 10.33.33.33:1057 -> 10.88.88.88:21 [AP]

 55 53 45 52 20 6b 61 74 69 65 0d 0a USER katie..

#####

T 2003/02/27 23:31:25.315858 10.33.33.33:1057 -> 10.88.88.88:21 [AP]

 50 41 53 53 20 44 75 6d 62 6f 21 0d 0a PASS Dumbo!..

#############

T 2003/02/27 23:32:15.637343 10.33.33.33:1057 -> 10.88.88.88:21 [AP]

 52 45 54 52 20 70 6f 6f 68 62 65 61 72 0d 0a RETR poohbear..

########

T 2003/02/27 23:32:19.742193 10.33.33.33:1057 -> 10.88.88.88:21 [AP]

 53 54 4f 52 20 68 6f 6e 65 79 70 6f 74 0d 0a STOR honeypot..

###############exit

58 received, 0 dropped

The -t option adds timestamps; use -T instead for relative times between packets.
The -x option prints hexadecimal values in addition to the ASCII strings.

ngrep prints a hash character (#) for each packet that matches the filter expression:
only those packets that match the regular expression are printed in detail. Use the -q

option to suppress the hashes.

To search for binary data, use the -X option with a sequence of hexadecimal digits (of
any length) instead of a regular expression. This can detect some kinds of buffer
overflow attacks, characterized by known signatures of fixed binary data.

ngrep matches data only within individual packets. If strings are split
between packets due to fragmentation, they will not be found. Try to
match shorter strings to reduce (but not entirely eliminate) the proba-
bility of these misses. Shorter strings can also lead to false matches,
however—a bit of experimentation is sometimes required. dsniff does
not have this limitation. [9.19]

Like other packet sniffers, ngrep can write and read libpcap-format network trace
files, using the -O and -I options. [9.16] This is especially convenient when running
ngrep repeatedly to refine your search, using data captured previously, perhaps by
another program. Usually ngrep captures packets until killed, or it will exit after
recording a maximum number of packets requested by the -n option. The -d option
selects a specific interface, if your machine has several. By default, ngrep captures
entire packets (in contrast to tcpdump and ethereal), since ngrep is interested in the
payloads. If your data of interest is at the beginning of the packets, use the -s option
to reduce the snapshot and gain efficiency.

When ngrep finds an interesting packet, the adjacent packets might be of interest
too, as context. The ngrep -A option prints a specified number of extra (not necessar-
ily matching) packets for trailing context. This is similar in spirit to the grep -A

option, but ngrep does not support a corresponding -B option for leading context.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 9: Testing and Monitoring

A recommended practice: Save a generous amount of network trace
data with tcpdump, then run ngrep to locate interesting data. Finally,
browse the complete trace using Ethereal, relying on the timestamps
to identify the packets matched by ngrep.

See Also
ngrep(8), egrep(1), grep(1), tcpdump(8). The home page for ngrep is http://ngrep.
sourceforge.net, and the tcpdump home page is http://www.tcpdump.org.

Learn more about extended regular expressions in the O’Reilly book Mastering Regu-
lar Expressions.

9.19 Detecting Insecure Network Protocols

Problem
You want to determine if insecure protocols are being used on the network.

Solution
Use dsniff.

To monitor the network for insecure protocols:

dsniff -m [-i interface] [-s snap-length] [filter-expression]

To save results in a database, instead of printing them:

dsniff -w gotcha.db [other options...]

To read and print the results from the database:

$ dsniff -r gotcha.db

To capture mail messages from SMTP or POP traffic:

mailsnarf [-i interface] [-v] [regular-expression [filter-expression]]

To capture file contents from NFS traffic:

filesnarf [-i interface] [-v] [regular-expression [filter-expression]]

To capture URLs from HTTP traffic:

urlsnarf [-i interface] [-v] [regular-expression [filter-expression]]

ngrep is also useful for detecting insecure network protocols. [9.18]

Discussion
dsniff is not supplied with Red Hat or SuSE, but installation is straightforward. A
few extra steps are required for two prerequisite libraries, libnet and libnids, not

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.19 Detecting Insecure Network Protocols | 245

distributed by Red Hat. SuSE provides these libraries, so you can skip ahead to the
installation of dsniff itself on such systems.

If you need the libraries, first download libnet, a toolkit for network packet manipu-
lation, from http://www.packetfactory.net/projects/libnet, and unpack it:

$ tar xvzpf libnet-1.0.*.tar.gz

Then compile it:*

$ cd Libnet-1.0.*

$./configure --prefix=/usr/local

$ make

and install it as root:

make install

We explicitly configure to install in /usr/local (instead of /usr), to match the default
location for our later configuration steps. Next, download libnids, which is used for
TCP stream reassembly, from http://www.packetfactory.net/projects/libnids, and
unpack it:

$ tar xvzpf libnids-*.tar.gz

Then compile it:

$ cd `ls -d libnids-* | head -1`

$./configure

$ make

and install it as root:

make install

dsniff also requires the Berkeley database library, which is provided
by both Red Hat and SuSE. Unfortunately, some systems such as Red
Hat 7.0 are missing /usr/include/db_185.h (either a plain file or a sym-
bolic link) that dsniff needs. This is easy to fix:

cd /usr/include

test -L db.h -a ! -e db_185.h \

 && ln -sv `readlink db.h | sed -e 's,/db,&_185,'` .

Your link should look like this:

$ ls -l db_185.h

lrwxrwxrwx 1 root root 12 Feb 14 14:56 db_185.h -> db4/db_185.h

It’s OK if the link points to a different version (e.g., db3 instead of
db4).

* At press time, dsniff 2.3 (the latest stable version) cannot be built with the most recent version of libnet. Be
sure to use the older libnet 1.0.2a with dsniff 2.3.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 9: Testing and Monitoring

Finally, download dsniff from http://naughty.monkey.org/~dugsong/dsniff, and
unpack it:

$ tar xvzpf dsniff-*.tar.gz

Then compile it:

$ cd `ls -d dsniff-* | head -1`

$./configure

$ make

and install it as root:

make install

Whew! With all of the software in place, we can start using dsniff to audit the use of
insecure network protocols:

dsniff -m

dsniff: listening on eth0

03/01/03 20:11:07 tcp client.example.com.2056 -> server.example.com.21 (ftp)

USER katie

PASS Dumbo!

03/01/03 20:11:23 tcp client.example.com.1112 -> server.example.com.23 (telnet)

marianne

aspirin?

ls -l

logout

03/01/03 20:14:56 tcp client.example.com.1023 -> server.example.com.514 (rlogin)

[1022:tony]

rm junque

03/01/03 20:16:33 tcp server.example.com.1225 -> client.example.com.6000 (x11)

MIT-MAGIC-COOKIE-1 c166a754fdf243c0f93e9fecb54abbd8

03/01/03 20:08:20 udp client.example.com.688 -> server.example.com.777 (mountd)

/home [07 04 00 00 01 00 00 00 0c 00 00 00 02 00 00 00 3b 11 a1 36 00 00 00 00 00 00

00 00 00 00 00 00]

dsniff understands a wide range of protocols, and recognizes sensitive data that is
transmitted without encryption. Our example shows passwords captured from FTP
and Telnet sessions, with telnet commands and other input. (See why typing the
root password over a Telnet connection is a very bad idea?) The rlogin session used
no password, because the source host was trusted, but the command was captured.
Finally, we see authorization information used by an X server, and filehandle infor-
mation returned for an NFS mount operation.

dsniff uses libnids to reassemble TCP streams, because individual characters for
interactively-typed passwords are often transmitted in separate packets. This reas-
sembly relies on observation of the initial three-way handshake that starts all TCP
sessions, so dsniff does not trace sessions already in progress when it was invoked.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.19 Detecting Insecure Network Protocols | 247

The dsniff -m option enables automatic pattern-matching of protocols used on non-
standard ports (e.g., HTTP on a port other than 80). Use the -i option to listen on a
specific interface, if your system is connected to multiple networks. Append a filter-
expression to restrict the network traffic that is monitored, using the same syntax as
tcpdump. [9.16] dsniff uses libpcap to examine the first kilobyte of each packet: use
the -s option to adjust the size of the snapshot if necessary.

dsniff can save the results in a database file specified by the -w option; the -r option
reads and prints the results. If you use a database, be sure to protect this sensitive
data from unwanted viewers. Unfortunately, dsniff cannot read or write libpcap-
format network trace files—it performs live network-monitoring only.

A variety of more specialized sniffing tools are also provided with dsniff. The
mailsnarf command captures mail messages from SMTP or POP traffic, and writes
them in the standard mailbox format:

mailsnarf

mailsnarf: listening on eth0

From engh@example.com Sat Mar 1 21:00:02 2003

Received: (from engh@example.com)

 by mail.example.com (8.11.6/8.11.6) id h1DJAPe10352

 for liberace@example.com; Sat, 1 Mar 2003 21:00:02 -0500

Date: Sat, 1 Mar 2003 21:00:02 -0500

From: Engelbert Humperdinck <engh@example.com>

Message-Id: <200303020200.AED1D74A1@example.com>

To: liberace@example.com

Subject: Elvis lives!

I ran into Elvis on the subway yesterday.

He said he was on his way to Graceland.

Suppose you want to encourage users who are sending email as clear text to encrypt
their messages with GnuPG (see Chapter 8). You could theoretically inspect every
email message, but of course this would be a gross violation of their privacy. You just
want to detect whether encryption was used in each message, and to identify the cor-
respondents if it was not. One approach is:

mailsnarf -v "-----BEGIN PGP MESSAGE-----" | \

 perl -ne 'print if /^From / .. /^$/;' | \

 tee insecure-mail-headers

Our regular expression identifies encrypted messages, and the mailsnarf -v option
(similar to grep -v) captures only those messages that were not encrypted. A short
Perl script then discards the message bodies and records only the mail headers. The
tee command prints the headers to the standard output so we can watch, and also
writes them to a file, which can be used later to send mass mailings to the offenders.
This strategy never saves your users’ sensitive email data in a file.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 9: Testing and Monitoring

dsniff comes with similar programs for other protocols, but they are useful mostly as
convincing demonstrations of the importance of secure protocols. We hope you are
already convinced by now!

The filesnarf command captures files from NFS traffic, and saves them in the cur-
rent directory:

filesnarf

filesnarf: listening on eth0

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: known_hosts (1303@0)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: love-letter.doc (8192@0)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: love-letter.doc (4096@8192)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: .Xauthority (204@0)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: myprog (8192@0)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: myprog (8192@8192)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: myprog (8192@16384)

filesnarf: 10.220.80.1.2049 > 10.220.80.4.800: myprog (8192@40960)

The last values on each line are the number of bytes transferred, and the file offsets.
Of course, you can capture only those parts of the file transmitted on the network, so
the saved files can have “holes” (which read as null bytes) where the missing data
would be. No directory information is recorded. You can select specific filenames
using a regular expression (and optionally with the -v option, to invert the sense of
the match, as for mailsnarf or grep).

The urlsnarf command captures URLs from HTTP traffic, and records them in the
Common Log Format (CLF). This format is used by most web servers, such as
Apache, and is parsed by many web log analysis programs.

urlsnarf

urlsnarf: listening on eth1 [tcp port 80 or port 8080 or port 3128]

client.example.com - - [1/Mar/2003:21:06:36 -0500] "GET http://naughty.monkey.org/

cgi-bin/counter?ft=0|dd=E|trgb=ffffff|df=dugsong-dsniff.dat HTTP/1.1" - - "http://

naughty.monkey.org/~dugsong/dsniff/" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:0.9.

9) Gecko/20020513"

client.example.com - - [1/Mar/2003:21:06:46 -0500] "GET http://naughty.monkey.org/

~dugsong/dsniff/faq.html HTTP/1.1" - - "http://naughty.monkey.org/~dugsong/dsniff/"

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:0.9.9) Gecko/20020513"

By default, urlsnarf watches three ports that commonly carry HTTP traffic: 80,
3128, and 8080. To monitor a different port, use a capture filter expression:

urlsnarf tcp port 8888

urlsnarf: listening on eth1 [tcp port 8888]

...

To monitor all TCP ports, use a more general expression:

urlsnarf -i eth1 tcp

urlsnarf: listening on eth1 [tcp]

...

A regular expression can be supplied to select URLs of interest, optionally with -v as
for mailsnarf or filesnarf.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

9.20 Getting Started with Snort | 249

A few other programs are provided with dsniff as a proof of concept for attacks on
switched networks, man-in-the-middle attacks, and slowing or killing TCP connec-
tions. Some of these programs can be quite disruptive, especially if used incorrectly,
so we don’t recommend trying them unless you have an experimental network to
conduct penetration testing.

See Also
dsniff(8), mailsnarf(8), filesnarf(8), urlsnarf(8). The dsniff home page is http://
naughty.monkey.org/~dugsong/dsniff.

9.20 Getting Started with Snort

Problem
You want to set up Snort, a network-intrusion detection system.

Solution
Snort is included with SuSE but not Red Hat. If you need it (or you want to
upgrade), download the source distribution from http://www.snort.org and unpack it:

$ tar xvpzf snort-*.tar.gz

Then compile it:

$ cd `ls -d snort-* | head -1`

$./configure

$ make

and install the binary and manpage as root:

make install

Next, create a logging directory. It should not be publicly readable, since it will con-
tain potentially sensitive data:

mkdir -p -m go-rwx /var/log/snort

Finally, install the configuration files and rules database:

mkdir -p /usr/local/share/rules

cp etc/* rules/*.rules /usr/local/share/rules

Discussion
Snort is a network intrusion detection system (NIDS), sort of an early-warning radar
system for break-ins. It sniffs packets from the network and analyzes them according
to a collection of well-known signatures characteristic of suspicious or hostile activi-

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 9: Testing and Monitoring

ties. This may remind you of an anti-virus tool, which looks for patterns in files to
identify viruses.

By examining the protocol information and payload of each packet (or a sequence of
packets) and applying its pattern-matching rules, Snort can identify the telltale fin-
gerprints of attempted buffer overflows, denial of service attacks, port scans, and
many other kinds of probes. When Snort detects a disturbing event, it can log net-
work trace information for further investigation, and issue alerts so you can respond
rapidly.

See Also
snort(8). The Snort home page is http://www.snort.org.

