
apcupsd User's Manual

Revision History

Revision 2.0 20 Sept 2003 esr

First XML−DocBook version.

Table of Contents

Release Notes
New Features in in 3.10.6
New Features in 3.10.5
New Features in 3.10.4

How To Use This Manual
I. Basic User's Guide

1. Planning Your Installation
Quick Start for Beginners
Supported Operating Systems, UPSes and Cables
Choosing a Configuration Type
Checking Out Your USB Subsystem

2. Building and Installing apcupsd
Installation from Binary Packages

Red Hat Linux
Microsoft Windows

Installation from Source
Verifying a Source Installation
Configure Options
Recommended Options for most Systems
Compilers and Options
Operating System Specifics

Alpha
Debian
FreeBSD
HPUX
NetBSD
OpenBSD
Red Hat Systems
Slackware
SuSE
Sun Solaris
Unknown System
Windows Systems with CYGWIN Installed

3. After Installation
Checking Your Configuration File
Arranging for Reboot on Power−Up
Making Sure apcupsd Is Running

4. Testing apcupsd
Process−Status Test
Logging Test
apcaccess Test

apcupsd User's Manual

apcupsd User's Manual 1

Communications Test
Simulated Power Fail Test
System Shutdown Test
Full Power Down Test
Shutdown Sequence
apctest

5. Troubleshooting Your Installation
Known Problems with USB UPSes

Reconnection does not clean up the lockfile
Power Off (killpower) of UPS Does Not Work
apcupsd Cannot Reconnect After a Reboot

6. Monitoring and Tuning your UPS
apcaccess

apcaccess status
apcaccess eprom

hid−ups and USB Specific Information
apcupsd Network Monitoring (CGI) Programs

Setting up and Testing the CGI Programs
multimon.cgi
upsstats.cgi
./upsstats.cgi
upsfstatus.cgi
Working Example
Client Test Program
A Tip from Carl Erhorn for Sun Systems
Credits
Security Issues

Configuring Your EEPROM
apcupsd No Longer Configures EEPROM
Using apctest to Configure Your EEPROM

7. Maintaining Your UPS
What Various People Have to Say about Batteries
Where Carl Suggests You Get Batteries

8. Frequently−Asked Questions
9. Apcupsd Bugs

II. Advanced topics
10. Customizing Event Handling

apccontrol Command Line Options
11. Master/Slave Configurations

Configuration Directives
Master/Slave Problems

Master/Slave Shutdown
Master/Slave Networking using NIS and the NET Driver

Network Problems with Master/Slave Configurations
Error Messages from a Master Configuration
Error Messages from a Slave Configuration
Master/Slave Connection Not Working

12. Controlling Multiple UPSes on one Machine
Configuration

The First Copy of apcupsd
The Second Copy of apcupsd

apcupsd User's Manual

apcupsd User's Manual 2

Important Steps after Installation of the Second Copy
13. Support for SNMP UPSes

Connecting an SNMP UPS
Building and Installing apcupsd
SNMP Specific Information
Known Problems

14. Alternate Ways To Run The Network Information Server
Running the server as a child of apcupsd
Running apcnisd from INETD
Running apcnisd Standalome

15. apcupsd System Logging
Logging Types
Implementation Details
Developer's Notes

III. Legacy Installation: Windows
16. The Windows Version of apcupsd

Installation
Installation Directory
Testing
Upgrading
Post Installation
Problem Areas
Utility Functions
Disclaimer
Email Notification of Events
Killpower under Windows
Power Down During Shutdown
Command Line Options Specific to the Windows Version
Building the Win32 Version from the Source

IV. Legacy Installation: Serial−Line UPSes
17. Overview of Serial−Interface UPSes
18. Connecting a Serial−Line UPS to a USB Port
19. Cables

Smart−Custom Cable for SmartUPSes
Smart Signalling Cable for BackUPS CS Models
Voltage−Signalling Cable for "dumb" UPSes
Other APC Cables that apcupsd Supports
Voltage Signalling Features Supported by Apcupsd for Various Cables
Voltage Signalling
The Back−UPS Office 500 signals
Analyses of APC Cables

940−0020B Cable Wiring
940−0020C Cable Wiring
940−0023A Cable Wiring
940−0095A Cable Wiring
940−0095B Cable Wiring
940−0119A Cable Wiring
BackOffice ES
BackUPS ES and CS in Serial mode with Cable 940−0128A

Win32 Implementation Restrictions for Simple UPSes
Internal Apcupsd Actions for Simple Cables

apcupsd User's Manual

apcupsd User's Manual 3

RS232 Wiring and Signal Conventions
Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin, Female End
Ioctl to RS232 Correspondence

20. Testing Serial−Line UPSes
Establishing Serial Port Connection
Using apctest on Serial−Line UPSses

Expected apctest Signals for a UPS
Expected apctest Signals for a BackUPS Pro

21. Troubleshooting Serial Line communications
Determining Which Voltage−Signaling Cable You Have
Once you have established serial communications

Bizarre Intermittent Behavior
22. Recalibrating the UPS Runtime

Status Logging On Serial−Line UPSes
23. DATA Logging

V. Technical Reference
24. Configuration Directive Reference

General Configuration Directives
Configuration Directives Used by the Network Information Server
Configuration Directives used during Power Failures
Configuration Directives used to Control System Logging
Configuration Directives for Sharing a UPS
Configuration Directives Used to Set the UPS EPROM

25. Configuration Examples
A Simple Configuration for a SmartUPS
A Simple USB Configuration
A Simple Master Configuration
A Simple Slave Configuration
Variation on the Master/Slave Configuration
A Sample Slave Configuration Using the Net Driver

26. apcupsd Status Logging
Status report format
Status Report Example
Status Report Fields
Logging the STATUS Information

27. The Shutown Sequence and its Discontents
Shutdown Sequence
Shutdown Problems
Master/Slave Shutdown
Startup
Windows Considerations

28. APC's smart protocol
Description
RS−232 differences
Diagram for cable hackers
The Smart Protocol
Dip switch info
Status bits
Alert messages
Register 1
Register 2

apcupsd User's Manual

apcupsd User's Manual 4

Register 3
Interpretation of the Old Firmware Revision
Interpretation of the New Firmware Revision
EEPROM Values
Programming the UPS EEPROM
Acknowledgements

A. Credits
Contributors
Disclaimer: NO WARRANTY

List of Figures

1.1. Configuration types.

Release Notes

Table of Contents

New Features in in 3.10.6
New Features in 3.10.5
New Features in 3.10.4

This release contains a good number of cleanups and bug fixes to prior 3.10.x versions, and is intended to be
the official release. See the ChangeLog below for more details.

New Features in in 3.10.6

This release contains a good number of cleanups and bug fixes to prior 3.10.x versions, and is intended to be
the official release. See the ChangeLog below for more details.

Change Log

− Lots of updates to the document.
− Fixed a slave crash in master/slave mode. It was a missing setup_device,
 and was diagnosed and reported by Christian Schacht −− many thanks.
− Made non−existent header files non−fatal and added #ifdef
 around sys/socket.h so it will compile on IRIX.
− Add Scott's latest apcupsd.conf with the hid−ups program code
 (actually I had done this some time ago ...).
− Start a ReleaseNotes file
− Fixed a typo error (mine) that prevented Scott from building
 rpms. Strange, it worked for me????
− More DESTDIR cleanup for building non−root rpms.
− Add DESTDIR everywhere so we can build rpms non−root
− Additional documentation
− Add Scott's new apcupsd.spec
− On Hilary Jones suggestion, I fixed the ./configure message that
 is printed when no libgd is found to direct the user to the
 main source.
− Add Sergey Vlasov's kernel patch to the examples directory,
 and it replaces the previous patch.
 This patch now solves the killpower problem on Linux USB.
 <apcupsd−source>/examples/linux−2.4.20−alt−apc_usb_ups.patch

apcupsd User's Manual

Release Notes 5

 notes are in: linux−usb−patch−email.txt
− Add TTY mode to apctest to communicated directly with UPS.
− Apply patch to linux−usb.c in killpower supplied by
 Sergey Vlasov (thanks!).
− Eliminate pow() function in linux−usb.c so that −lm is not needed.
− Add automatic detection of socklen_t
− I received a kernel patch from Sergey Vlasov that fixes
 the killpower problem on CS UPSes. apcupsd can now shutdown
 these devices! I've removed some debug code that was in
 the killpower routine and is not needed or used.
 I have put the kernel patch in:
 <apcupsd−source>/examples/linux−2.4.20−alt−hidups.patch
− When the Win32 version starts as a service, delete the
 NOLOGIN and PWRFAIL files to prevent later confusion.
 Thanks to Allen Crawford for pointing this out.
− Modify all Win32 program so that only windowed programs
 (apcupsd, popup) have the −mwindows flags. The others do not.
− Tweak apctest.c a bit −− add EEPROM programming (still a bit
 kludgy), but at least it can be done.
− Lots of clean ups for Cygwin stuff. Events now work, and exit.
− Clean up a few undefined symbols in building with everything on.
− Eliminate pid and serial port lock file on Win32 systems.
− Modify init script to use daemon so that STDIN/OUT, ... are
 detached from the terminal and pointed to the log file. This
 prevents remotely logged in users who start apcupsd from being
 unable to log out.
− Made some mindor modifications to configure.in and aclocal.m4 to
 make consistent use of double quotes in test statements in
 response to problems with make install reported by Andrew Surratt.
− Thanks to Richard Schwaninger for finding and submitting a patch to
 the tcp−wrappers code that prevented it from working because of an
 invalid name. Fixed.
− Thanks to Andrew Reid for pointing out that the child reaping code
 should be clearing the pid slot if a −1 is returned. The pid table
 was filling up on his system due to killed children. Fixed
− A bug report against the Mandrake version of apcupsd indicates that
 apcupsd is not releasing /dev/console. I've moved the close() of
 STDIN so that it is always executed to prevent this possibility.
− Implement very crude first cut of EEPROM programming in apctest.
 Set battery date, set UPS name, and print EEPROM values should
 work.

New Features in 3.10.5

This release is primarily version 3.10.4 but including a fix that closes a root exploit of slave machines. In
addition, it makes the −−enable−master−slave ./configure option work and has a few updates to the
Mandrake release. See the ChangeLog below for more details.

Change Log

−−−−> Release apcupsd−3.10.5 (03 Feb 2003)
 03Feb03
 − Added an avsnprinf() routine.
 − Replaced all vsprintf() calls with avsnprintf() to close a
 master/slave exploit that was published.
 − Remove awk processing of halt script for Mandrake as suggested by
 David Walser.
 02Feb03

apcupsd User's Manual

New Features in 3.10.5 6

 − Corrected −−enable−oldnet to be −−enable−master−slave as I
 had intended. Thanks to David Walser for pointing this out.
 − Added David Walser's apcupsd.spec.in for Mandrake and his
 changes to configure.in.

New Features in 3.10.4

See the list below for the detailed change log. Note, a number of the details of the changes are only
documented in the apcupsd.conf file, and unfortunately not in much detail.

The main new features are:

•
Support for USB UPSes on Linux. The killpower feature does not work though (most likely a kernel
"bug").

•
Support for additional models and cables.

•
New cable for running BackUPS CS in Smart mode (possibly also the BackUPS ES).

•
The old master/slave code must be explicitly enabled with −−enable−master−slave option on
the ./configure line.

•
Different models are now handled by drivers.

•
NIS code, master/slave code, and the drivers can be individually configured giving a much smaller
memory foot print.

•
A host of new configuration options to support enabling/disabling drivers and features.

•
Support for limiting what subnets the NIS code will listen to using the new NISIP configuration
directive.

•
SNMP support.

•
Support for system provided gd libraries.

•
Source tree reorganization.

Change Log:

apcupsd User's Manual

New Features in 3.10.4 7

−−−−> Release apcupsd−3.10.4 (21 Jan 2003)
 − Added error messages if old master/slave code called.
 − Reworked the messages for ./configure −−help to be aligned and
 clearer for networking and master/slave
 − A number of important patches all supplied by Mirko Doelle.
 − Moved technotes for 2001 and 2002 into respective directories.
 − Created a new kes−3.10.4 file to which I will append if there
 are additional changes to 3.10.4. This will reduce the number
 of release note files.

 19Jan03
 − Fixed hangs in usb driver startup when could not open port by
 releasing the ups structure lock before the Error_abort calls.
 Thanks to Mirko Doelle for reporting this.
 − Fixed the default path for mkinstalldirs from $(topdir) to
 $(topdir)/autoconf. Reported by Mirko.
 − Fixed configure.in to always create platform/apccontrol. Previously
 it was not being created for Debian. Reported by Mirko.
 − Removed Debian specific installation of apccontrol. Reported by
 Mirko.
 − Implemented code to display the apcupsd events with the most recent
 first. Code sent by Mirko, but I modified it slightly.

−−−−> Release apcupsd−3.10.3 (12 Dec 2002)
 − Tried to correct problems with Makefiles
 − Thanks to David Walser who pointed out where on the Sun, the make
 install was doing terrible things −− I found that there was
 a missing semicolon in the new Makefile. Before my previous cleanup,
 there were actually 4 missing semicolons. Hopefully this
 will correct the problem.
 − For a second time, David Walser came to the rescue finding the
 CGI install problem reported by lots of people. The new code
 used "make" instead of $(MAKE) to call the CGI make. Fixed.

 − Removed Makefile code that creates and sets permission bits on
 /tmp $(prefix) and $(exec−prefix)
 − Removed all occurrences of −z in the Makefiles (at least that I
 found) and replaced them with a more conservative formulation.
 − Removed the install−symlinks script that caused some problems
 on distributions with blanks in the DISTVER name.
 − Added install−symlinks to the suse Makefile.in. This is the
 only platform that currently uses it.

−−−−> Release apcupsd−3.10.2 (08 Nov 2002)
 − New cable design for BackUPS CS models to run it
 in Smart serial mode.
 − Corrected a major bug in the smart and net code where the
 status word was getting clobbered.

 − A few days ago, slither_man sent me an email with some
 information on how to run a BackUPS CS in smart mode with
 a serial cable. He found the information by assuming that
 the UPS supported Smart mode and through trial and error.
 Well, it works!!!!!!! Amazing!!!! Thanks slither_man.
 − Documentation for new CUSTOM−RJ54 cable that can be constructed
 from the end of an ethernet cable and a DB9F connector.

 − Changed all the MAIL instances in shell scripts into APCUPSD_MAIL.
 This helps keep separated the apcupsd specific shell variables from
 the generic $MAIL shell variable that points to the user's mailbox:

apcupsd User's Manual

New Features in 3.10.4 8

 riccardo at ao:~> echo $MAIL
 /var/spool/mail/riccardo
 riccardo at ao:~>

 An user reported that ./configure script transformed internal $MAIL
 executable program into her mailbox path. This may happen if the
 configure suite is broken (thing that I don't want to check further).
 That said, APCUPSD_MAIL now should always correctly point to the
 system default mail client program.
 − Made so that error_cleanup is a generic function called by the
 generic error handlers. Now if you want specific error_cleanup
 you don't need to write also specific error handlers, provided
 that error_cleanup don't accept parameters (i.e.
 specific_error_cleanup(void)) but if you want to have a specific
 error_cleanup with parameters you _must_ also write specific
 error_exit and error_out into which you will call the specific
 error_cleanup with parameters.
 − Made so that error_exit and error_out are generic handlers that
 can be assigned, if needed, to specific handlers by the main() of
 each program. If not, the Error* routines will use the generic
 versions in apclib.a.
 − Fixed wrong "true" usage in powerflute.
 − Cleaned up the terminate() functions.
 − Made DeviceVendor part of snmp DEVICE case insensitive.

−−−−> Release apcupsd−3.10.1 (16 Sep 2002)
 − Fixed a filling error with USB status dword.
 − Fixed autoconf check and dependances of −lpanel,etc with −lncurses.
 − Made more portable the apccontrol external scripts when calling the
 mailer (subject is now in the echo lines instead of relying on the
 presence of a −s switch on the mailer).
 − Added gentoo platform.
 − Added DESTDIR variable for platform packaging.
 − Fixed a off−by−one problem in events table.
 − Conditional compilation of old and new network code. Old network code
 disabled by default while new network code enabled by default.
 − Removed old src/apcnet.c.old, old implementation of old networking.

−−−−> Release apcupsd−3.10.0 (28 Jul 2002)
 − Added documentation for SNMP UPSes. Documented the use of
 −−kill−on−powerfail switch during shutdown.
 − SuSE 8.0 is now supported.
 − Added forward declaration of inet_pton and localtime_r when they
 are extraobj.
 − Added inet_pton function. Implementation from Internet Software
 Consortium.
 − Made sp_flags private to the dumb driver.
 − Can't SET/CLEAR multiple flags: do them one by one. Fixed this
 bug in SNMP driver.
 − Added 127A and 128A cables support for dumb UPSes.
 − Implemented killpower for PowerNet MIB.
 − Implemented the SNMP driver for APC's PowerNet MIB.
 − Restructured UPSINFO so that now all the flags are contained
 into the Status bitmap.
 − *BSD should compile cleanly again.
 − Source tree is now under CVS revision control.
 − Added support for listening on specific IP addresses/subnets in
 NIS server, from Troy.
 − Doc updates, from Kern.

apcupsd User's Manual

New Features in 3.10.4 9

−−−−> Release apcupsd−3.9.9 (18 May 2002)
 − Applied final Kern's patch.
 − Added a little program 'devicedbg' to help in debugging device
 drivers with gdb. To compile, 'make devicedbg' in src/.
 − Cygwin platform added (reorganized old cygwin files).
 − Darwin platform added.
 − compile line is 'gcc −c −g −O2 −I../include apcaction.c'.
 − reviewed all the platform makefiles.
 − use system libgd, searching for include files in system include dirs.
 − in case system does not have libgd, uses provided libgd.
 − put gd1.2 into master's contrib directory and a message if gd1.2
 is not present into src/gd1.2 (like default distribution will not)
 is issued at configure time to get gd1.2 from contrib and extract it
 into the src/ directory. Re−run config and all will be good and happy.
 − Sources reorganization.
 − Mandrake platform added.

How To Use This Manual

This is the manual for apcupsd, a daemon for communicating with UPSes (Uninterruptible Power Supplies)
made by American Power Corporation (APC). If you have an APC−made UPS, whether sold under the APC
nameplate or OEMed, and you want you get it working with a computer running Linux, Unix, or Windows
NT, you are reading the right document.

This manual is divided into parts which increase in technical depth as they go. If you have just bought a
state−of−the−art smart UPS with a USB or Ethernet interface, and you are running a current version of Red
Hat or SuSe Linux (8.0 or later), then apcupsd is very nearly plug−and−play and you will have to read only
the Basic User's Guide.

If your operating system is older, or if you have an old−fashioned serial−line UPS, you'll have to read about
legacy installation. If you need more details about administration for unusual situations (such as a
master/slave or multi−UPS setup) you'll need to read the section on advanced topics. Finally, there is a
Technical Reference section which gives full details on things like configuration file directives and
event−logging formats.

You should begin by reading the Quick Start instructions.

Basic User's Guide
Table of Contents

1. Planning Your Installation
Quick Start for Beginners
Supported Operating Systems, UPSes and Cables
Choosing a Configuration Type
Checking Out Your USB Subsystem

2. Building and Installing apcupsd
Installation from Binary Packages

Red Hat Linux
Microsoft Windows

Installation from Source
Verifying a Source Installation

apcupsd User's Manual

Basic User's Guide 10

Configure Options
Recommended Options for most Systems
Compilers and Options
Operating System Specifics

Alpha
Debian
FreeBSD
HPUX
NetBSD
OpenBSD
Red Hat Systems
Slackware
SuSE
Sun Solaris
Unknown System
Windows Systems with CYGWIN Installed

3. After Installation
Checking Your Configuration File
Arranging for Reboot on Power−Up
Making Sure apcupsd Is Running

4. Testing apcupsd
Process−Status Test
Logging Test
apcaccess Test
Communications Test
Simulated Power Fail Test
System Shutdown Test
Full Power Down Test
Shutdown Sequence
apctest

5. Troubleshooting Your Installation
Known Problems with USB UPSes

Reconnection does not clean up the lockfile
Power Off (killpower) of UPS Does Not Work
apcupsd Cannot Reconnect After a Reboot

6. Monitoring and Tuning your UPS
apcaccess

apcaccess status
apcaccess eprom

hid−ups and USB Specific Information
apcupsd Network Monitoring (CGI) Programs

Setting up and Testing the CGI Programs
multimon.cgi
upsstats.cgi
./upsstats.cgi
upsfstatus.cgi
Working Example
Client Test Program
A Tip from Carl Erhorn for Sun Systems
Credits
Security Issues

apcupsd User's Manual

Basic User's Guide 11

Configuring Your EEPROM
apcupsd No Longer Configures EEPROM
Using apctest to Configure Your EEPROM

7. Maintaining Your UPS
What Various People Have to Say about Batteries
Where Carl Suggests You Get Batteries

8. Frequently−Asked Questions
9. Apcupsd Bugs

Chapter 1. Planning Your Installation

Table of Contents

Quick Start for Beginners
Supported Operating Systems, UPSes and Cables
Choosing a Configuration Type
Checking Out Your USB Subsystem

Quick Start for Beginners

apcupsd is a complex piece of software, but most of its complexities are meant for dealing with older
hardware and operating systems. On current hardware and software getting it running should not be very
complicated.

The following is a help guide to the steps needed to get apcupsd set up and running as painlessly as possible.

1.
First, check to see if apcupsd supports your UPS and operating system.

2.
Second, plan your configuration type. If you have just one UPS and one computer, this is easy. If you
have more than one machine being served by the same UPS, or more than one UPS supplying power
to computers that are on the same local network, you have more choices to make,

3.
Third, figure out if you have one of the easy setups. If you have a USB UPS, and a USB−capable
recent Linux such as Red Hat or Suse at version 8.0, and you want to use one UPS with one computer,
that's an easy setup. APC supplies the cable needed to talk with that UPS along with the UPS. All you
need to do is check that your USB subsystem is working; if so, you can go to the build and install
step.

4.
If you have a UPS designed to communicate via SNMP over Ethernet, that is also a relatively easy
installation. It's in Advanced Topics mainly because it's an unusual situation.

5.
If you have a UPS that communicates via an old−fashioned RS232C serial interface, your life may be
about to get interesting.

a.

apcupsd User's Manual

Chapter 1. Planning Your Installation 12

If you have a vendor−supplied cable, find out what cable type you have by looking on the flat
ends of the cable for a number, such as 940−0020A, stamped in the plastic. Check the cables
column of the table of types to see if it's a supported type.

b.
If you don't have a vendor−supplied cable, or your type is not supported, you may have to
build one yourself. Here is hoping you are good with a soldering iron!

6.
Now you are ready to read the Building and Installing section of the manual and follow those
directions. If you are installing from an RPM or some other form of binary package, this step will
probably consist of executing a single command.

7.
Tweak your /etc/apcupsd/apcupd.conf file as necessary. Often it will not be.

8.
Change the BIOS settings on your computer so that boots up every time it gets power. (This is not the
default on most systems.)

9.
To verify that your UPS is communicating with your computer and will do the right thing when the
power goes out, read and follow the instructions in the Testing section.

10.
If you run into problems, read the Troubleshooting section of this manual.

11.
If you still need help, send a message to the developer's email list <apcupsd−users at
lists.sourceforge.net> describing your problem, what version of apcupsd you are using,
what operating system you are using, and anything else you think might be helpful.

12.
Read the manual sections on monitoring and maintaining your UPS.

Supported Operating Systems, UPSes and Cables

The apcupsd maintainers develop it under Red Hat and SuSe Linux; those ports are, accordingly, the most up
to date and best tested. There are enough Debian Linux users that that port is also generally pretty fresh.
Slackware Linux is also fully supported.

apcupsd has also been ported to FreeBSD, NetBSD, OpenBSD, HP/UX, Solaris, Alpha Unix and the Cygwin
Unix emulation under Windows. It is quite likely to work on those systems, though the port may occasionally
get stale and require minor tweaking.

In the section called â€œOperating System Specificsâ€� you'll find operating−system−specific tips for
building and configuring apcupsd.

You can generally count on your UPS being supported if it has either an Ethernet−connected SNMP interface
or a USB interface with an APC−supplied cable.

apcupsd User's Manual

Supported Operating Systems, UPSes and Cables 13

mailto:apcupsd-users at lists.sourceforge.net
mailto:apcupsd-users at lists.sourceforge.net

The "UPSTYPE Keyword" field is the value you will put in your /etc/apcupsd/apcupd.conf file to
tell apcupsd what type of UPS you have. We'll describe the possible values here, because they're a good way
to explain your UPS's single most important interface property â€” the kind of protocol it uses to talk with its
computer.

dumb
A dumb or voltage−signalling UPS and its computer communicate through the signal lines on an
RS232C serial connection. Not much can actually be conveyed this way other than an order to shut
down. Voltage−signalling UPses are obsolete; you are unlikely to encounter one other than as legacy
hardware.

apcsmart
An apcsmart UPS and its computer also communicate through an RS232C serial connection, but they
actually use it as a character channel (2400bps, 8 data bits, 1 stop bit, no parity) and pass commands
back and forth in a primitive language resembling modem−control codes. The different APC UPSs all
use closely related firmware, so the language doesn't vary much (later versions add more commands).
This class of UPS is in decline, rapidly being replaced in APC's product line by USB UPSes.

usb
A USB UPS speaks a universal well defined control language over a USB wire. Most of APC's lineup
now uses this method as of late 2003, and it seems likely to completely take over in their low− and
middle range. Other manufacturers (Belkin, Tripp−Lite, etc.) are moving the same way, though with a
different control protocol for each manufacturer. As long as USB hardware can be mass−produced
more cheaply than an Ethernet card, most UPSes are likely to go this design route.

net
Some higher−end APC models can declare an IP address and speak Ethernet. These use a different
command format than apcsmart, token−oriented and looking a bit more like a classical Internet
protocol.

snmp
SNMP UPSes communicate via an Ethernet NIC and firmware that speaks Simple Network
Management Protocol.

APC Model
UPSTYPE
Keyword

Cables Supported Status

BackUPS dumb
Simple−Custom[a],
940−0020B, 940−0020C,
940−0119A, 940−0023A

Supported

BackUPS Office, BackUPS ES dumb 940−0119A Supported

BackUPS CS and possibly ES models
(serial mode)

dumb 940−0128A Supported

ShareUPS Basic Port dumb
940−0020B, 940−0020C,
940−0023A

Supported

BackUPS CS (serial mode) apcsmart Smart Custom RJ45[a] Supported

BackUPS Pro, Smarter BackUPS Pro apcsmart 940−0095A Supported

SmartUPS, SmartUPS VS[b], PowerStackapcsmart Smart−Custom[a], 940−0024C Supported

apcupsd User's Manual

Supported Operating Systems, UPSes and Cables 14

450, Matrix UPS, ShareUPS Advanced
Port

BackUPS CS USB, Pro USB, and ES
USB models including RS/XS 1000 and
RS/XS 1500.

usb
USB (using APC cables
940−0127A/B)

Supported in
version >=3.9.4

SmartUPS USB usb USB (using APC cable)
Supported,
version >=3.9.8

All SNMP−capable models snmp Ethernet Supported
[a] This cable is not an APC product. You have to build it yourself using the instructions in Chapter 19.

[b] It has not been confirmed that the cable shipped with the VS is a 940−0095.

Choosing a Configuration Type

There are three major ways of running apcupsd on your system. The first is a standalone configuration where
apcupsd controls a single UPS, which powers a single computer. This is the most common configuration. If
you're working with just one machine and one UPS, skip the rest of this section.

Your choices become more interesting if you are running a small cluster or a big server farm. Under those
circumstances, it may not be possible or even desirable to pair a UPS with every single machine. apcupsd
supports some alternate arrangements.

The second type of configuration is a master/slave configuration, where one UPS powers several computers,
each of which runs a copy of apcupsd. The computer that controls the UPS is called the master, and the other
computers are called slaves. The master copy of apcupsd communicates with and controls the slaves via an
Ethernet connection. This type of configuration may be appropriate for a small cluster of machines.

The third configuration (new with version 3.8.3), is where a single computer controls multiple UPSes. In this
case, there are several copies of apcupsd on the same computer, each controlling a different UPS. One copy of
apcupsd will run in standalone mode, and the other copy or copies will normally run in master/slave mode.
This type of configuration may be appropriate for large server farms that use one dedicated machine for
monitoring and diagnostics

Here is a diagram that summarizes the possibilities:

Figure 1.1. Configuration types.

apcupsd User's Manual

Choosing a Configuration Type 15

If you decide to set up one of these more complex configurations, see the Advanced Topics section for details.

Checking Out Your USB Subsystem

You can skip this section if your UPS has an Ethernet or RS232−C interface. If it has a USB interface, you
need to make sure that your USB subsystem can see the UPS. On a Linux system this is easy, just do this from
a shell prompt:

cat /proc/bus/usb/devices

apcupsd User's Manual

Checking Out Your USB Subsystem 16

This information is updated by the kernel whenever a device is plugged in or unplugged, irrespective of
whether apcupsd is running or not. To interpret the codes in this file, please see
http://www.linuxhq.com/kernel/v2.4/doc/usb/proc_usb_info.txt.html

You should get some output back that includes something like this from ESR's site, featuring an RS 1000:

T: Bus=02 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=051d ProdID=0002 Rev= 1.06
S: Manufacturer=American Power Conversion
S: Product=Back−UPS RS 1000 FW:7.g3 .D USB FW:g3
S: SerialNumber=JB0308036505
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr= 24mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=hid

Here are two more ample entries from Kern Sinbbald. The first features a Back−UPS 350 direct connected
USB device:

T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=051d ProdID=0002 Rev= 1.00
S: Manufacturer=American Power Conversion
S: Product=Back−UPS 350 FW: 5.2.I USB FW: c1
S: SerialNumber=BB0115017954
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr= 30mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=hid
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl= 10ms

The second features an IOgear USB−to−serial adaptor that runs my serial SmartUPS 1000 :

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0557 ProdID=2008 Rev= 0.01
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=03(Int.) MxPS= 10 Ivl= 1ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms

Note that the IOgear device is using the serial driver (the I: line) while the Back−UPS 350 is using the hid
driver.

In general, f you see your UPS model in the S field, you're done. You can skip the rest of this section and go
straight to building and installing.

If it doesn't show, check the obvious things; the UPS must be powered on, and a cable must be properly seated
in both the data port of the UPS and one of your machine's USB ports. Many UPSes have phone ports to
provide surge protection for phones or modems â€” make sure you haven't plugged your USB cable into one
of those rather than the data port (which will usually be near the top edge of the case.)

Also, ensure that the correct drivers are loaded. Under Linux, you can check this out easily by examining the
right file in the /proc system. Here's how you can do that:

esr@grelber$ cat /proc/bus/usb/drivers
 usbdevfs

apcupsd User's Manual

Checking Out Your USB Subsystem 17

http://www.linuxhq.com/kernel/v2.4/doc/usb/proc_usb_info.txt.html

 hub
 96−111: hiddev
 hid

A USB UPS needs all of these drivers â€” the USB device filesystem, the USB hub, the Human Interface
Device subsysten driver, and the Human Interface Device driver.

For the IOGear serial USB connection, you need:

usbcore
usbserial
pl2303

Finally, check that appropriate USB devices exist. On a Red Hat system you can do this:

esr@grelber$ ls /dev/usb/h*
/dev/usb/hiddev0 /dev/usb/hiddev12 /dev/usb/hiddev2 /dev/usb/hiddev6
/dev/usb/hiddev1 /dev/usb/hiddev13 /dev/usb/hiddev3 /dev/usb/hiddev7
/dev/usb/hiddev10 /dev/usb/hiddev14 /dev/usb/hiddev4 /dev/usb/hiddev8
/dev/usb/hiddev11 /dev/usb/hiddev15 /dev/usb/hiddev5 /dev/usb/hiddev9

This will tell you that the Human Interface Device nodes, one of which apcupsd will use to talk with the UPS,
exist. On other Linuxes the layout will be slightly different; the hiddev devices will usually live in a
/dev/usb/hid/ subdirectory. If these devices don't exist, you may need to run
<apcupsd−src>/examples/make−hiddev to create them.

Now build and run the hid−ups test program. You do not have to configure and build the rest of apcupsd to do
this. To build hid−ups enter:

cd <apcupsd−src>/examples
make hid−ups

There should be no errors. Now assuming that everything has gone well to this point and that you have
connected your USB UPS, enter:

./hid−ups

It should print a sample report of the information that it has obtained from your UPS. CAUTION! if you have
a 2.4.x Linux kernel do not run two copies of this program at the same time, or your kernel will freeze. The
report that is printed should look very similar to the report in <src>/hid−ups.rpt. If the program reports
that the device was not found ensure that all the appropriate modules are loaded (as described earlier), then
unplug your UPS and plug it back in. This should permit the kernel to recognize the UPS.

If ./hid−ups tells you "No permission, try this as root", you know what to try. If it says "Couldn't find USB
UPS device, check your /dev.", then it is very unlikely that apcupsd will work. You probably need to run the
script "make−hiddev" before continuing.

If all there things check out and you still can't see the UPS, something is more seriously wrong than this
manual can cover â€” find expert help. If you are unable to list USB devices or drivers, you kernel may not be
USB−capable and that needs to be fixed.

apcupsd User's Manual

Checking Out Your USB Subsystem 18

Chapter 2. Building and Installing apcupsd

Table of Contents

Installation from Binary Packages
Red Hat Linux
Microsoft Windows

Installation from Source
Verifying a Source Installation
Configure Options
Recommended Options for most Systems
Compilers and Options
Operating System Specifics

Alpha
Debian
FreeBSD
HPUX
NetBSD
OpenBSD
Red Hat Systems
Slackware
SuSE
Sun Solaris
Unknown System
Windows Systems with CYGWIN Installed

Installation from Binary Packages

Red Hat Linux

For Red Hat systems, apcupsd is available in binary RPM format. This is the simplest way to install. If you
have no previous version of apcupsd on your machine and are creating a standalone configuration, simply
install the RPM with a normal rpm −ihv command. You're done, and can now skip the rest of this chapter and
go straight to tweaking your run−time configuration file.

If you have a previous installation, you can upgrade with a normal rpm −Uhv, but this may not upgrade the
halt script. It may be better to do the upgrade as a remove (rpm −e) foll;owed by a fresh install (rpm −ihv).

After installation of the binary RPM, please verify carefully that /etc/rc.d/init.d/halt was properly
updated and contains new script lines flagged with ***APCUPSD***.

Since there is no standard location for cgi−bin, the rpm will place the binary CGI programs in the directory
/etc/apcupsd/cgi. To actually use them, you must copy or move them to your actual cgi−bin directory,
which on many systems is located in /home/httpd/cgi−bin.

Microsoft Windows

If you have a binary release of the Win32 apcupsd, please see the instructions in the Advanced Topics section
of this manual.

apcupsd User's Manual

Chapter 2. Building and Installing apcupsd 19

Installation from Source

Installation from source might have to be be done different ways depending on what system you are running.
The basic procedure involves getting a source distribution, running the configuration, rebuilding, and
installing.

The basic installation from a tar source file is rather simple:

1.
Unpack the source code from its tar archive.

2.
Go into the directory containing the source code.

3.
Run ./configure (with appropriate options as described below)

4.
make

5.
su (i.e. become root)

6.
Stop any running instance of apcupsd. The command to do this will look like
<system−dependent−path>/apcupsd stop

7.
uninstall any old apcupsd This is important since the default install locations may have changed.

8.
make install

9.
edit your /etc/apcupsd/apcupsd.conf file if necessary

10.
ensure that your halt script is properly updated

11.
Start the new apcupsd with: <system−dependent−path>/apcupsd start

If all goes well, the ./configure will correctly determine which operating system you are running and
configure the source code appropriately. configure currently recognizes the systems listed below in the the
section called â€œOperating System Specificsâ€� section of this chapter and adapts the configuration
appropriately. Check that the configuration report printed at the end of the configure process corresponds to
your choice of directories, options, and that it has correctly detected your operating system. If not, redo the
configure with the appropriate options until your configuration is correct.

Please note that a number of the configure options preset apcupsd.conf directive values in an attempt to

apcupsd User's Manual

Installation from Source 20

automatically adapt apcupsd as best possible to your system. You can change the values in apcupsd.conf
at a later time without redoing the configuration process by simply editing the apcupsd.conf file.

Other configuration options can be used to set up the installation of HTML documentation and optional
modules, notably the CGI interface that enables the UPS state to be queried via the Web and the optional
powerflute curses−based control panel. Still others enable features such as thread support. You will find a
complete reference later in this chapter.

In general, you will probably want to supply a more elaborate configure statement to ensure that the modules
you want are built and that everything is placed into the correct directories.

On Red Hat, a fairly typical configuration command would look like the following:

CFLAGS="−g −O2" LDFLAGS="−g" ./configure \
 −−enable−usb \
 −−with−serial−dev=/dev/usb/hiddev[0−15] \
 −−with−upstype=usb \
 −−with−upscable=usb \
 −−prefix=/usr \
 −−sbindir=/sbin \
 −−with−cgi−bin=/var/www/cgi−bin \
 −−enable−cgi \
 −−with−css−dir=/var/www/docs/css \
 −−with−log−dir=/etc/apcupsd \
 −−enable−pthreads \
 −−enable−powerflute

On other Linux systems, the −−with−serial−dev may need to be /dev/usb/hid/hiddev[0−15].
The [0−15] is not a typo, but should be entered exactly as shown. This is because the UPS can change device
numbers while it is running. Every time there is a blip or slowdown on the USB line, the kernel will invalidate
the UPS connection, then a few moments later, it will reconnect but with a different device number. Not very
Unix−like, but that is what happens. This bizarre syntax allows apcupsd to try a range of devices until it finds
or re−finds the UPS device.

By default, make install will install the executable files in /sbin, the manuals in /usr/man, and the
configuration and script files in /etc/apcupsd. In addition, if your system is recognized, certain files such
as the startup script and the system halt script will be placed in appropriate system directories (usually
subdirectories of /etc/rc.d).

Verifying a Source Installation

There are a number of things that you can do to check if the installation (make install) went well. The fist is to
check where the system has installed apcupsd using which and whereis. On my Red Hat system, you should
get the following (lines preceded with a $ indicate what you type):

$ which apcupsd
/sbin/apcupsd
$ whereis apcupsd
apcupsd: /sbin/apcupsd /etc/apcupsd /etc/apcupsd.conf
/etc/apcupsd.status /usr/man/man8/apcupsd.8.gz
/usr/man/man8/apcupsd.8

If you find an apcupsd in /usr/sbin, /usr/local/sbin, /usr/lib, or another such directory, it is

apcupsd User's Manual

Verifying a Source Installation 21

probably a piece of an old version of apcupsd that you can delete. If you are in doubt, delete it, then rerun the
make install to ensure that you haven't deleted anything needed by the new apcupsd. Please note that the files
specified above assume the default installation locations.

As a final check that the make install went well, you should check your halt script (in /etc/rc.d on SuSE
systems, and in /etc/rc.d/init.d on Red Hat systems) to see that the appropriate lines have been
inserted in the correct place. Modification of the halt script is important so that at the end of the shutdown
procedure, apcupsd will be called again to command the UPS to turn off the power. This should only be done
in a power failure situation as indicated by the presence of the /etc/powerfail file, and is necessary if
you want your machine to automatically be restarted when the power returns. On a Red Hat system, the lines
containing the # ***apcupsd*** should be inserted just before the final halt command:

Remount read only anything that's left mounted.
#echo "Remounting remaining filesystems (if any) readonly"
mount | awk '/ext2/ { print $3 }' | while read line; do
 mount −n −o ro,remount $line
done

See if this is a powerfail situation. # ***apcupsd***
if [−f /etc/apcupsd/powerfail]; then # ***apcupsd***
 echo # ***apcupsd***
 echo "APCUPSD will now power off the UPS" # ***apcupsd***
 echo # ***apcupsd***
 /etc/apcupsd/apccontrol killpower # ***apcupsd***
 echo # ***apcupsd***
 echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
 echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
 echo # ***apcupsd***
fi # ***apcupsd***

Now halt or reboot.
echo "$message"
if [−f /fastboot]; then
 echo "On the next boot fsck will be skipped."
elif [−f /forcefsck]; then
 echo "On the next boot fsck will be forced."
fi

The purpose of modifying the system halt files is so that apcupsd will be recalled after the system is in a
stable state. At that point, apcupsd will instruct the UPS to shut off the power. This is necessary if you wish
your system to automatically reboot when the mains power is restored. If you prefer to manually reboot your
system, you can skip this final system dependent installation step by specifying the
−−disable−install−distdir option on the ./configure command (see below for more details).

The above pertains to Red Hat systems only. There are significant differences in the procedures on each
system, as well as the location of the halt script. Also, the information that is inserted in your halt script varies
from system to system. Other systems such as Solaris require you the make the changes manually, which has
the advantage that you won't have any unpleasant surprises in your halt script should things go wrong. Please
consult the specific system dependent README files for more details.

Please note that if you install from RPMs for a slave machine, you will need to remove the changes that the
RPM install script made (similar to what is noted above) to the halt script. This is because on a slave machine
there is no connection to the UPS, so there is no need to attempt to power off the UPS. That will be done by
the master.

apcupsd User's Manual

Verifying a Source Installation 22

Configure Options

All the available configure options can be printed by entering:

./configure −−help

When specifying options for ./configure, if in doubt, don't put anything, since normally the configuration
process will determine the proper settings for your system. The advantage of these options is that it permits
you to customize your version of apcupsd. If you save the ./configure command that you use to create
apcupsd, you can quickly reset the same customization in the next version of apcupsd by simply re−using the
same ./configure command.

The following command line options are available for configure to customize your installation.

−−prefix=<path>
This defines the directory for the non−executable files such as the manuals. The default is /usr.

−−sbindir=<path>
This defines the directory for the executable files such as apcupsd. The default is /sbin. You may
be tempted to place the executable files in /usr/sbin or /usr/local/sbin. Please use caution
here as these directories may be unmounted during a shutdown and thus may prevent the halt script
from calling apcupsd to turn off the UPS power. Though your data will be protected, in this case, your
system will probably not be automatically rebooted when the power returns.

−−enable−powerflute
This option enables the building of the powerflute executable, which is a ncurses based program to
monitor the UPS. This program is not necessary for the proper execution of apcupsd.

−−enable−cgi
This enables the building of the CGI programs that permit Web browser access to apcupsd data. This
option is not necessary for the proper execution of apcupsd.

−−with−cgi−bin=<path>
The with−cgi−bin configuration option allows you to define the directory where the CGI programs
will be installed. The default is /etc/apcupsd, which is probably not what you want.

−−with−css−dir=<path>
This option allows you to specify where you want apcupsd to put the Cascading Style Sheet that goes
with the multimoncss.cgi CGI program.

−−enable−master−slave
Turns on the master/slave networking code (default). This is sometimes referred to as the old
master/slave code

−−enable−apcsmart
Turns on generation of the APC Smart driver (default).

−−enable−dumb
Turns on generation of the dumb signalling driver code (default).

apcupsd User's Manual

Configure Options 23

−−enable−usb
Turns on generation of the Linux (only) USB driver code. By default this is disabled.

−−enable−net
Turns on generation of the NIS network driver for slaves. This is an alternative to master/slave code.
For the master, this code should be disabled. For each slave, this is the only driver needed. This driver
works by reading the information from the the configured master using the NIS (Network Information
Services) interface.

−−enable−snmp
Turns on generation of the SNMP driver. This driver will control the computer by reading the UPS
information over the network assuming you are running SNMP. By default this is disabled.

−−enable−test
This turns on a test driver that is used only for debugging. By default it is disabled.

−−enable−nis
Turns on the Network Information Server (NIS) code within apcupsd. This is enabled by default. If
you do not want to access the status of the UPS from the network and you are not controlling any
slaves via NIS (enable−net), this can be disabled.

−−enable−pthreads
This option enables pthreads support causing apcupsd to be built as a threaded program rather than
forking to create separate processes. apcupsd built in this fashion is more efficient that the standard
version being one third the data size and less overhead locking and coping shared memory. This
option is highly recommended for Windows builds.

−−with−libwrap=<path>
This option when enabled causes apcupsd to be built with the TCP WRAPPER library for enhanced
security. In most cases, the <path> is optional since configure will determine where the libraries are
on most systems.

−−with−nologin=<path>
This option allows you to specify where apcupsd will create the nologin file when logins are
prohibited. The default is /etc

−−with−pid−dir=<path>
This option allows you to specify where apcupsd will create the process id (PID) file to prevent
multiple copies from running. The default is system dependent but usually /var/run.

−−with−log−dir=<path>
This option allows you to specify where apcupsd will create the EVENTS and STATUS log files. The
default is /etc/apcupsd. This option simply sets the default of the appropriate path in the
apcupsd.conf file, which can be changed at any later time.

−−with−lock−dir=<path>
This option allows you to specify where apcupsd will create the serial port lock file. The default is
systemdependent but usually /var/lock. This option simply sets the appropriate path in the
apcupsd.conf file, which can be changed at any later time.

−−with−pwrfail−dir=<path>

apcupsd User's Manual

Configure Options 24

This option allows you to specify where apcupsd will create the powerfail file when a power
failure occurs. The default is system dependent but usually /etc.

−−with−serial−dev=<device−name>
This option allows you to specify where apcupsd will look for the serial device that talks to the UPS.
The default is system dependent, but often /dev/ttyS0. This option simply sets the appropriate
device name in the apcupsd.conf file, which can be changed at any later time.

−−with−nis−port=<port>
This option allows you to specify what port apcupsd will use for the Network Information Server (the
CGI programs). The default is system dependent but usually 3551 because that port has been
officially assigned to apcupsd by the IANA. This option simply sets the appropriate port in the
apcupsd.conf file, which can be changed at any later time.

−−with−nisip=<IP−Address>
This option allows you to specify the value that will be placed on then NISIP directive in the
configuration file. The default is 0.0.0.0. No checking is done on the value entered, so you must
ensure that it is a valid IP address.

−−with−net−port=<port>
This option allows you to specify what port apcupsd will use for Master and Slave communications.
The default is system dependent but usually 6666. This option simply sets the appropriate port in the
apcupsd.conf file, which can be changed at any later time.

−−with−upstype=<type>
This option allows you to specify the type of UPS that will be connected to your computer. The
default is: smartups. This option simply sets the appropriate UPS type in the apcupsd.conf file,
which can be changed at any later time.

−−with−upscable=<path>
This option allows you to specify what cable you are using to connect to the UPS. The default is:
smart. This option simply sets the appropriate UPS cable in the apcupsd.conf file, which can be
changed at any later time.

−−disable−install−distdir
This option modifies the apcupsd Makefiles disable installation of the distribution (platform)
directory. Generally, this used to do a full installation of apcupsd except the final modification of the
operating system files (normally /etc/rc.d/halt, etc.). This is useful if your operating system is
not directly supported by apcupsd or if you want to run two copies of apcupsd on the same system.
This option can also be used by those of you who prefer to manually reboot your system after a power
failure or who do not want to modify your system halt files.

Recommended Options for most Systems

For most systems, we recommend the following options:

./configure −−prefix=/usr −−sbindir=/sbin

and you can optionally build and install the CGI programs as follows:

./configure −−prefix=/usr −−sbindir=/sbin \

apcupsd User's Manual

Recommended Options for most Systems 25

 −−enable−cgi −−with−cgi−bin=/home/httpd/cgi−bin

Compilers and Options

Some systems require unusual options for compilation or linking that the ./configure script does not know
about. You can specify initial values for variables by setting them in the environment. Using a
Bourne−compatible shell, you can do that on the command line like this:

CFLAGS="−O2 −Wall" LDFLAGS= ./configure

Or on systems that have the env program, you can do it like this:

env CPPFLAGS=−I/usr/local/include LDFLAGS=−s ./configure

Or for example on the Sun Solaris system, you can use:

setenv CFLAGS −O2
setenv LDFLAGS −O
./configure

Operating System Specifics

With the exception of Linux SuSe and Linux Red Hat systems used by the developers, we rely on users to
help create installation scripts and instructions as well as to test that apcupsd runs correctly on their system.
As you can imagine, most of these people are system administrators rather than developers so they are very
busy and don't always have time to test the latest releases. With that in mind, we believe that you will find that
a lot of very valuable work has been already done to make your installation much easier (and probably totally
automatic).

Below, you will find a list of operating systems for which we have received installation files:

•
Alpha

•
Debian

•
FreeBSD

•
HPUX

•
NetBSD

•
OpenBSD

•
Red Hat

•

apcupsd User's Manual

Compilers and Options 26

Slackware

•
SuSE

•
Solaris

•
unknown

•
Win32

Alpha

The Alpha V4.0 version of apcupsd builds without compiler errors with gcc version 2.95.2. It is unlikely that
the native Alpha compiler will work because of varargs differences. Unless you are a system guru, we
recommend that you connect your UPS to the second serial port /dev/tty01 to avoid conflicts with the
console device.

DEVICE /dev/tty01

In addition, you should ensure serial port lock file in apcupsd.conf is defined as:

LOCKFILE /var/spool/locks

Unlike the Linux systems, the system halt routine is located in /sbin/rc0, so after the make install, please
check that this file has been correctly updated.

The start/stop script can be found in:

/sbin/init.d/apcupsd

Debian

This port is complete and is operation by several users. Since Debian build and install procedures are
somewhat particular, we have put the extra Debian information into the following two subdirectories:
<src>/distributions/debian/examples/ and
<src>/distributions/debian/packageinfo

You can also find the official Debian packages on the Debian site at:

•
http://packages.debian.org/stable/admin/apcupsd.html

•
http://packages.debian.org/testing/admin/apcupsd.html

•
http://packages.debian.org/unstable/admin/apcupsd.html

apcupsd User's Manual

Alpha 27

http://packages.debian.org/stable/admin/apcupsd.html
http://packages.debian.org/testing/admin/apcupsd.html
http://packages.debian.org/unstable/admin/apcupsd.html

FreeBSD

This port is complete and is being used by several users. As of version 3.8.3, we do not recommend that you
compile apcupsd with pthreads enabled. This is because the current FreeBSD implementation of pthreads runs
as a single process, and thus is less efficient (consumes more CPU time) than the forking version of apcupsd.
We hope to rectify this in a future version by using the FreeBSD LinuxThreads implementation of pthreads.

On the FreeBSD OS, there is no known way for a user program to get control when all the disks are synced.
This is needed for apcupsd to be able to issue the killpower command to the UPS so that the UPS shuts off the
power. To accomplish the same thing on FreeBSD systems, make sure you have a SmartUPS and that your
UPS shutdown grace period is set sufficiently long so that you system will power down (usually 2 minutes),
the use the −−kill−on−powerfail option on the apcupsd command line.

HPUX

We have no reports from testing this yet on version 3.8.4, but worked fine on 3.8.1

NetBSD

Submitted during development of 3.8.2, this should be a complete distribution. Please read the comments on
the pthreads implementation in the FreeBSD section above as they may apply equally to OpenBSD.

OpenBSD

Ensure that you read the distributions/openbsd/README file before running apcupsd. There are
some critical differences in how the OpenBSD implementation operates when the UPS batteries are
exhausted. Failure to take this into account may result in the system not being fully halted when power is lost.
Please read the comments on the pthreads implementation in the FreeBSD section above as they may apply
equally to OpenBSD.

Red Hat Systems

Red Hat systems are fully supported, and by following the standard installation instructions given above, you
should experience few or no problems.

Slackware

Slackware systems are fully supported, and by following the standard installation instructions given above,
you should experience few or no problems.

SuSE

SuSE systems are fully supported, and by following the standard installation instructions given above, you
should experience few or no problems.

Sun Solaris

Please read this before attempting to compile or install the beta software. It contains important information
that will make your efforts easier.

apcupsd User's Manual

FreeBSD 28

If you find bugs, or run into problems that seem to be related to the version of Solaris that you run, please feel
free to contact the maintainers by email, or through the development mailing list. We'll attempt to help with
problems getting the beta running, although we can't promise a quick response.

As always, remember testing UPSes can be hazardous to you system, and, apcupsd may contain bugs that can
damage your system and data files! You must accept all responsibility for running this software. An
unexpected power−off of a running system can be a disaster. As always, make backups of any critical
information before you install this software.

Remember, we told you. we'll listen sympathetically if you lose data, but there will be nothing we can do to
help you.

Please read the general installation instructions given above before continuing on with these Solaris−specific
instructions. Then come back and read this section before attempting to build the package.

For building the system, we suggest that you run the configure and make processes as your normal UNIX user
ID. The make install must be run as root. But if your normal ID has an environment setup for using the C
compiler, it's simpler to do that than to set up root to have the correct environment.

Normally, we support the GCC compiler, but we have also attempted to support the Solaris workshop
compilers and EGCS compilers. Please be aware that if you do not use GCC, you may experience a few
problems.

Whichever compiler you do have, please insure that you can execute the compiler from the command line
before running configure. If you do not have an environment setup to run the compiler first, configure will
fail.

Before running ./configure, please be sure that you do not have /usr/ucb on your path. This may cause the
./configure to choose the wrong shutdown program. If ./configure detects that /usr/usb is on your path, it will
print a warning message. Please follow the advice to avoid shutdown problems.

Your normal UNIX user ID must own the source tree directories, and you must have the normal development
tools in your path. This includes make, the compiler, the M4 preprocessor, the linker, and ar or ranlib. If the
user you are logged in as can compile and link a C program from a source file, then you have all the required
tools available.

You will want to install the executables in a directory that remains mounted during the shutdown. Solaris will
unmount almost everything except the root directories. Since the ability to power the UPS off requires access
to the executable programs, they need to be in a directory that will never be unmounted. And since they
should also be in a directory that normal users cannot get into, /sbin is the default. However, please be
aware that if you want to follow Sun's filesystem conventions you would use the following:

./configure \
 −−prefix=/opt/apcupsd \
 −−sbindir=/etc/opt/apcupsd/sbin \
 −−sysconfdir=/etc/opt/apcupsd \
 −−with−cgi−bin=/opt/apcupsd/cgi−bin

The way to setup the /sbin directory as the executables directory is to pass configure the −−sbindir=/sbin
option. No other arguments should be required, and your setup and platform should be detected automatically
by configure.

apcupsd User's Manual

FreeBSD 29

Once you have run configure, you will need to do a make. Once the make has completed with no errors, you
must su to root to complete the install. After the su, you may not have a path to the make program anymore. In
that case, you should do the make install step as:

/usr/ccs/bin/make install

Once the install completes, you must edit the /sbin/rc0 script as detailed below, then exit from the su'ed shell.

In order to support unattended operation and shutdown during a power failure, it's important that the UPS
remove power after the shutdown completes. This allows the unattended UPS to reboot the system when
power returns by re−powering the system. Of course, you need autoboot enabled for your system to do this,
but all Solaris systems have this by default. If you have disabled this on your system, please re−enable it.

To get the UPS to remove power from the system at the correct time during shutdown, i.e., after the disks
have done their final sync, we need to modify a system script. This script is /sbin/rc0.

We do not have access to every version of Solaris, but we believe this file will be almost identical on every
version. Please let us know if this is not true.

At the very end of the /sbin/rc0 script, you should find lines just like the following:

unmount file systems. /usr, /var and /var/adm are not unmounted by umountall
because they are mounted by rcS (for single user mode) rather than
mountall.
If this is changed, mountall, umountall and rcS should also change.
/sbin/umountall
/sbin/umount /var/adm >/dev/null 2>&1
/sbin/umount /var >/dev/null 2>&1
/sbin/umount /usr >/dev/null 2>&1

echo 'The system is down.'

We need to insert the following lines just before the last 'echo':

#see if this is a powerfail situation
if [−f /etc/apcupsd/powerfail]; then
 echo
 echo "APCUPSD will power off the UPS"
 echo
 /etc/apcupsd/apccontrol killpower
 echo
 echo "Please ensure that the UPS has powered off before rebooting"
 echo "Otherwise, the UPS may cut the power during the reboot!!!"
 echo
fi

We have included these lines in a file called rc0.solaris in the distributions/sun subdirectory of the
source tree. You can cut and paste them into the /sbin/rc0 file at the correct place, or yank and put them using
vi or any other editor. Note that you must be root to edit this file.

You must be absolutely sure you have them in the right place. If your /sbin/rc0 file does not look like the
lines shown above, do not modify the file. Instead, email a copy of the file to the maintainers, and we will
attempt to figure out what you should do. If you mess up this file, the system will not shut down cleanly, and
you could lose data. Don't take the chance.

apcupsd User's Manual

FreeBSD 30

This feature has only been tested with APC SmartUPS models. If you do not have a SmartUPS, you will be
one of the first testers to try this feature. Please send email to let us know if it works with your UPS model,
what model you have, and if possible, the event logs located in /etc/apcupsd. We'd be very interested in
your results, and would be glad to work with you to get this feature working correctly with all the APC
models. A detailed description of the screen output during the shutdown would be very helpful if you see
problems.

You will then need to make the normal changes to the /etc/apcupsd/apcupsd.conf file. This file
contains the configuration settings for the package. It is important that you set the values to match your UPS
model and cable type, and the serial port that you have attached the UPS to. People have used both
/dev/ttya and /dev/ttyb with no problems. You should be sure that logins are disabled on the port you
are going to use, otherwise you will not be able to communicate with the UPS. If you are not sure that logins
are disabled for the port, run the 'admintool' program as root, and disable the port. The 'admintool' program is
a GUI administration program, and required that you are running CDE, OpenWindows, or another XWindows
program such as KDE.

Solaris probes the serial ports during boot, and during this process, it toggles some handshaking lines used by
dumb UPSes. As a result, particularly for simple signalling "dumb" UPSes it seems to kick it into a mode that
makes the UPS think it's either in a calibration run, or some self−test mode. Since at this point we are really
not communicating with the UPS, it's pretty hard to tell what happened. But it's easy to prevent this, and you
should. Disconnect the UPS, and boot the system. When you get to a login prompt, log in as root. Type the
following command:

eeprom com1−noprobe=true

or

eeprom com2−noprobe=true

depending on which com port your UPS is attached to. Then sync and shutdown the system normally, reattach
the UPS, and reboot. This should solve the problem. However, we have some reports that recent versions of
Solaris (7 & 8) appear to have removed this eeprom option and there seems to be no way to suppress the serial
port probing during boot.

At this point, you should have a complete installation. The daemon will load automatically at the next boot.
Watch for any error messages during boot, and check the event logs in /etc/apcupsd. If everything looks
OK, you can try testing the package by removing power from the UPS. NOTE! if you have a
voltage−signalling UPS, please run the first power tests with your computer plugged into the wall rather than
into the UPS. This is because dumb serial−port UPSes have a tendency to power off if your configuration or
cable are not correct.

As a user, your input is very helpful in solving problems with the package, and providing suggestions and
future directions for the development of the package. We are striving to provide a useful package that works
across all platforms, and welcome your feedback.

Best regards, and thanks for your interest and help, The Apcupsd Development Team.

Unknown System

During the ./configure, if apcupsd does not find one of the systems for which it has specific installation
programs, it will set the Operating System to unknown and will use the incomplete installation scripts that are

apcupsd User's Manual

Unknown System 31

in <src>/distributions/unknown/. You will be on your own, or you can ask the developers list
(apcupsd−users at lists.sourceforge.net) for installation instructions. This directory also contains a hint file for
Linux From Scratch, which could be helpful for other systems as well.

Windows Systems with CYGWIN Installed

If you wish to build from the source, and if you have CYGWIN version 1.3.20 and GCC 2.95.3−5 installed, it
is possible to build the Win32 version of apcupsd. Please don't try any other versions of CYGWIN as there
were known problems.

To date, the Win32 version has only been build on a Win98 SR2 and a WinXP system with the above
CYGWIN environment and all the available CYGWIN tools loaded. In addition, the builds were done running
under the bash shell. As time permits, we will experiment with other environments, and if any of you do build
it from source, please let us know. The current CYGWIN environment was loaded using the CYGWIN
setup.exe program, downloading ALL the latest binaries and installing them.

We recommend that you run the ./configure command with the following options:

./configure \
 −−prefix=/apcupsd \
 −−sbindir=/apcupsd/bin \
 −−sysconfdir=/apcupsd/etc/apcupsd \
 −−with−pid−dir=/apcupsd/etc/apcupsd \
 −−mandir=/apcupsd \
 −−with−cgi−bin=/apcupsd/etc/apcupsd/cgi \
 −−enable−pthreads

After which, you can do a:

make

And to install apcupsd, do:

make install

Finally, you should follow the Win32 installation instruction, skipping the part that describes unZipping the
binary release.

Chapter 3. After Installation

Table of Contents

Checking Your Configuration File
Arranging for Reboot on Power−Up
Making Sure apcupsd Is Running

Checking Your Configuration File

Once you have installed apcupsd, either from a binary package or by building from source, your next step
should be to inspect your /etc/apcupsd/apcupsd.conf file to make sure it is valid.

apcupsd User's Manual

Windows Systems with CYGWIN Installed 32

You can read a complete reference on configuration directives, but if you are setting up a normal standalone
configuration you should only need to check (and possibly fix) the first three.

Your UPSTYPE should be the UPS's protocol type: dumb, apcsmart, usb, net, or snmp. Your UPSCABLE
should be the type of cable you are using. You should have gotten both from the table of types; usually they
will both be the string "usb".

Your DEVICE should be the name of the device (or device range) that apcupsd is to use to communicate with
the UPS. If you're using a USB UPS under Linux, you may leave the device name field blank and apcupsd
will search all the standard locations for the UPS. You may also explicitly specify the device location as either
/dev/usb/hid/hiddev[0−15] (on non−Red−Hat systems) or /dev/usb/hiddev[0−15] (on Red
Hat systems).

Arranging for Reboot on Power−Up

The final consideration for a automatic reboot after a full power down is to ensure that your computer will
automatically reboot when the power is restored.

This is not the normal behavior of most computers as shipped from the factory. Normally after the power is
cut and restored, you must explicitly press a button for the power to actually be turned on. You can test your
computer by powering it down; shutting off the power (pull the plug); then plugging the cord back in. If your
computer immediately starts up, good. There is nothing more to do.

If your computer does not start up, manually turn on the power (by pressing the power on button) and enter
your computer's SETUP program (often by pressing DEL during the power up sequence; sometimes by
pressing F10). You must then find and change the appropriate configuration parameter to permit instant power
on.

Normally, this is located under the BOOT menu item, and will be called something such as Restore on
AC/Power Loss or Full−On. The exact words will vary according to the ROM BIOS provider. Generally you
will have three options: Last State, Power On, and Power Off. Although Last State should normally work,
we recommend setting your computers to Power On. This means that whenever the power is applied they are
on. The only way to shut them off is to pull the plug or to have a special program that powers them off
(/sbin/poweroff on Linux systems).

If after making all the changes suggested above, you cannot get your computer to automatically reboot, you
might examine your halt script (/etc/rc.d/init.d/halt in the case of Red Hat Linux) and see if the
final line that performs the halt or reboot contains the −p option for powering down the computer. It should
not with the logic used by apcupsd, but if it does, the −p option could cause your computer to power off while
the UPS is still suppling power (i.e. before the UPS kills the power). Depending on the setting of your BIOS,
it may prevent your computer from restarting when the power returns. As already mentioned, this should not
apply, but in case of problems it is worth a try.

Making Sure apcupsd Is Running

The simplest way to invoke apcupsd is from the command line by entering:

/sbin/apcupsd

apcupsd User's Manual

Arranging for Reboot on Power−Up 33

To do so, you must be root. However, normally, you will want apcupsd started automatically when your
system boots. On some systems with installation support (e.g. SuSE and Red Hat), the installation procedure
will create a script file that you will be automatically invoked when your system reboots. On other systems,
you will have to invoke apcupsd from your rc.local script.

On Red Hat systems, this script file that automatically invokes apcupsd on system start and stops is:
/etc/rc.d/init.d/apcupsd

To start apcupsd manually (as you will probably do immediately following the installation), enter the
following:

/etc/rc.d/init.d/apcupsd start

To understand how this file is automatically invoked at system startup and shutdown, see the man pages for
chkconfig(8).

On SuSE systems, the script file that automatically invokes apcupsd on system start and stops is
/etc/rc.d/apcupsd

To start apcupsd manually (as you will probably do immediately following the installation), enter the
following:

/etc/rc.d/apcupsd start

Normally, when properly installed, apcupsd will be started and stopped automatically by your system.
Unfortunately, the details are different for each system. Below, we give the commands for selected systems.
Alternatively, there are simple stopapcupsd and startapcupsd scripts in the examples directory, or you can
modify one of the scripts in the distributions directory to meet your needs.

To stop apcupsd you can do the following:

On Red Hat systems:

/etc/rc.d/init.d/apcupsd stop

On SuSE systems:

/etc/rc.d/apcupsd stop

Chapter 4. Testing apcupsd

Table of Contents

Process−Status Test
Logging Test
apcaccess Test
Communications Test
Simulated Power Fail Test
System Shutdown Test
Full Power Down Test
Shutdown Sequence

apcupsd User's Manual

Chapter 4. Testing apcupsd 34

apctest

The following testing procedures apply for the most part to apcsmart UPSes, whether USB or serial. If you
have a dumb voltage−signalling UPS, your testing procedures will be somewhat different, and you should see
the section on Testing Serial UPSes.

Process−Status Test

After you start apcupsd, execute the following command:

ps fax

or the equivalent for your system. If you are running on Linux and using the fork()ing version of apcupsd, you
should something similar to the following output.

4492 ? S 0:00 apcmain −f /etc/apcupsd/apcupsd.conf
4496 ? S 0:00 _ apcser −f /etc/apcupsd/apcupsd.conf
4497 ? S 0:00 _ apcnis −f /etc/apcupsd/apcupsd.conf

This indicates that apcupsd is up and running and has started the two (default) child processes.

apcmain
is the main program that waits until it receives a termination signal (SIGTERM) or one of the child
processes dies.

apcser
is the process that manages the serial port and takes any actions (generates events) that are necessary
as a result of a change of state of the UPS.

apcnis
is the Network information server process that provides EVENTS and STATUS information over the
network. This information is used by the CGI programs.

If you are running on a non−Linux system, or using pthreads on a Linux system (recommended), your output
will probably not show the names of the processes and will appear more like the following:

632 ? S 0:00 /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf
841 ? S 0:00 _ /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf
842 ? S 0:00 _ /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf

If you see only one instance of apcupsd running, don't worry about it unless the communication test fails.

Logging Test

Once you have established that the proper processes are running, do a tail of the system log file, normally
/etc/var/messages:

tail /etc/var/messages

You should see output that looks similar to the following:

apcupsd User's Manual

Process−Status Test 35

Dec 5 17:01:05 matou apcupsd[5917]: apcupsd 3.7.2
startup succeeded

And if you have configured the network information server, you should also see:

Dec 5 17:01:05 polymatou apcupsd[5975]: apcserver
startup succeeded

These messages should also appear in the temporary file (/etc/apcupsd/apcupsd.events) if you are
using the default configuration file.

apcaccess Test

This test consists of running apcaccess to see if apcupsd is properly updating its internal variables. Please
note that if you are running a pthreaded version of apcupsd (installed from rpm or −−enable−pthreads
on the ./configure line), you must enable the apcupsd Network Information Server in your configuration file
for apcaccess to work.

To run the apcaccess test, use the following command:

apcaccess status

Depending on the type of UPS you have, you will get slightly different output, but an example For a
Smart−UPS is as follows:

APC : 001,048,1088
DATE : Fri Dec 03 16:49:24 EST 1999
HOSTNAME : daughter
RELEASE : 3.7.2
CABLE : APC Cable 940−0024C
MODEL : APC Smart−UPS 600
UPSMODE : Stand Alone
UPSNAME : SU600
LINEV : 122.1 Volts
MAXLINEV : 123.3 Volts
MINLINEV : 122.1 Volts
LINEFREQ : 60.0 Hz
OUTPUTV : 122.1 Volts
LOADPCT : 32.7 Percent Load Capacity
BATTV : 26.6 Volts
BCHARGE : 095.0 Percent
MBATTCHG : 15 Percent
TIMELEFT : 19.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Medium
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
LOTRANS : 106.0 Volts
HITRANS : 129.0 Volts
RETPCT : 010.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 34.6 C Internal
ALARMDEL : Low Battery
LASTXFER : Unacceptable Utility Voltage Change
SELFTEST : NO

apcupsd User's Manual

apcaccess Test 36

STESTI : 336
DLOWBATT : 05 Minutes
DIPSW : 0x00 Dip Switch
REG1 : N/A
REG2 : N/A
REG3 : 0x00 Register 3
MANDATE : 03/30/95
SERIALNO : 13035861
BATTDATE : 05/05/98
NOMOUTV : 115.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : N/A
BADBATTS : N/A
FIRMWARE : N/A
APCMODEL : 6TD
END APC : Fri Dec 03 16:49:25 EST 1999

For a simple signaling or dumb UPS such as BackUPS, your output will be very minimal as follows:

APC : 001,012,0319
DATE : Mon Feb 18 09:11:50 CST 2002
RELEASE : 3.8.5
UPSNAME : UPS_IDEN
CABLE : APC Cable 940−0128A
MODEL : BackUPS
UPSMODE : Stand Alone
STARTTIME: Mon Feb 18 09:11:45 CST 2002
LINEFAIL : OK
BATTSTAT : OK
STATFLAG : 0x008 Status Flag
END APC : Mon Feb 18 09:15:01 CST 2002

If you see the above output, it is a good sign that apcupsd is working. Assuming that the output looks
reasonable, check the following variables:

LINEV
This is the line voltage and it should be a value that is appropriate for your equipment. In the USA, it
is typically about 120 Volts while in Europe, it is about 220 Volts.

BATTV
Unless you have additional battery packs, this should be near 24 Volts plus or minus 5 Volts.

STATUS
This is the status of the UPS and it should normally be ONLINE.

If you see a message to the effect of:

attach_shmarea: shared memory version mismatch (or UPS not yet ready to report)

or if all the displayed values are zero, you have not waited long enough. Wait a bit longer and then re−execute
the apcaccess status command.

If you see a message to the effect of:

apcupsd User's Manual

apcaccess Test 37

APCACCESS FATAL ERROR in apcaccess.c at line 336
tcp_open: cannot connect to server localhost on port 3551.

It means that you have probably not enabled NIS in apcupsd.

Communications Test

At this point, you should ensure that apcupsd is handling the connection to the UPS correctly. This test
assumes you have a UPS that speaks apcsmart protocol, over either USB or a serial port. If you have an
old−style voltage−signaling UPS, please skip to the next section (Simulated Power Fail Test).

When apcupsd detects a problem, it generates an EVENT, which consists of sending a message to the system
log then invoking the apccontrol script (normally in /etc/acpupsd/apccontrol) to handle the event.

In order to create an event, remove the serial port plug from the back of your computer or from the back of the
UPS. Within 6 seconds, apcupsd should detect the lack of serial port communications and broadcast a wall
message indicating that the serial port communications was lost:

Warning communications lost with UPS lost.

At the same time, it sends the same message to the system log and to the temporary EVENTS file
(/etc/apcupsd/apcupsd.events).

Plug the serial port plug back into your computer, and within about 12 seconds, apcupsd should reestablish
communications and broadcast and log the following message:

Communications with UPS restored.

If these messages are logged but not broadcast, either you have your mesg permission set to no (see man wall)
or there is a problem with apccontrol. If you are running a window manager such as GNOME and don't have
a console window open, you may not receive the wall messages. However, you should find them in your
system log file (normally /var/log/messages and in the temporary EVENTS file,
/etc/apcupsd/apcupsd.events. For example, to observe these events in the temporary EVENTS file,
you might do a

tail −f /etc/apcupsd/apcupsd.events

before running the test.

If you do not observe these messages, you should correct this problem before proceeding with additional tests.

Simulated Power Fail Test

At this point, you should verify that in the event of a power fail apcupsd properly calls apccontrol. This test is
appropriate for all models of UPSes (smart or dumb).

To avoid the possibility that apcupsd might shut down your system, locate where apccontrol resides on your
system (normally, /etc/apcupsd/apccontrol. Move this script to another location e.g.
apccontrol.save and replace it with the script found in examples/safe.apccontrol. When that
is done, ensure that your UPS battery is fully charged and that you have at least 5 minutes of remaining

apcupsd User's Manual

Communications Test 38

runtime on the batteries. This can be done by examining the values of the BATTCHG and TIMELEFT
variables in the printout of apcaccess status.

Athough this should not be necessary, as an extra precaution, you can shutdown your machine, remove the
plug from the UPS you are testing, and plug your machine into another UPS or directly into the wall. Doing
so, will ensure that the UPS doesn't cut the power to your machine at a bad time. Remember at the end of the
testing to plug your machine back into the UPS.

You can also minimize the risk from an unexpected shutdown by using a journaling filesystem such as Linux's
EXT3. All modern disk drives park themselves safely when they power down, rather than ploughing up oxide
on your disk's recording surface. Thus, unexpected power less has to hit very narrow timing windows in order
to trash an EXT3 transaction.

To begin the test, pull the power plug from the UPS. The first time that you do this, psychologically it won't
be easy, but after you have pulled the plug a few times, you may even come to enjoy it. If all goes well,
apcupsd should detect the power failure and print several warning messages. The first should appear after 5 to
6 seconds and read:

Warning power loss detected.

Then generally 6 seconds later, apcupsd is sure that it isn't a transient effect, so it sends:

Power failure. Running on UPS batteries.

After a few more seconds (total around 15 seconds), plug the power cord back in and ensure that apcupsd is
aware that the power has returned. It should print:

Power has returned...

If you do not observe the above messages, please correct the situation before proceeding. The most likely
cause of problems are:

•
apcupsd doesn't recognize the power failure because the configuration directives are not correct. E.g.
wrong cable.

•
The file /etc/apcupsd/apccontrol doesn't exist or is not marked as executable.

At this point, we recommend that you do a simulated power down of your system. If you are adventuresome
or have been through this before, skip to the next section in this manual and do the real power fail shutdown.
If you continue with the simulated power down and if all goes well, apcupsd will go through all the motions
without actually shutting down the system. Continue using the safe apccontrol that you installed. Edit the
configuration file apcupsd and change the value of TIMEOUT from 0 to something like 30. Doing so will
cause apcupsd to attempt to shutdown the system 30 seconds after it detects a power failure. Once this change
has been made, you must stop and restart apcupsd for the new configuration value to take effect.

Once again, pull the power plug, and if all goes as expected, apcupsd should attempt to shutdown the system
about 30 seconds after it detects the power failure. All the messages should be displayed by wall or by the tail
−f command. The precise message is determined by what is printed in /etc/apcupsd/apccontrol for
the doshutdown event. Though it varies from system to system, it will generally be something like:

apcupsd User's Manual

Communications Test 39

Beginning Shutdown Sequence

When apcupsd this message prints, reconnect the power. apcupsd should detect that the power has been
restored and attempt to cancel the shutdown.

IMPORTANT after this test, please replace the changed apccontrol and apcupsd.conf with the original
files.

System Shutdown Test

This is an intermediate test that you can do, for all UPS models before doing the Full Power Down Test. First
modify the /etc/apcupsd/apccontrol file so that in the killpower) case, the line that re−executes
apcupsd with the −−killpower option is commented out. The original line probably looks something like:

 ${APCUPSD} −−killpower

when it is commented out, it looks like:

${APCUPSD}−−killpower

Now when you pull the power plug, and either the timer expires or the batteries are exhausted (see the next
section for more details), the system should be fully shutdown.

After performing this test, please be sure to restore /etc/apcupsd/apccontrol to its previous state.

Full Power Down Test

To complete the testing, you should do a power fail shutdown of your system. This test is applicable to all
UPS models. Please do a backup of your system or take other precautions before attempting this to avoid the
possibility of lost data due to a problem (I have been through this at least 10 times and never once had
problems, but we all know that someday something will go wrong).

Before proceeding, please ensure that your halt script or the equivalent has been properly updated by the
install process to contain the logic to call apcupsd −−killpower when it detects a power failure situation (the
presence of a /etc/powerfail file). See the Chapter 2 of this manual, or the README files for
additional details about the halt modifications necessary.

When you are ready to do the test, either simply pull the plug and wait for the batteries to become exhausted,
or set the TIMEOUT configuration directive to something like 60 so that the system will shutdown before the
batteries are exhausted. We recommend doing the full shutdown without using TIMEOUT to correctly
simulate a real power failure, but the choice is yours (I did it once here, but now use TIMEOUT 30).

If all goes well, your system should be shutdown before the batteries are completely exhausted and the UPS
should be powered off by apcupsd. Please be aware that if you do the full power down, you must ensure that
your UPS is totally powered off. Otherwise, it may have been given the command to power off, but due to a
long grace period it is still waiting. If you were to reboot your computer during the grace period, the UPS
could then suddenly turn off the power (this happened to me). To avoid this problem, always wait for your
UPS to power itself off, or power if off manually before restarting your computer. On my system, the UPS is
configured as at the factory to have a 180 second grace period before shutting off the power. During this type
of testing, 180 seconds seems like an eternity, so please take care to either wait or manually power off your

apcupsd User's Manual

System Shutdown Test 40

UPS. To determine what grace period is programmed into your UPS EEPROM, run apcaccess eprom and
look at the "Shutdown grace delay".

Shutdown Sequence

If you experienced so problems with the above testing procedures, or if you are porting apcupsd to another
system, or you are simply curious, you may want to know exactly what is going on during the shutdown
process. If so, please see the Shutdown Sequence section of this manual.

apctest

apctest is a program that allows you to talk directly to your UPS and run certain low−level tests, display all
know values from the UPS's EEPROM, perform a battery runtime calibration, program the EEPROM (serial
connection only), and enter in TTY mode with the UPS. Here we describe how to use it for a USB or
apcsmart UPS; see the section called â€œUsing apctest on Serial−Line UPSsesâ€� for a description of how to
use it with a voltage−signalling UPS.

Shutdown apcupsd if it is running. Make sure your /etc/apcupsd/apcupsd.conf file has UPSTYPE smart
and UPSCABLE has one of the smart cables that are supported.

Normally apctest will have been built but not installed, so you must execute it from the
<bacula−source>/src directory. You can explicitly build it on Unix with:

cd <apcupsd−source−directory>
make apctest
./apctest

or on Windows systems with:

make apctestwin32
./apctest

It will read your installed apcupsd.conf configuration (so it knows where to find the UPS) and then it will
present you with the following output:

2003−07−07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart
sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I'm entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values
2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM

apcupsd User's Manual

Shutdown Sequence 41

6) Enter TTY mode communicating with UPS
7) Quit

Select function number: 1

Item 1 will probe the UPS for all values known to apcupsd and present them in rather raw format. This output
can be useful for providing technical support if you are having problems with your UPS.

Item 2 will perform a Battery Runtime Calibration. This test will only be performed if your battery is 100%
charged. Running the test will cause the batteries to be discharged to approximately 30% of capacity. The
exact number depends on the UPS model. In any case, apctest will abort the test if it detects that the battery
charge is 20% or less.

The advantage of doing this test is that the UPS will be able to recalibrate the remaining runtime counter that
it maintains in its firmware. As your batteries age, they tend to hold less of a charge, so the runtime calibration
may not be accurate after several years.

We recommend that perform a Battery Calibration about once a year. You should not perform this calibration
too often since discharging the batteries tends to shorten their lifespan.

Item 3 can be used to abort a Battery Calibration in progress, if you some how became disconnected.

Item 4 can be used to restart the monitoring of a Battery Calibration if you should some how become
disconnected during the test.

Item 5 is used to program the EEPROM. Please see the the section called â€œConfiguration Directives Used
to Set the UPS EPROMâ€� chapter of this manual for the details.

Item 6 will initiate a direct communication between your terminal and the UPS at which point, you can enter
raw UPS commands. Please be aware that you should be careful what commands you enter because you can
cause your UPS to suddenly shutdown, or you can modify the EEPROM in a way to disable your UPS. The
details of the raw Smart mode UPS commands can be found in the UPS Bible chapter of this manual.

Item 7 will terminate apctest.

Chapter 5. Troubleshooting Your Installation

Table of Contents

Known Problems with USB UPSes
Reconnection does not clean up the lockfile
Power Off (killpower) of UPS Does Not Work
apcupsd Cannot Reconnect After a Reboot

Known Problems with USB UPSes

Reconnection does not clean up the lockfile

If either you disconnect the UPS or it disconnects because of some electrical problem, it will most certainly

apcupsd User's Manual

Chapter 5. Troubleshooting Your Installation 42

reconnect with a different device number. Apcupsd will detect this and reconnect properly. However, apcupsd
does not release the old device (USB port) lock file and create a new one. This is not too serious.

Power Off (killpower) of UPS Does Not Work

Currently (as of 3.10.6) the code to power off the UPS works only if you have a Linux kernel version 2.4.22
or greater, or you have applied the patches in the examples directory to your kernel.

apcupsd Cannot Reconnect After a Reboot

If apcupsd does not connect to the USB port when you reboot, it is probably the appropriate kernel modules
are not getting loaded correctly.

You can check this by bringing up your system, fiddling around until you get apcupsd to work with the UPS,
then doing cat /proc/modules andnd save the output some place. Then reboot your computer and before you
do anything else, do the cat /proc/modules again. Most likely you will find some of the usb modules are
missing in the second listing.

There are two solutions:

•
Ensure that you have the hotplug program loaded. It should fix the problem. This is a bit of magic, so
we are not exactly sure how it works. The rpm I (Kern) have loaded is: hotplug−2001_02_14−15

You might want to read the man page on hotplug, and it might be necessary to cp /etc/hotplug/usb.rc
/etc/init.d/hotplug to get it fully working.

•
You can explicitly force the appropriate usb modules to be loaded by adding:

/sbin/modprobe <missing−module−name>

in the /etc/rc.d/init.d/apcupsd script just after the start) case (at about line 17). This will
force the modules to be loaded before apcupsd is invoked.

Chapter 6. Monitoring and Tuning your UPS

Table of Contents

apcaccess
apcaccess status
apcaccess eprom

hid−ups and USB Specific Information
apcupsd Network Monitoring (CGI) Programs

Setting up and Testing the CGI Programs
multimon.cgi
upsstats.cgi
./upsstats.cgi
upsfstatus.cgi
Working Example

apcupsd User's Manual

Power Off (killpower) of UPS Does Not Work 43

Client Test Program
A Tip from Carl Erhorn for Sun Systems
Credits
Security Issues

Configuring Your EEPROM
apcupsd No Longer Configures EEPROM
Using apctest to Configure Your EEPROM

After you have verified that your UPS is working correctly, you will probably want to query the state of its
health occasionally. The tools apcupsd gives you to do this include one command−line utility (apcaccess) and
a GUI you can use through a Web browser. You can also use apctest to tune some parameters of the UPS
itself.

apcaccess

apcaccess is a program (normally found in /sbin/apcaccess) that permits you to print out the complete
status of your UPS. Although there are a number of command line arguments (eprom, reconfig, status, slave,
shutdown), all except eprom and status are under development and hence do not work reliably.

If you have built apcupsd with pthreads enabled (default), apcaccess will use the Network Information Server
to obtain the necessary information for the status and eeprom commands. This is because in the pthreaded
version, there is no IPC shared memory. In this case (pthreads enabled), you can specify a second optional
argument to apcaccess in the form of host:port, where the :port is optional. The default is localhost:3551.
Please note that in versions prior to 3.10.6, the default NIS port was 7000, so if you are mixing versions, you
will need to take a lot of care to ensure that all components are using the same port.

apcaccess status

The status command line option of apcaccess will produce a full printout of all the STATUS variables used
by apcupsd. This can be very helpful for checking the condition of your UPS and to know whether or not
apcupsd is properly connected to it. For a complete description of the variables and their meanings, please
read the Status Format section of the Technical Reference.

Please note that if you invoke apcaccess within the first 30 seconds of launching apcupsd, you will likely get
an error message such as:

APCACCESS FATAL ERROR in apcipc.c at line 325
attach_shmarea: shared memory version mismatch

This is because apcupsd is still in the process of initializing the shared memory segment used to communicate
between the two processes. There is also a small window of time after which the memory segment is properly
initialized but before the UPS has been completely polled. If you invoke apcaccess during this period, you
will get the STATUS output, but with many of the values zero. The solution is to wait at least 30 seconds after
starting apcupsd before launching apcaccess.

To invoke apcaccess, enter:

apcaccess status

For a SmartUPS 1000 apcaccess will emit the following output:

apcupsd User's Manual

apcaccess 44

DATE : Fri Dec 03 12:34:26 CET 1999
HOSTNAME : matou
RELEASE : 3.7.0−beta−1
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 232.7 Volts
MAXLINEV : 236.6 Volts
MINLINEV : 231.4 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 232.7 Volts
LOADPCT : 11.4 Percent Load Capacity
BATTV : 27.7 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 112.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Low
DWAKE : 060 Seconds
DSHUTD : 180 Seconds
LOTRANS : 204.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 29.2 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 01/05/99
SERIALNO : GS9902009459
BATTDATE : 01/05/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Fri Dec 03 12:34:33 CET 1999

apcaccess eprom

The eprom command line option for apcaccess allows you to examine the current values of your UPS'
EPROM as well as to know the permitted values that can be set in the EPROM. For information about
changing these values, see the section on tuning EEPROM parameters.

A typical output from apcaccess eprom is:

Valid EPROM values for the SMART−UPS 1000

apcupsd User's Manual

apcaccess eprom 45

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 208 196 188 208 204
Return threshold RETURNCHARGE 15 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 180 020 180 300 600
Alarm delay BEEPSTATE T 0 T L N
Wakeup delay WAKEUP 60 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

hid−ups and USB Specific Information

The UPS has an internal set of timers and remaining capacity counters, which it uses to determine when to
shutdown. These are in addition to the apcupsd counters BATTERYLEVEL and MINUTES. As a
consequence, apcupsd will shutdown on the first limit that triggers (either an apcupsd limit, or a UPS limit).
The UPS internal counter equivalent to BATTERYLEVEL can be found in the hid−ups report as
RemainingCapacityLimit, which is typically factory set to 10 percent. In addition, the Low Battery signal is
normally given by the UPS when less than 2 minutes of run time remain.

apcupsd Network Monitoring (CGI) Programs

With this release, there are five CGI programs (multimon.cgi, multimoncss.cgi, upsstats.cgi, upsfstats.cgi, and
upsimage.cgi). To have them properly installed, you must run the ./configure command with
−−enable−cgi and you should specify an installation directory with −−with−cgi−bin= or load them
manually. To install the Cascading Style Sheet, which is used by multimoncss.cgi, you must use the
−−with−css−dir= option. The default directory for installation of the CGI programs is /etc/apcupsd,
which is not really where you want them if you are going to use them. Normally, they should go in the
cgi−bin of your Web server.

Once built and loaded, they will give you the status of your UPS or UPSes over the network.

Normally only multimon.cgi or multimoncss.cgiis directly invoked by the user. However, it is possible to
directly invoke upsstats.cgi and upsfstats.cgi. upsimage.cgi should never be directly invoked as it is used by
upsstats.cgi to produce the bar charts.

Setting up and Testing the CGI Programs

Before using multimon and the other CGI programs, first ensure that apcupsd is configured to run the Network
Information Server. This is done by setting NETSERVER on in /etc/apcupsd/apcupsd.conf. This
switch is on by default. If you are unsure of its state, see the section at the end of this chapter concerning the
Client test program.

Next you must edit the hosts file /etc/apcupsd/hosts.conf and at the end, add the name of the
hosts you want to monitor and a label string for them. Kern Sibbald uses multimon.conf unmodified from
what is on the source distribution. However, he has modified the hosts.conf file to contain the following three
lines:

MONITOR matou "Server"

apcupsd User's Manual

hid−ups and USB Specific Information 46

MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"

matou, polymatou, and deuter are the network names of the three machines currently running apcupsd. Please
note that the network names may either be IP addresses or fully qualified domain names. The network name
(or IP address) may optionally be followed by :<port>, where the port is the NIS port address you wish to
use. This is useful if you are running multiple copies of apcupsd on the same system or if you are running in a
mixed vendor environment where the NIS port assignments differ. An example could be the following:

MONITOR matou "Server"
MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"
MONITOR polymatou:7001 "APC USB UPS"

where the USB copy of apcupsd has been configured to use port 7001 (with −−with−nis−port=7001 on
the ./configure or by modifying apcupsd.conf). Note, the default NIS port is 3551 on most platforms.

To test multimon.cgi, you can execute it as non−root directly from the source cgi build directory. To do so,
enter at a shell prompt:

./multimon.cgi

If everything is set up correctly, it will print a bunch of HTML with the values of the machines that you have
put in the hosts.conf file. It should look something like the following (note, only a small portion of the
output is reproduced here):

Content−type: text/html

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD><TITLE>Multimon: UPS Status Page</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<TABLE BGCOLOR="#50A0A0" ALIGN=CENTER>
<TR><TD>
<TABLE CELLPADDING=5>
<TR>
<TH COLSPAN=10 BGCOLOR="#60B0B0">
APCUPSD UPS Network Monitor

Sun Jan 16 12:07:27 CET 2000</TH>
</TR>
<TR BGCOLOR="#60B0B0">
<TH COLSPAN=1>System</TH>
<TH COLSPAN=1>Model</TH>
<TH COLSPAN=1>Status</TH>
...

If you do not get similar output, check the permissions of the /etc/apcupsd directory and of those of
/etc/apcupsd/hosts.conf to ensure that your web server can access it. At many sites such as mine,
the Apache server is not running as root, so you must be careful to ensure that that
/etc/apcupsd/hosts.conf and /etc/apcupsd/multimon.conf are world readable.

To invoke multimon in your Web browser, enter:

http://<your−site>/cgi−bin/multimon.cgi

apcupsd User's Manual

hid−ups and USB Specific Information 47

You should get something similar to the screen shot shown below.

If you wish additional control over the colors, type faces, and sizes of the multimon output, you might wish to
use multimoncss.cgi in place of multimon. In this case, you simply edit the multimon.css file to specify
the styles you prefer. There are several sample Style Sheet files in the cgi subdirectory of the source tree.

To see a working example of the these programs, visit http://www.apcupsd.com/cgi−bin/multimon.cgi or
http://www.apcupsd.com/cgi−bin/multimoncss.cgi

multimon.cgi

This program monitors multiple UPSes at the same time. A typical output of multimon.cgi as displayed in
your Web browser might look like the following:

The machines monitored as well as the values and their column headings are all configurable (see
/etc/apcupsd/hosts.conf and /etc/apcupsd/multimon.conf)

upsstats.cgi

By clicking on the system name in the multimon.cgi display, you will invoke upsstats.cgi for the specified
system, which will produce a bar graph display of three of the monitored values. For example,

apcupsd User's Manual

multimon.cgi 48

http://www.apcuspd.com/cgi-bin/multimon.cgi
http://www.apcupsd.com/cgi-bin/multimoncss.cgi

You can display different bar graphs by selecting different variables from the drop down menus at the top of
each of the three bar graphs.

As with multimon, if you have your local host configured in the /etc/apcupsd/hosts.conf file, you
can execute it from a Unix shell from the source cgi directory as follows:

./upsstats.cgi

As with multimon, quite a few lines of html should then be displayed.

upsfstatus.cgi

If you would like to see all of the STATUS variables available over the network, click on the Data field of the
desired system, and your browser will display something like the following:

APC : 001,048,1109

apcupsd User's Manual

./upsstats.cgi 49

DATE : Thu Dec 02 17:27:21 CET 1999
HOSTNAME : matou.sibbald.com
RELEASE : 3.7.0−beta−1
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 223.6 Volts
MAXLINEV : 224.9 Volts
MINLINEV : 222.3 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 223.6 Volts
LOADPCT : 6.2 Percent Load Capacity
BATTV : 27.9 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 167.0 Minutes
MINTIMEL : 3 Minutes
SENSE : High
DWAKE : 060 Seconds
DSHUTD : 020 Seconds
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 35.1 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 01/11/99
SERIALNO : GS9903001147
BATTDATE : 01/11/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Thu Dec 02 17:27:25 CET 1999

You should get pretty much the same output mixed in with html if you execute upsfstats.cgi directly from a
Unix shell in the cgi subdirectory as explained above for upsstats.cgi and multimon.cgi.

Working Example

To see a working example of the above programs, visit http://www.apcupsd.com/cgi−bin/multimon.cgi.

apcupsd User's Manual

Working Example 50

http://www.apcupsd.com/cgi-bin/multimon.cgi

Client Test Program

When your Network Information Server is up and running, you can test it using a simple program before
attempting to access the server via your Web server. The test program is called client.c and can be found
in the examples subdirectory of the source distribution. To build the program, when in the examples
directory, use something like the following:

cc client.c ../lib/libapc.a −o client

Then execute it:

./client <host>[:<port>] [<command>]

Where host is the name of the host or the IP address of the host running the Network Information Server. The
default is the local host. You may optionally specify a port address separated from the host name with a colon.
You may also optionally specify a single command to be executed. If you specify a command, that command
will be executed and the client program will exit. This is a very simple and useful way of pulling the status or
events data into another program such as Perl.

If no error messages are printed, it has most likely established contact with your server. Anything that you
type as standard input will be passed to the server, and anything the server sends back will be printed to
standard output. There are currently two commands recognized by the server: events and status. Hence the
following commands:

./client
status
events
xyz
^D

Should produce the status listing (the same as produced by apcaccess status), followed by the list of the last
10 events (in response to the events command), and finally Invalid command in response to the xyz input,
which is not a valid command. The control−D terminates the client program.

A Tip from Carl Erhorn for Sun Systems

It is possible to run the CGI code to monitor your UPS using the answerbook HTTP server that runs on
Solaris. As long as your server has the Answerbook2 web server installed and running, you can insert the cgi
scripts into the cgi directory of the web server, and access the cgi using something like:

http://hostname:8888/cgi/multimon.cgi

Credits

Many thanks go to Russell Kroll <rkroll at exploits.org> who wrote the CGI programs to work with his UPS
Monitoring system named Network UPS Tools (NUT). Thanks also to Jonathan Benson <jbenson at
technologist.com> for initially adapting the upsstatus.cgi program to work with apcupsd.

We have enhanced the bar graph program and hope that our changes can be useful to the original author in his
project.

apcupsd User's Manual

A Tip from Carl Erhorn for Sun Systems 51

http://www.exploits.org/nut/library/apcsmart.html

Security Issues

•
apcupsd runs as root.

•
If you have NETSERVER ON in your apcupsd.conf file (which is the deault), be aware that
anyone on the network can read the status of your UPS. This may or may not pose a problem. If you
don't consider this information privileged, as is the case for me, there is little risk. In addition, if you
have a firewall between your servers and the Internet, crackers will not have access to your UPS
information. Additionally, you can restrict who can access your apcupsd server by using inted to run
the sservice and using access control lists with a TCP wrapper or by configuring TCP wrappers in
apcupsd (see below for TCP Wrapper details).

•
If you are running master/slave networking with a single UPS powering multiple machines, be aware
that it is possible for someone to simulate the master and send a shutdown request to your slaves. The
slaves do check that the network address of the machine claiming to be the master is that same as the
address returned by DNS corresponding to the name of the master as specified in your configuration
file.

TCP Wrappers

As of apcupsd version 3.8.2, TCP Wrappers are implemented if you turn them on when configuring
(./configure −−with−libwrap). With this code enabled, you may control who may access your apcupsd via
TCP connections (the Network Information Server, and the Master/Slave code). This control is done by
modifying the file: /etc/hosts.allow. This code is implemented but untested. If you use it, please send
us some feedback.

Configuring Your EEPROM

If you have a SmartUPS, there are depending on the UPS at least 12 different values stored in the EEPROM
that determine how the UPS reacts to various conditions such as high line voltage, low line voltage, power
down grace periods, etc.

In general, for the moment, we do not recommend that you change your EEPROM values unless absolutely
necessary. There have been several reported cases of problems setting the Low Transfer Voltage.
Consequently, if at all possible, do not attempt to change this value.

If despite these warnings, you must change your EEPROM, we recommend connecting your UPS to a
Windows or NT machine running PowerChute and making the changes.

apcupsd No Longer Configures EEPROM

Unlike version 3.8.6, apcupsd version 3.10.x no longer has code to program the EEPROM. Instead we have
implemented interactive EEPROM modification code in the apctest program. EEPROM programming must
be done with apcupsd stopped so that apctest can access the UPS. In addition, EEPROM programming is
currently implemented only for UPSes using the Smart protocol running in serial mode. Perhaps at a later time
when the appropriate kernel modifications are standard, we will extend EEPROM programming to USB
models.

apcupsd User's Manual

Security Issues 52

Before changing your EEPROM, you should make a printed copy of the current state of your UPS before any
EEPROM changes so that you can check the changes that you have made. Do so by printing a copy of the
output from apcaccess status and also print a copy of the output from apcaccess eprom.

Once this is done, choose which values of the EEPROM you want to change. Typical output from apcaccess
should look like the following:

apcaccess eeprom

Valid EPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
==
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

where the Current Value will depend on how your UPS is configured, and the Permitted Values will depend
on what UPS model you have.

Using apctest to Configure Your EEPROM

To make the EEPROM changes with apctest you must first stop the apcupsd daemon

apctest is not installed during the installation process, so to use it you will need to do the following after
having built apcupsd:

cd <apcupsd−source>/src
su
<root−password>
./apctest

At that point, you should get output similar to the following:

2003−07−07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart
sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I'm entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values

apcupsd User's Manual

Using apctest to Configure Your EEPROM 53

2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM
6) Enter TTY mode communicating with UPS
7) Quit

Select function number:

You might want to run option 1) just to ensure that apctest is properly talking to your UPS. It will produce
quite about 70 lines of output.

To program the EEPROM, select option 5), and you will get the EEPROM menu as follows:

This is the EEPROM programming section of apctest.
Please select the function you want to perform.

1) Print EEPROM values
2) Change Battery date
3) Change UPS name
4) Change sensitivity
5) Change alarm delay
6) Change low battery warning delay
7) Change wakeup delay
8) Change shutdown delay
9) Change low transfer voltage
10) Change high transfer voltage
11) Change battery return threshold percent
12) Change output voltage when on batteries
13) Change the self test interval
14) Set EEPROM with conf file values
15) Quit

Select function number:

If you wish to use the old pre−3.10.x method of EEPROM programming with values specified in the
apcupsd.conf file, select option 14). However, we recommend that you start with item 1) to see what
EEPROM values apctest finds. This command can take a few minutes to run, so be patient. The values printed
should be the same as what you got using apcaccess, but in addition, the EEPROM battery date and UPS
Name should be displayed. For example:

Select function number: 1

Doing prep_device() ...

Valid EEPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N

apcupsd User's Manual

Using apctest to Configure Your EEPROM 54

Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF
===
Battery date: 07/31/99
UPS Name : UPS_IDEN

At this point, you can select any item from 2) to 13) to modify the appropriate value. You will shown the
existing value and prompted for the new values.

We recommend that you change the EEPROM as little as is absolutely necessary since it is a somewhat
delicate process that has occasionally produced problems (i.e. improper EEPROM values are displayed after
the update). Fortunately this seems to be quite rare and was much more likely to occur with the old "batch"
like process especially if incorrect values were supplied.

Chapter 7. Maintaining Your UPS

Table of Contents

What Various People Have to Say about Batteries
Where Carl Suggests You Get Batteries

If you have your UPS long enough, you will probably have battery problems. Below, you will find some
suggestions for replacing batteries. One important note of caution: at least one user purchased one of the
non−APC batteries noted below and found out that they would not fit into his unit. This required cutting and
soldering and other very undesirable things, so be extremely careful in measuring the batteries including every
millimeter of the terminal connections which can cause problems.

Although you can do a hot swap of your batteries while the computer is running, it may not be very
satisfactory because the unit will not know that the batteries have been swapped and apcupsd will continue to
show Low Battery. To correct this situation, you must do a discharge and recharge of the battery followed by
a battery recalibration using apctest. At that point the battery should be calibrated better. As noted below, Carl
has found that it takes several discharge/charges before the runtime calibration is accurate. Take care not to
discharge your battery too much as it tends to shorten the battery life.

What Various People Have to Say about Batteries

Here is what John Walker has to say about APC UPS batteries:

I thought I'd pass on some information I've obtained which you'll probably eventually need.
Besides, by writing it down I'll be able to find it the next time. I started installing mine in
1995−1996. Lead−acid batteries have a finite life even if not subjected to deep discharge
cycles. For the batteries used by APC, this is typically four to six years. As part of the
self−test cycle, the UPS measures the voltage of the battery at full charge (which falls as the
battery ages), and if it's below about 90% of the value for a new battery, it sets off the
"Replace battery" alarm, which it repeats every day. [on apcupsd versions prior to 3.8.0, this
message is sent once, on version 3.8.0, it is sent every 9 hours − KES]. You will occasionally
get a false alarm. It's a good idea if you get an alarm to repeat the self−test the next day and
see if the alarm goes away. If the alarm is persistent, you need to replace the batteries, which
can be done without powering down the UPS or load−you just open up the battery door, take
out the old batteries, and hook up the new ones.

apcupsd User's Manual

Chapter 7. Maintaining Your UPS 55

APC makes "Replacement Battery Units" for each of the SmartUPS models, but they sell
them directly only in the U.S.

It's best to wait until the low battery alarm before ordering a replacement−keeping batteries
on the shelf reduces their life unless you keep them fully charged.

And AndrÃ© Hendrick says:

[For replacement batteries] You need to goto you your local Yamaha SeaDoo shop. There are
35 AMP Hour deep cycle marine batteries that are direct replacements. These are gel−cel and
will double the runtime and/or cut your recharge time in half.

Jet Works
1587 Monrovia Ave.
Newport Beach CA 9266?
Tel: +1 714 548−5259

J−W Batteries, Inc.
Tel: +1 714 548−4017

WPS 49−1200
GEL−CELL KB−35 BATTERY

For those that do not know what this means........ I found the best battery for APCC UPS
products that use In the two systems below:

SMART−UPS 3000 10.9% is running at 327W runs for 47.0 min.
Smart−UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor
Thu Jan 18 21:55:36 PST 2001
System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data
Linux ATA Development SMART−UPS 3000 ONLINE
 100.0 % 120.2 VAC 10.9 % 36.9 C 47.0 min. All data
Linux ATA Development II APC Smart−UPS 1250 ONLINE
 100.0 % 119.6 VAC 22.3 % 45.9 C 54.0 min. All data

Look at the numbers and see that these batteries are better and have more total running energy
than standard ones.

SMART−UPS 3000 10.9% is running at 327W runs for 47.0 min.
Smart−UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor
Thu Jan 18 22:00:45 PST 2001
System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data
Linux ATA Development SMART−UPS 3000 ONLINE
 100.0 % 120.2 VAC 19.2 % 36.9 C 27.0 min. All data
Linux ATA Development II APC Smart−UPS 1250 ONLINE
 100.0 % 119.6 VAC 21.8 % 45.9 C 55.0 min. All data

SMART−UPS 3000 19.2% is running at 576W runs for 27.0 min.
Smart−UPS 1250 21.8% is running at 273W runs for 55.0 min.
Smart−UPS 1250 46.1% is running at 576W runs for 26.0 min.

Kind of cool.

apcupsd User's Manual

Chapter 7. Maintaining Your UPS 56

The 1250 can outrun the 3000 by a factor of two under identical percentages, or run head to
head for the same time.

SMART−UPS 3000 is a 48V based or 4 batteries. Smart−UPS 1250 is a 24V based or 2
batteries.

Cheers,

Andre Hedrick
Linux ATA Development

Finally, here is what Carl Erhorn has to say about batteries:

Hi, Folks.

Well, Kern was absolutely right. The problem with my UPS was batteries. It was unexpected
though, because there was no indication of a bad battery right up until the UPS failed entirely.

For those who might encounter the same thing, and don't know what's happening (I didn't
either), here's what happened.

A week or so ago, I turned on one of my SmartUPS 700−NET models. The load is a small
dual P−III unix server (Solaris 8, X86) and a 4MM tape drive. During the normal selftest that
runs when you first turn on any APC UPS, the UPS 'freaked out'. The alarm stuttered at about
4 or 5 beeps per second, and all the panel lights flashed spasmodically, as if something was
loose inside the UPS.

I turned off the UPS and it's load, then turned the UPS on again. This time, everything
seemed fine. I booted the system that was attached, and there were no problems. The status
monitor showed 9 minutes runtime (which indicates fairly low capacity), but the batteries
showed fully charged. I began to suspect a bad inverter in the UPS.

However, Kern told me that he suspected the batteries. So I took the UPS offline, put an old
SU−600 in it's place (just barely big enough to handle the startup peaks − I get an 'overload'
lamp lit for about 2 seconds during boot), and checked out the batteries. They did indicate that
they were near the end of life, so I ordered a replacement set. Those came in on Friday, and
after the initial charge, a complete charge/discharge cycle to recalibrate the UPS, and some
testing, I put it back in service.

Surprise! (Or maybe not?) Kern was right − there is nothing wrong with the inverter or the
charging circuit, and the new cells fixed everything.

What confused me is that there was no 'replace battery' indication from the UPS, even when it
failed, plus a fair amount of runtime indicated with a full charge. So if you see such behavior
on one of your UPS models, it makes sense to replace the batteries, even if there is no
indication that the batteries have failed yet.

One of the things I learned during this process is that the UPS internal calibration will lose
accuracy over the life of the battery. I always do a recalibrate when I install new cells, but
rarely do it after that, as it's time−consuming, and you really can't use the system attached to

apcupsd User's Manual

Chapter 7. Maintaining Your UPS 57

the UPS while doing it. Since my systems are almost constantly in use, it's a pain to schedule
a recal, and I tend to put it off. This time it bit me. I'd suggest that folks do a recal at least
once every six months. It will make your runtime estimates much more accurate, and also
allows you to keep track of the state of your batteries.

For those who don't know how to do this, here's what you do. This proceedure should not be
confused with the 'Recalibrate' feature in the APC PowerchutePlus software. They do not do
the same thing.

>From APC's web site:

Perform a Runtime Calibration. This is a manual procedure and should not be confused with
the runtime calibration performed through PowerChute plus. The batteries inside of the
Smart−UPS are controlled by a microprocessor within the UPS. Sometimes it is necessary to
reset this microprocessor, especially after the installation of new batteries. Stop the
PowerChute plus software from running and disconnect the serial cable. There must be at
least a 30% load attached to the UPS during this procedure, but the process will cause the
UPS to shut off and cut power to its outlets. Therefore, attach a non−critical load to the UPS
and then force the UPS on battery by disconnecting it from utility power. Allow the unit to
run on battery until it turns off completely. Make sure a 30% load is present! Plug the UPS
back into the wall outlet and allow it to recharge (it will recharge more quickly turned off and
with no load present). Once the unit has recharged, the "runtime remaining" calculation
should be more accurate. Remember that if the unit is an older model, then the runtime will
not improve significantly.

Background:

An APC Smart−UPS has a microprocessor which calculates runtime primarily based on the
load attached to the UPS and on its battery capacity. On the right side of the front display
panel there is a vertical graph of five LEDs. Each LED is an indication of battery charge in
increments of twenty percent: 20, 40, 60, 80, 100% (bottom to top). For example, if the
battery charge is 99%, then only four of the five LEDs are illuminated.

To ensure that an operating system receives a graceful shutdown when using PowerChute
plus or a SmartSlot accessory, an alert is generated by the Smart−UPS indicating that the UPS
has reached a low battery condition. The alert is audible (rapid beeping), visual (flashing
battery LED or LEDs), and readable through the graphical interface of PowerChute plus
software (or a native UPS shutdown program within a particular operating system.) In order
to calculate this "low battery condition," all Smart−UPS products have a preconfigured low
battery signal warning time of two minutes (this is the factory default setting). There are a
total of four user−changeable settings: 2, 5, 7, or 10 minutes. If the low battery signal warning
time is set for 2 minutes, then the alerts will activate simultaneously two minutes prior to
shutdown. Similarly, if the total runtime for a particular UPS is 30 minutes with a low battery
signal warning time set at 10 minutes, then the UPS will run on battery for 20 minutes before
the low battery alert begins.

Total runtime is primarily based on two factors, battery capacity and UPS load. UPS load and
runtime on battery are inversely proportional: as load increases, battery runtime decreases and
vice versa. When utility power is lost, the UPS begins discharging the battery in order to
support the attached load. Once power returns, the Smart−UPS will automatically begin to
recharge its battery.

apcupsd User's Manual

Chapter 7. Maintaining Your UPS 58

My comments on this proceedure:

I believe this proceedure works for all APC models that calulate runtime, not just the
SmartUPS. It's important that you load the UPS to 30% of the UPS capacity, as reported by
apcupsd or another UPS monitor program. I've found that normal house lamps of different
wattages allow me to adjust the load to almost exactly what I want, which is between 30%
and 35% of the UPS capacity. This is critical te getting an accurate reading (according to the
APC web documents). Always bring the UPS to 100% charge first, as indicated by the front
panel lamps, or your UPS monitoring software.

Set the UPS shutdown time to 2 minutes, all other settings to nominal, and disconnect the
serial port cable from the UPS before running the recalibration. If you leave a monitoring
program running through the serial port, it will turn the UPS off early, and you don't want to
do that during a recalibration run. When the run is complete, and the UPS turns off, you can
reattach the serial cable, and the normal loads, and recharge the batteries normally. If you
think you might have a power outage during the recharge time, allow the UPS to recharge to
20% or so (indicated by the panel lamps) before trying to use the computer system. This will
allow the UPS to handle short dropouts while it recharges. Of course, if you can leave the
computer off during the recharge time, the UPS will recharge much faster.

As an aside, when the batteries failed, my total runtime at 100% charge and an idle state was
9 minutes, which is pretty bad. I replaced the batteries with extended capacity cells, which
add about 15% to the stock capacity. Now, after two complete charge/ discharge cycles,
100% charge shows the available runtime to be 42 minutes on the system when it's idle, and
33 minutes when the system is very busy. The differences are due to the load of the computer,
when the disks are busy, and the cpus are not in a halted state (my system halts the cpus when
they are idle, to save power and lower heat, as do other OS like Linux), when compared to an
idle state. Apcupsd indicates the load is about 27% when idle, and as much as 37% when
heavily loaded.

I've found that two charge/discharge cycles result in a more accurate recalibration when
installing new cells. It appears that some batteries need to be put through a couple of
complete cycles before they reach their full capacity. I've also noticed that the full−charge
voltage is different for each battery until they have been through two cycles. On the initial
charge of my new batteries, the 100% charge voltage on the two cells was almost .5 VDC
apart. After two complete cycles, the batteries measure within .01 VDC of each other!

I hope this information helps anyone who might encounter the problem I saw, and also shows
folks how to recal their batteries. If you haven't done a complete recalibration in a year or
two, I'd recommend it, so that you have warning of a low battery instead of what happened to
me.

Regards,

−−Carl

Where Carl Suggests You Get Batteries

Hi, Folks.

apcupsd User's Manual

Where Carl Suggests You Get Batteries 59

I'm just replacing the batteries in one of my SmartUPS models, and it occurs to me that some
of you may not know about the place I get them from. I have no relationship with this
company, other than as a customer, but I feel they know what they are doing, their prices are
fair, and they have some interesting batteries available that you can't obtain from APC.

These are the reasons I use them, and I thought this information might be useful to the US list
members. They will ship outside of the US. If you have questions, you can contact them
through the email address listed on their web pages. They have always responded pretty
quickly to my questions.

The company is called Battery Wholesale Distributors, and they are located in Georgetown,
Texas. If you have questions, you can reach them by phone at (800) 365−8444, 9:00AM to
5:00PM (their local time), Monday through Friday. I've gotten email from them on the
weekends, although the office is not open then.

I won't post prices, as you can get current pricing from their web site. They have an entire
section dedicated to APC replacement batteries, and it's easy to find what you need. You can
order over the web, or by phone. They accept all the usual credit cards.

The web site (as you might guess) is: www.batterywholesale.com

The thing I really like is that they have found manufacturers who make batteries in the
standard case sizes, but have additional capacity over the original batteries shipped with the
APC UPS models. Often, the difference is as much as 15% or so, and this can result in
additional runtime. It's a nice upgrade for a minor increase in price.

They are also 'green−aware', in that they encourage you to recycle your old batteries, and will
accept the old batteries back from you if you cannot find a local place that recycles them. You
pay the shipping, but I think other than that, there is no charge. I've never done this, as I have
a battery retailer just down the street who will accept my old batteries.

Anyway, if you didn't know about these folks, put the info aside where you can find it when
you need replacement batteries. I won't make any guarantees, but I've been very pleased with
their products, service, and pricing. I hope you find them as helpful to you as I do. I've been
dealing with them since about 1994, and have never been disappointed. The owner of the
place also is very good on technical issues, so if you have questions on their products, he can
get as technical as you need to go.

Regards,
−−Carl

Here is a link to the APC Battery Store.

Chapter 8. Frequently−Asked Questions

See the bugs section of this document for a list of known bugs and solutions.

Q:. Why all the craziness with custom serial cables?
Q:. What UPS brands does apcupsd support?

apcupsd User's Manual

Chapter 8. Frequently−Asked Questions 60

http://www.batterywholesale.com
http://www.batterywholesale.com/battery-store/APC-batteries/?PHPSESSID=10ba07023457efda6a3520af1957755f

Q:. Does apcupsd support Windows?
Q:. I don't have a cable, which one should I build?
Q:. How much CPU resources does apcupsd use?
Q:. What language is apcupsd written in?
Q:. We are using apcupsd−3.8.1−1 in RedHat 6.2. The slave, when shutting down, is reporting an error at
line 436 of apcupsd.c. The error is initiated by apcupsd −−killpower! What can we do to fix this, and is it
critical?
Q:. To test apcupsd, I unplugged the UPS to simulate a power outage. After the machine went into the
shutdown process I plugged the UPS back into the commercial power source. This caused the shutdown
process to hang after the daemon tried to shut−off the ups. Have you run into this problem, and if so do you
have a remedy?
Q:. After running apcupsd for a while, I get the following error: "Serial communications with UPS lost."
What is the problem?
Q:. When apcupsd starts, I get the following error: "attach_shmarea: cannot get shm area: Identifier
removed." What is the problem?
Q:. I get the following error: "Starting apcupsd power management. Mar 20 21:19:40 box apcupsd[297]:
apcupsd FATAL ERROR in apcserial.c at line 83. Cannot open UPS tty /dev/cua01: No such file or
directory." What is the problem?
Q:. How do I ensure that the slaves shutdown before the master?
Q:. How do I ensure that my database server is correctly shutdown?
Q:. I have Win2k Advanced server, and when starting the service, get: Could not start the Apcupsd Server
service on Local Computer. Error 1067: The process terminated unexpectedly
Q:. When using USB, I get the following log messages: usb−uhci.c: interrupt, status 3, frame# 826. What does
it mean?
Q:. apcnisd doesn't work. It always gives: FATAL ERROR in apcipc.c at line 497. attach_shmarea: shared
memory version mismatch (or UPS not yet ready to report)

Chapter 9. Apcupsd Bugs

Unfortunately, it seems that every program has some bugs. We do our best to keep the bugs to a minimum by
extensive testing. However, because of our inherent nature to occasionally overlook things and the fact that
we don't have all the UPS models nor the APC documentation on those models, apcupsd will have some bugs.

As the bugs become known to us, we will post them on the bug tracking system at SourceForge.

Advanced topics
Table of Contents

10. Customizing Event Handling
apccontrol Command Line Options

11. Master/Slave Configurations
Configuration Directives
Master/Slave Problems

Master/Slave Shutdown
Master/Slave Networking using NIS and the NET Driver

Network Problems with Master/Slave Configurations
Error Messages from a Master Configuration
Error Messages from a Slave Configuration
Master/Slave Connection Not Working

apcupsd User's Manual

Advanced topics 61

12. Controlling Multiple UPSes on one Machine
Configuration

The First Copy of apcupsd
The Second Copy of apcupsd
Important Steps after Installation of the Second Copy

13. Support for SNMP UPSes
Connecting an SNMP UPS
Building and Installing apcupsd
SNMP Specific Information
Known Problems

14. Alternate Ways To Run The Network Information Server
Running the server as a child of apcupsd
Running apcnisd from INETD
Running apcnisd Standalome

15. apcupsd System Logging
Logging Types
Implementation Details
Developer's Notes

Chapter 10. Customizing Event Handling

Table of Contents

apccontrol Command Line Options

When apcupsd detects anomalies from your UPS device, it will make some decisions that usually result in one
or more calls to the script located in /etc/apcupsd/apccontrol. The apccontrol file is a shell script
that acts on the first argument that apcupsd passes to it. These actions are set up by default to sane behavior
for all psituations apcupsd is likely to detect from the UPS. However, you can change the apccontrol behavior
for every single action.

To customize, so create a file with the same name as the action, which is passed as a command line argument.
Put your script in the /etc/apcupsd directory.

These events are sent to the system log, optionally sent to the temporary events file
(/etc/apcupsd/apcupsd.events), and they also generate a call to /etc/apcupsd/apccontrol
which in turn will call any scripts you have placed in the /etc/apcupsd directory.

Normally, /etc/apcupsd/acpcontrol is called only by apcupsd. Consequently, you should not invoke
it directly. However, it is important to understand how it functions, and in some cases, you may want to
change the messages that it prints using wall. We recommend that you do so by writing your own script to be
invoked by apccontrol rather than by modifying apccontrol directly. This makes it easier for you to upgrade
to the next version of apcupsd

In other case, you may want to write your own shell scripts that will be invoked by apccontrol. For example,
when a power fail occurs, you may want to send an email message to root. At present the arguments that
apccontrol recognizes are:

When apcupsd detects an event, it calls the apccontrol script with four arguments as:

apcupsd User's Manual

Chapter 10. Customizing Event Handling 62

apccontrol <event> <ups−name> <connected> <powered>

where:

event
is the event that occurred and it may be any one of the values described in the next section.

ups−name
is the name of the UPS as specified in the configuration file (not the name in the EEPROM). For
version 3.8.2, this is always set to Default

connected
is 1 if apcupsd is connected to the UPS via a serial port (or a USB port). In most configurations, this
will be the case. In the case of a Slave machine where apcupsd is not directly connected to the UPS,
this value will be 0.

powered
is 1 if apcupsd is powered by the UPS and 0 if not. In version 3.8.2, this value is always 1.

apccontrol Command Line Options

apccontrol accepts the following command line options:

annoyme
Does a printf "Power problems please logoff." | wall then exits.

changeme
Does a printf "Emergency! UPS batteries have failed\nChange them NOW" | wall then
exits.

commfailure
Does a printf "Warning serial port communications with UPS lost." | wall then exits.

commok
Does a printf "Serial communications with UPS restored." | wall then exits.

doreboot
Does a reboot of the system by calling shutdown −r now

doshutdown
Does a shutdown of the system by calling shutdown −h now

emergency
Does an emergency shutdown of the system by calling shutdown −h now

failing
Does a printf "UPS battery power exhausted. Doing shutdown.\n" | wall then exits.

loadlimit
Does a printf "UPS battery discharge limit reached. Doing shutdown.\n" | wall then exits.

apcupsd User's Manual

apccontrol Command Line Options 63

After completing this event, apcupsd will immediately initiate a doshutdown event.

mainsback
Attempts to cancel the shutdown with a shutdown −c

onbattery
Does a printf "Power failure. Running on UPS batteries." | wall then exits.

powerout
Does a printf "Warning power loss detected." | wall then exits.

remotedown
Does a shutdown −h now

restartme
Terminates the currently running apcupsd and then restarts it.

runlimit
Does a printf "UPS battery runtime percent reached. Doing shutdown.\n" | wall then exits.
After completing this event, apcupsd will immediately initiate a doshutdown event.

timeout
Does a printf "UPS battery runtime limit exceeded. Doing shutdown.\n" | wall then exits.
After completing this event, apcupsd will immediately initiate a doshutdown event.

startselftest
This is called when apcupsd detects that the UPS is doing a self test. No action is taken.

endselftest
This is called when apcupsd determines that a self test has been completed. No action is taken.

To write your own routine for the powerout action, you create shell script named powerout and put it in the
lib directory (normally /etc/apcupsd). When the powerout action is invoked by apcupsd, apccontrol will
first give control to your script. If you want apccontrol to continue with the default action, simply exit your
script with an exit status of zero. If you do not want apccontrol to continue with the default action, your script
should exit with the special exit code of 99. However, in this case, please be aware that you must ensure
proper shutdown of your machine if necessary.

Some sample scripts (onbattery and mainsback) that email power failure messages can be found in the
examples directory of the source code.

Chapter 11. Master/Slave Configurations

Table of Contents

Configuration Directives
Master/Slave Problems

Master/Slave Shutdown
Master/Slave Networking using NIS and the NET Driver

Network Problems with Master/Slave Configurations

apcupsd User's Manual

Chapter 11. Master/Slave Configurations 64

Error Messages from a Master Configuration
Error Messages from a Slave Configuration
Master/Slave Connection Not Working

If you have two or more computers that are powered by the same UPS and they are connected by a network,
you can configure apcupsd so that the computer that controls the UPS (connected by the serial port or USB
port), which is called the master, can provide information to other machines powered by the UPS, called
slaves. When the master detects a power failure, it will notify all the slaves (maximum of twenty). If the
master detects that the battery is low, it will also notify the slave so that the slave may perform a shutdown.

In addition, in cases where you wish to keep the master up longer than the slave, you can configure the slave
to shut down in a predetermined time after the UPS goes on batteries.

If a picture is worth a thousand words for you, please see Figure 1.1.

Configuration Directives

If you are setting up a master/slave configuration, you will be required to make some modifications to the
apcupsd.conf files after the build is done.

The minimum set of configuration directive changes needed to create a proper master and slave configuration
files is described in the Chapter 25 section of this manual.

The details of these directives are explained in the the section called â€œConfiguration Directives for Sharing
a UPSâ€� section of the Configuration chapter of this document.

In addition, sample master and slave configuration files can be found in the <src>/examples directory
(apcupsd.master.conf and apcupsd.slave.conf).

Master/Slave Problems

Master/Slave Shutdown

For additional details of shutting down a master/slave configuration, please see the Master/Slave Shutdown
section of the Shutdown chapter of the Technical Reference.

Master/Slave Networking using NIS and the NET Driver

It is also possible to implement a network of master/slave apcupsds using the new 3.10.x code and the net
driver. This mode of master/slave networking is considerably different from the old method described at the
beginning of this chapter. In the old code, there is a lot of configuration on both the master and slave side, and
the master polls or sends info to the slave. Using the net driver is much simpler. However, you should
carefully check that the slave does a proper shutdown. In the master/slave code, the master ensures the best it
can that the slave is shutdown or notified before it shuts down itself. On the other hand, using the net driver,
the master knows nothing about the slaves that may be listening and thus takes no special precautions to
ensure that the slaves receive the shutdown signal. Since the slave reads the master's data once per second
there should be no shutdown problems, and our experience confirms this. This question can only be answered
by carefully testing the shutdown.

apcupsd User's Manual

Configuration Directives 65

In this master/slave mode, the master is a standard stand alone configuration except that it must have
NETSERVER on in the configuration file and have an NISPORT nnn defined. Thus any apcupsd running in
this mode then becomes the master.

The slave then uses the net driver to connect to the master's NIS output. In this mode, the slave decides how
often to poll the master for the NIS information. The slave copy of apcupsd, have UPSTYPE net, which will
invoke the "network" driver. By setting this machine's DEVICE to be master−ip:master−NIS−port it will
automatically connect to the master and use the master's signals to shutdown the computer. In the example net
slave configuration file below, the slave uses the NIS information provided by the computer tibs on port 3551.

apcupsd.conf v1.1
UPSCABLE ether
UPSTYPE net
Specify the server name:port where NIS is running
DEVICE tibs:3551
LOCKFILE /var/lock
BATTERYLEVEL 5
MINUTES 3
TIMEOUT 0
ANNOY 300
ANNOYDELAY 60
NOLOGON disable
EVENTSFILE /etc/apcupsd/apcupsd.events
UPSCLASS standalone
UPSMODE disable
#
Use this to control the poll time.
the default is 60 or 1 minute
#
NETTIME 30

Network Problems with Master/Slave Configurations

When working with a master/slave configuration (one UPS powering more than one computer), the master
and slave communicate via the network. In many configurations, apcupsd is started before the network is
initialized. In this case, it is possible that the master will be unable to contact the slave. On apcupsd versions
prior to 3.8.0, this could cause apcupsd to error off. The solution to this problem is to either force apcupsd to
be started after the network and the DNS (fiddle the symbolic links in /etc/rc.d), or put the names of the slave
machines in your /etc/hosts file, or even more preferable, use IP addresses rather than machine names.
On some configurations, you may need to use fully qualified names (host.domain.xxx) rather than simple host
names.

Error Messages from a Master Configuration

In a master/slave configuration, you can get the following error messages from a master. The error message is
followed by a possible explanation:

Cannot resolve slave name XXX

To contact the slave, the slave name given in the configuration file must be resolved to an IP address. In this
case, apcupsd could not get the IP address. Either the slave name is incorrect, your DNS may not be working,
or you have started apcupsd during the boot process before the network is operational.

apcupsd User's Manual

Network Problems with Master/Slave Configurations 66

Got slave shutdown from SSS

This message should not be printed as it is not yet used.

Cannot write to slave SSS

This message occurs when the master attempts to send a message to the slave SSS and gets an error. It
indicates that either the slave machine is not responding (apcupsd died, the system crashed, ...) or that the
network is down.

Cannot read magic from slave SSS

This message indicates that the master attempted to read the code key from the slave SSS and it did not match
the value expected. A common cause of this problem is that the master and slave versions of apcupsd are not
the same. Please be sure you are running the same version of apcupsd on all your master and slave machines.

Connect to slave SSS failed

This message is logged when the master attempts to connect to slave SSS and no connection is accepted. The
most common cause of this problem is that the slave copy of apcuspd is not yet ready to accept connections or
is not running. Generally, apcupsd will retry the connection a bit later. If the problem is persistent, it can
indicate a network problem or the slave name on the SLAVE directive of the master's configuration file is
incorrect.

Cannot open stream socket

This indicates a fundamental networking problem on your system â€” either a lack of sufficient resources or
you have not configured TCP/IP operations.

Error Messages from a Slave Configuration

In a master/slave configuration, you can get the following error messages from a slave. The error message is
followed by a possible explanation:

Can't resolve master name MMM

This message is logged when the slave attempts to resolve the name given on the MASTER configuration
directive to an IP address. It probably means that the master name MMM is not defined, your DNS is not
properly working, or you have started apcupsd in the boot process before the network is initialized. Check the
name MMM, or use an explicit IP address on the MASTER configuration directive in the slave's configuration
file.

Cannot bind local address, probably already in use

This means that the slave has attempted to bind the port number so that it can listen for messages from the
master. This can occur if already have a copy of apcupsd running, or you have previously run apcupsd in the
past 5 or 10 minutes, because occasionally the operating system will not shutdown a port correctly for 5 to 10
minutes after a program exits. In this case, you can either wait a few minutes for the problem to go away, or
use a different port in both your master and slave configuration files.

apcupsd User's Manual

Error Messages from a Master Configuration 67

Socket accept error

The slave got an error waiting on the accept() system call. This is probably due to a fundamental networking
problem.

Unauthorized attempt from master MMM

The master named MMM (probably an IP address) contacted the slave but MMM is not the master that was
listed on the MASTER configuration directive in /etc/apcupsd.conf, and consequently, it is not authorized to
communicate with the slave. Please check that your MASTER and SLAVE names in your slave and master
configuration files respectively are correct.

Read failure from socket

The slave got an error reading the socket open to the master. This indicates a fundamental networking
problem.

Bad APC magic from master: MMM

The slave received a code key from the master that does not correspond to the one expected by the slave. The
most common cause of this problem is that you are running a different version of apcupsd on the master and
the slave. Please ensure that you are running the same version of apcupsd on all your master and slaves.

Bad user magic from master: MMM

This message indicates that the master and slave have previously communicated, but that the code key
transmitted with the most recent message from the master does not correspond to what the slave expects. This
problem is probably due to a network error or some other user or machine contacting the slave on the network
port.

Master/Slave Connection Not Working

Master/slave problems are usually related to one of the following items:

1.
Improper apcupsd.conf files. A good starting point are the master/slave example files in the examples
subdirectory of the source.

2.
Master or slave IP address or name incorrect. Try ping'ing each machine from the other using the
names or addresses that you have put in the respective apcupsd.conf files.

3.
Make sure no other program is using socket number 6666 or change the NETPORT directive in both
apcupsd.conf files.

4.
Make sure you are using the same version of apcupsd on both the master and slave machines.

apcupsd User's Manual

Error Messages from a Slave Configuration 68

Chapter 12. Controlling Multiple UPSes on one Machine

Table of Contents

Configuration
The First Copy of apcupsd
The Second Copy of apcupsd
Important Steps after Installation of the Second Copy

You may want to use your server to control multiple UPSes. This is possible by proper configuration and by
running one copy of apcupsd for each UPS to be controlled (recall the Figure 1.1).

Configuration

The way to accomplish the above is to ensure that none of the critical files used by each of the two copies of
apcupsd are the same. By using suitable configuration options, this is possible.

The First Copy of apcupsd

For example, assuming you have SmartUPSes in both cases, to configure and install the first copy of apcupsd,
which controls a UPS and Computer A, one could use the following configuration:

./configure \
 −−prefix=/usr \
 −−sbindir=/sbin \
 −−with−cgi−bin=/home/http/cgi−bin \
 −−enable−cgi \
 −−with−css−dir=/home/http/css \
 −−with−log−dir=/etc/apcupsd \
 −−with−serial−dev=/dev/ttyS0 \
 −−enable−pthreads \
 −−with−nis−port=3551 \
 −−enable−powerflute

This is pretty much a "normal" installation using many of the defaults. Once built and installed, this would
control the first UPS and cause a shutdown of the system when the batteries are low. This copy of apcupsd
will be started and stopped automatically when the system is booted and halted.

The Second Copy of apcupsd

To configure and install the second copy of apcupsd, which controls the second UPS and Computer B, you
could use the following configuration:

./configure \
 −−prefix=$HOME/apcupsd/bin \
 −−sbindir=$HOME/apcupsd/bin \
 −−enable−cgi \
 −−with−cgi−bin=$HOME/apcupsd/bin \
 −−with−log−dir=$HOME/apcupsd/bin \
 −−with−pid−dir=$HOME/apcupsd/bin \
 −−sysconfdir=$HOME/apcupsd/bin \
 −−with−lock−dir=$HOME/apcupsd/bin \
 −−with−pwrfail−dir=$HOME/apcupsd/bin \

apcupsd User's Manual

Chapter 12. Controlling Multiple UPSes on one Machine 69

 −−with−serial−dev=/dev/ttyS1 \
 −−enable−pthreads \
 −−with−nis−port=7001 \
 −−disable−install−distdir

Note, in this case, we use considerably more configuration options to ensure that the system files are placed in
a different directory ($HOME/apcupsd/bin). We have also selected a different serial port and a different
NIS (Network Information Server) port. And finally, we have used the −−disable−install−distdir
option, which prevents make install from doing the final system installation (i.e. the modification of the halt
script) since this was previously done.

Important Steps after Installation of the Second Copy

After the make install of the second copy of apcupsd there are a number important steps to complete. You
must either remove or modify the file $HOME/apcupsd/bin/apccontrol, so that it will not shutdown
Computer A when the battery of UPS 2 is low. One suggestion is to copy examples/safe.apccontrol
into $HOME/apcupsd/bin/apccontrol. Alternatively, you could edit the
$HOME/apcupsd/bin/apccontrol and delete all statements that attempt to shutdown the machine.
Another important step is to find a way to shutdown Computer B when UPS 2's battery is low. Probably the
simplest way to do this is to edit $HOME/apcupsd/bin/apcupsd.conf on Computer A so that this
second copy of apcupsd becomes a network master. Then install a standard slave configuration on Computer
B. Please remember that if UPS 1's batteries are exhausted before UPS 2's batteries, Computer B may not be
properly shutdown. And at the current time, there is no simple means to make the two copies of apcupsd
running on Computer A communicate. Thus there are certain risks in such a configuration. However, these
configurations can be very useful for powering electronic equipment and such.

If Computer B is vitally important, it would probably be better to purchase a serial port card for it, or perhaps
use a USB UPS. To ensure that it is properly shutdown if Computer A goes down, you could run a second
copy of apcupsd on Computer B as a slave connected to the main copy of apcupsd on Computer A. Thus
Computer B would be running two slaves, one driven by the master controlling UPS 1 and the other by the
master controlling UPS 2, and Computer B could be shutdown by the first master that signaled it to do so.

Chapter 13. Support for SNMP UPSes

Table of Contents

Connecting an SNMP UPS
Building and Installing apcupsd
SNMP Specific Information
Known Problems

snmp To run apcupsd with an SNMP UPS, you need the following things:

•
An SNMP UPS, for example a Web/SNMP card installed into the SmartSlot.

•
apcupsd version 3.10.0 or higher

•
Net−SNMP library (previously known as ucd−snmp) installed

apcupsd User's Manual

Important Steps after Installation of the Second Copy 70

http://www.net-snmp.org/

Connecting an SNMP UPS

The Simple Network Management Protocol provides an interface to connect to remote devices through the
network. apcupsd is now capable of using the SNMP interface of an SNMP−enabled UPS to communicate
with an UPS. Currently apcupsd supports only APC's PowerNet MIB. To enable the SNMP support it is
enough to configure the correct device in your apcupsd.conf configuration file. The directive needed for this
configuration is:

DEVICE 192.168.100.2:161:APC:private

where the directive is made by four parts:

•
IP address of the remote UPS

•
Remote SNMP port

•
Kind of remote SNMP agent, currently can only be "APC" for APC's powernet MIB

•
The read−write community string, usually it is "private" for read−write access.

Building and Installing apcupsd

Follow the instructions in Chapter 2l, being sure to include the following options (in addition to any others
you need) on the ./configure line:

./configure \
−−with−serial−dev=<your−SNMP−device> \
−−with−upstype=snmp \
−−with−upscable=smart \
−−enable−pthreads \
−−enable−snmp

SNMP Specific Information

The SNMP connection gives less information compared to a serial smart cable. This is not a problem as the
most useful information is given, together with a number of secondary parameters that are informative enough
to run safely your UPS.

Known Problems

Currently (as of 3.10.0) the code to power off the UPS needs special configuration. The killpower command
for SNMP UPSes can not be issued during shutdown as typically at some time during shutdown operations the
network stack is stopped. To overcome this problem it is needed to modify the /etc/rc.d/apcupsd
system control script to tell apcupsd to issue the power down command (killpower) to the UPS immediately
before apcupsd initiates the system shutdown. For this reason it is paramount to set your UPS grace time to a
value greater than 120 seconds to allow for clean shutdown operations before the UPS removes the power

apcupsd User's Manual

Building and Installing apcupsd 71

from its plugs. To enable correct shutdown operation during powerdown do the following:

•
Connect to your Web/SNMP card using your favorite web browser, go to the UPS configuration menu
and change the "Shutdown Delay" parameter to 180 seconds or more, depending on how much time
your system shutdown requires to umount all the filesystems.

•
Change /etc/rc.d/apcupsd script adding the '−−kill−on−powerfail' to the apcupsd invocation.

•
Restart your apcupsd

With this setup your UPS operations should be safe.

Chapter 14. Alternate Ways To Run The Network Information
Server

Table of Contents

Running the server as a child of apcupsd
Running apcnisd from INETD
Running apcnisd Standalome

apcupsd maintains STATUS and EVENTS data concerning the UPS and its operation. This information can
be obtained over the network using either apcnisd or apcupsd's internal network information server, which is
essentially the same code as apcnisd but compiled into apcupsd. Clients on the network make a connection to
the information server and send requests for status or events data, which the server then transmits to them.

The information served to the network by this interface should not be confused with master/slave mode that
shares a UPS between two or more computers. That code is described in the section called â€œConfiguration
Directives for Sharing a UPSâ€� of this documentation.

There are three different ways to run the information server depending on your requirements and preferences.
It can be run as 1. a standalone program, 2. a standalone program invoked by the inetd daemon, or 3. as a
thread (or child process) of apcupsd (default configuration). We recommend option 3 unless you have specific
reasons to do otherwise. Option 3 is what is configured in by default.

Running the server as a child of apcupsd

This is probably the simplest way to run the network information server. To do so, you simply make sure the
NETSERVER directive in /etc/apcupsd/apcupsd.conf is on, and then stop and restart apcupsd. It
will automatically create the server thread (or spawn an additional child process named apcnis) to handle
network clients. In the case where pthreads are enabled, a new thread will be created rather than a child
process to handle the network information requests. Note, the above modification should not be necessary if
you use the default apcupsd.conf, since it is already turned on.

Although this method is simple, it affords no protection from the outside world accessing your network server
unless you are behind a firewall. In addition, if there is a bug in the network server code, or if a malicious user

apcupsd User's Manual

Chapter 14. Alternate Ways To Run The Network Information Server 72

sends bad data, it may be possible for apcnis to die, in which case, though it is not supposed to, apcupsd may
also exit, thus leaving your machine without shutdown protection. In addition, since apcupsd is running at
root level, all threads or any child process will do so also. That being said, most of us prefer to run the server
this way.

With apcupsd version 3.8.2 and later, you may enable the TCP Libwrap subroutines to add additional
security. In this case, access to the network server will be controlled by the statements you put in
/etc/hosts.allow.

Running apcnisd from INETD

This is probably the most secure and most desirable way of running the network information server.
Unfortunately, it is a bit more complicated to set up. However, once running, the server remains unexecuted
until a connection is attempted, at which point, inetd will invoke apcnisd. Once apcnisd has responded to the
client's requests, it will exit. None of the disadvantages of running it standalone apply since apcnisd runs only
when a client is requesting data. Note, running in this manner works only if you are using the old forking code
and have pthreads explicitly turned off. The pthreads version of apcupsd does not support the shared memory
calls that are necessary for apcnisd to access the internal state of apcupsd.

An additional advantage of this method of running the network information server is that you can call it with a
TCP wrapper and thus use access control lists (ACL) such as hosts.allow. See the man pages for
hosts.allow for more details.

To configure apcnisd to run from INETD, you must first put an entry in /etc/services as follows:

apcnisd 3551/tcp

This defines the port number (3551) and the service (TCP) that apcnisd will be using. This statement can go
anywhere in the services file. Normally, one adds local changes such as these to the end of the file.

Next, you must modify /etc/inetd.conf to have the following line:

apcnisd stream tcp nowait root /usr/sbin/tcpd /sbin/apcnisd −i

If you do not want to run the TCP wrapper, then the line should be entered as follows (not tested):

apcnisd stream tcp nowait root /sbin/apcnisd −i

Please check that the file locations are correct for your system. Also, note that the −i option is necessary so
that apcnisd knows that it was called by INETD. Before restarting INETD, first ensure that the NETSERVER
directive in /etc/apcupsd/apcupsd.conf is set to off. This is necessary to prevent apcupsd from
starting a child process that acts as a server. If you change NETSERVER, you must stop and restart apcupsd
for the configuration change to be effective.

Finally, you must restart INETD for it to listen on port 3551. On a Red Hat system, you can do so by:

/etc/rc.d/init.d/inet reload

At this point, when a client attempts to make a connection on port 3551, INETD will automatically invoke
apcnisd.

apcupsd User's Manual

Running apcnisd from INETD 73

Running apcnisd Standalome

This is probably the least desirable of the three ways to run an apcupsd network information server because if
apcupsd is stopped, you must also stop apcnisd before you can restart apcupsd. This is because apcnisd, when
run standalone, holds the shared memory buffer by which apcnisd and apcupsd communicate. This prevents a
new execution of apcupsd from creating it.

To execute apcnisd in standalone mode, first ensure that the NETSERVER directive in
/etc/apcupsd/apcupsd.conf is set to off. This is necessary to prevent apcupsd from starting a child process
that acts as a server. Restart apcupsd normally, then:

/sbin/apcnisd

The advantage of running the network information server standalone is that if for some reason, a client causes
the network server to crash, it will not affect the operation of apcupsd.

Chapter 15. apcupsd System Logging

Table of Contents

Logging Types
Implementation Details
Developer's Notes

The apcupsd philosophy is that all logging should be done through the syslog facility (see: man syslog). This
is now implemented with the exceptions that STATUS logging, for compatibility, with prior versions is still
done to a file, and EVENTS logging can be directed to a "temporary" file so that it can be reported by the
network information server.

Logging Types

apcupsd splits its logging into four separate types called:

1.
DEBUG

2.
DATA

3.
STATUS

4.
EVENTS

Debug logging consists of debug messages. Normally these are turned on only by developers, and currently
there exist very few of these debug messages.

apcupsd User's Manual

Running apcnisd Standalome 74

DATA Logging

Data logging consists of periodically logging important data concerning the operation of the UPS. See the
Data Logging section of this manual for more details.

STATUS Logging

Status logging consists of logging all available information known about your UPS as a series of ASCII
records. This information is also made available by the apcupsd network information server.

For more details on STATUS logging, see the Status section of the Technical Reference.

EVENTS Logging

Events logging consists of logging events as they happen. For example, successful startup, power fail, battery
failure, system shutdown, ...

See the manual section on customizing event handling for more details.

Implementation Details

In order to ensure that the data logged to syslog() can be directed to different files, I have assigned syslog()
levels to each of our four types of data as follows:

1.
1. DEBUG logging has level LOG_DEBUG

2.
2. DATA logging has level LOG_INFO

3.
3. STATUS logging has level LOG_NOTICE

4.
4. EVENTS logging has levels LOG_WARNING, LOG_ERR, LOG_CRIT, and LOG_ALERT

It should be noted that more work needs to be done on the precise definitions of each of the levels for
EVENTS logging. Currently, it is roughly broken down as follows:

LOG_WARNING general information such as startup, etc.

LOG_ERR an error condition detected, e.g. communications problem with the UPS.

LOG_CRIT a serious problem has occurred such as power failure, running on UPS batteries, ...

LOG_ALERT a condition that needs immediate attention such as pending system shutdown, ...

The default Facility for syslog() logging is DAEMON, although this can be changed with the FACILITY
directive in apcupsd.conf. In the following example, we should the facility as local0.

apcupsd User's Manual

DATA Logging 75

More work needs to be done to the code to ensure that it corresponds to the above levels.

As a practical example of how to setup your syslog() to use the new logging feature, suppose you wish to
direct all DATA logging to a file named /var/log/apcupsd.data, all EVENTS to the standard
/var/log/messages file (to be mixed with other system messages), and at the same time send all
EVENTS to /var/log/apcupsd.events, and finally, you want to send all STATUS logging to the
named pipe /var/log/apcupsd.status

First as root, you create the named pipe:

mkfifo /var/log/apcupsd.status

Change its permissions as necessary or use the −m option to set them when creating the pipe.

Then you modify your /etc/syslog.conf file to direct the appropriate levels of messages where you
want them. To accomplish the above, my syslog.conf file looks like:

exclude all apcupsd info by default
*.info;local0.none /var/log/messages

Everything for apcupsd goes here
local0.info;local0.!notice /var/log/apcupsd.data
local0.notice;local0.!warn |/var/log/apcupsd.status
local0.warn /var/log/apcupsd.events
local0.warn /var/log/messages

Developer's Notes

All logging functions and all error reporting are now done through the log_event() subroutine call. Exceptions
to this are: initialization code where printf's are done, and writing to the status file. Once the initialization
code has completed and the fork() to become a daemon is done, no printf's are used. log_event() has exactly
the same format as syslog(). In fact, the subroutine consists of only a syslog() call. If anyone really wishes to
log to a file, the code to do so can easily be done by adding code to log_event() in apclog.c.

Legacy Installation: Windows
Table of Contents

16. The Windows Version of apcupsd
Installation
Installation Directory
Testing
Upgrading
Post Installation
Problem Areas
Utility Functions
Disclaimer
Email Notification of Events
Killpower under Windows
Power Down During Shutdown
Command Line Options Specific to the Windows Version

apcupsd User's Manual

Legacy Installation: Windows 76

Building the Win32 Version from the Source

Chapter 16. The Windows Version of apcupsd

Table of Contents

Installation
Installation Directory
Testing
Upgrading
Post Installation
Problem Areas
Utility Functions
Disclaimer
Email Notification of Events
Killpower under Windows
Power Down During Shutdown
Command Line Options Specific to the Windows Version
Building the Win32 Version from the Source

The Windows version of apcupsd has been tested on Win95, Win98, WinMe, WinNT, WinXP, and Win2000
systems. This version of apcupsd has been built to run under the CYGWIN environment, which provides
many of the features of Unix on Windows systems. It also permitted a rapid port with very few source code
changes, which means that the Windows version is for the most part running code that has long proved stable
on Unix systems. Even though the Win32 version of apcupsd is a port that relies on many Unix features, it is
just the same a true Windows program. When running, it is perfectly integrated with Windows and displays its
icon in the system icon tray, and provides a system tray menu to obtain additional information on how
apcupsd is running (status and events dialogue boxes). If so desired, it can also be stopped by using the
system tray menu, though this should normally never be necessary.

Once installed apcupsd normally runs as a system service. This means that it is immediately started by the
operating system when the system is booted, and runs in the background even if there is no user logged into
the system.

Installation

Normally, you will install the Windows version of apcupsd from the binaries. This install is somewhat Unix
like since you do many parts of the installation by hand. To install the binaries, you need WinZip.

•
Simply double click on the winapcupsd−3.8.5.tar.gz icon. The actual name of the icon will
vary from one release version to another.

apcupsd User's Manual

Chapter 16. The Windows Version of apcupsd 77

•
When Zip says that it has one file and asks if it should unpack it into a temporary file, respond with
Yes.

•
Ensure that you extract all files and that the extraction will go into C:\

If you wish to install the package elsewhere, please note that you will need to proceed with a manual
installation, which is not particularly easy as you must rebuild the source and change the configuration file as
well.

apcupsd User's Manual

Chapter 16. The Windows Version of apcupsd 78

This installation assumes that you do not have CYGWIN installed on your computer. If you do, and you use
mount points, you may need to do a special manual installation.

Once you have unzipped the binaries, open a window pointing to the binary installation folder (normally
c:\apcupsd). This folder should contain folders with the name bin, etc, examples, and manual. If and when
you no longer need them, the examples and manual sub−folders of the c:\apcupsd directory may be
removed.

Continuing the installation process:

•
Open the directory c:\apcupsd\etc\apcupsd in the Windows Explorer by Clicking on the
apcupsd folder then on the etc folder, then on the apcupsd folder. Finally double click on the file
apcupsd.conf and edit it to contain the values appropriate for your site. In most cases, no changes
will be needed, but if you are not using COM1 for your serial port, you will need to set the DEVICE
configuration directive to the correct serial port. Note, if you are using WinNT or Win2000, the
operating system may probe the port attempting to attach a serial mouse. This will cause apcupsd to
be unable to communicate with the serial port. If this happens, or out of precaution, you can edit the
c:\boot.ini file. Find the line that looks something like the following:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"

and add the following to the end of the line: /NoSerialMice:COM1 (or COM2 depending on what you
want to use). The new line should look similar to:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"
/NoSerialMice:COM1

where the only thing you have changed is to append to the end of the line. This addition will prevent
the operating system from interferring with apcupsd

•
Then return to c:\apcupsd and open on the bin folder so that you see its contents.

•
To do the final step of installation, double click on the setup.bat program. This script will setup
the appropriate mount points for the directories that apcupsd uses, it will install apcupsd in the system
registry, and on Windows 98, it will start apcupsd running.

If everything went well, you will get something similar to the following output in a DOS shell
window:

apcupsd User's Manual

Chapter 16. The Windows Version of apcupsd 79

What is important to verify in the DOS window is that the root directory \ is mounted on device c:\.

The DOS window will be followed immediately by a Windows dialogue box as follows:

•
On Windows 98, to actually start the service, either reboot the machine, which is not necessary, or
open a DOS shell window, and type the following commands:

 cd c:\apcupsd\bin
 apcupsd /service

Alternatively, you can go to the c:\apcupsd\bin folder with the Explorer and double click on the
Start icon.

•
On Windows NT, to start the service, either reboot the machine, which is not necessary, or go to the
Control Panel, open the Services folder and start the apcupsd daemon program by selecting the
apcupsd UPS Server and then clicking on the Start button as shown below:

apcupsd User's Manual

Chapter 16. The Windows Version of apcupsd 80

If the Services dialog reports a problem, it is normally because your DEVICE statement does not
contain the correct serial port name.

You probably should also click on the Startup... button to ensure that the correct defaults are set. The
dialogue box that appears should have Startup Type set to Automatic and Logon should be set to System
Account with Allow Service to Interact with Desktop checked. If these values are not set correctly by
default, please change them otherwise apcupsd will not work.

For WinXP systems (and probably Win2K), the dialogs are a bit different from those shown here for WinNT,
but he concept is the same. You get to the Services dialog by clicking on: Control Panel −> Administrative
Tools −> Component Services. The apcupsd service should appear in the right hand window when you click
on Services (Local) in the left hand menu window.

That should complete the installation process. When the system tray icon turns from a battery into a plug
, right click on it and a menu will appear. Select the Events item, and the Events dialogue box should

appear. There should be no error messages. By right clicking again on the system tray plug and selecting the
Status item, you can verify that all the values for your UPS are correct.

When the UPS switches to the battery, the battery icon will reappear in the system tray. While the UPS is
online, if the battery is not at least 99% charged, the plug icon will become a plug with a lightning bolt in the
middle to indicate that the battery is charging.

Installation Directory

The Win32 version of apcupsd must reside in the c:\apcupsd\ directory, and there must be a c:\tmp
directory on your machine. The installation will do this automatically, and we recommend that you do not
attempt to place apcupsd in another directory. If you do so, you are on your own, and you will need to do a
rebuild of the source.

apcupsd User's Manual

Installation Directory 81

Testing

It would be hard to overemphasize the need to do a full testing of your installation of apcupsd as there are a
number of reasons why it may not behave properly in a real power failure situation.

Please read Chapter 4 of this document for general instructions on testing the Win32 version. However, on
Win32 systems, there is no Unix system log file, so if something goes wrong, look in the file
c:\apcupsd\etc\apcupsd\apcupsd.events where apcupsd normally logs its events, and you will
generally find more detailed information on why the program is not working. The most common cause of
problems is either improper configuration of the cable type, or an incorrect address for the serial port.

Upgrading

On Win98 and Win95 systems, to upgrade to a new release, simply stop apcupsd by using the tray icon and
selecting the Close apcupsd menu item, or by double clicking on the Stop icon located in the
c:\apcupsd\bin directory, then apply the upgrade and restart apcupsd.

On WinNT systems (and Win2000 systems), you may stop apcupsd as indicated abover or alternatively you
may stop apcupsd by using the Services item in the Control Panel. In addition, at least on my system, there
seems to be a WinNT bug that causes the system to prevent apcupsd.exe from being overwritten even though
the file is no longer being used. This is manifested by an error message when attempting load a new version
and overwrite the old apcupsd.exe (the extract part of WinZip as described above). To circumvent this
problem (if it happens to you), after shutting down the running version of apcupsd, through the Services
dialogue in the Control Panel, first click on the Stop button:

then click on the Startup ... button, and in the Startup dialogue select the Disabled button to disable apcupsd:

apcupsd User's Manual

Testing 82

After closing the dialogues, reboot the system, typical of Microsoft :−(. When the system comes back up,
apcupsd will not be automatically launched as a service, and you can install the new version. To reinstate
apcupsd as an automatic service, using the Control Panel: reset apcupsd to Automatic startup in the Startup
dialogue, then restart apcupsd in the Services dialogue as shown above in the installation instructions.
Frequently after an upgrade, you will click on the Start button and after a few seconds, the system reports that
it failed to start. The cause of this problem is unknown, but the solution is simply to click again on the Start
button.

Post Installation

After installing apcupsd and before running it, you should check the contents of two files to ensure that it is
configured properly for your system. The first is c:\apcupsd\etc\apcupsd\apcupsd.conf. You
will probably need to change your UPSCABLE directive, your UPSTYPE and possibly your DEVICE
directives. Please refer to the configuration section of this manual for more details.

The second file that you should examine is c:\apcupsd\etc\apcupsd\apccontrol. This file is
called by apcupsd when events (power loss, etc) are generated. It permits the user to program handling the
event. In particular, it permits the user to be notified of the events. For the Win32 version, each event is
programmed to display a Windows popup dialogue box. If your machine is mostly unattended, you may want
to comment out some of these popup dialogue boxes by putting a pound sign (#) in column one of the
appropriate line.

Problem Areas

In addition to possible problems of reinstallation or upgrade on WinNT systems, as noted above, we have
discovered the following problem: On some Windows systems, the domain resolution does not seem to work
if you have not configured a DNS server in the Network section of the Control Panel. This problem should be
apparent only when running a master or a slave configuration. In this case, when you specify the name of the

apcupsd User's Manual

Post Installation 83

master or the slave machine(s) in your apcupsd.conf file, apcupsd will be unable to resolve the name to a
valid IP address. To circumvent this problem, simply enter all machine addresses as an IP address rather than
a domain name, or alternatively, ensure that you have a valid DNS server configured on your system (often
not the case on Win32 systems). For example, instead of using the directive "MASTER my.master.com" use
something like "MASTER 192.168.1.54" where you replace the IP address with your actual IP address.

Also, on WinNT systems, the PIF files in /apcupsd/bin used for starting and stopping apcupsd do not
work. Use the services control panel instead.

On Win95 systems, there are reports that the PIF files do not work. If you find that to be the case, the simplest
solution is to use the batch files that we have supplied in the c:/apcupsd/bin directory. Also, on Win95
systems, we have an unconfirmed report that indicates that apcupsd does not start automatically as a service
even though the Registry has been properly updated. If you experience this problem, a work around is to put a
shortcut to apcupsd in the StartUp folder.

As noted above, after an upgrade, you may need to start apcupsd several times before it will actually run.

On WinNT, WinXP, and Win2K systems, you can examine the System Applications log to which apcupsd
writes Windows error messages during startup.

Regardless of which Windows system you are running, apcupsd logs most error messages to
c:\apcupsd\etc\apcupsd\apcupsd.events. This type error messages such as configuration file
not found, etc are written to this file.

Utility Functions

The directory c:\apcupsd\bin contains six utility routines (actually .pif files) that you may find useful.
They are:

Start
Stop
Install
Uninstall
ups−events
ups−status

Any of these utilities may be used on any system, with the exception of the Start utility, which cannot be used
on WinNT and Win2000 systems. On those systems, the apcupsd service must always be started through the
Services sub−dialogue of the Control Panel.

The Install and Uninstall utilities install and uninstall apcupsd from the system registry only. All other pieces
(files) of apcupsd remain intact. It is not absolutely necessary for apcupsd to be installed in the registry as it
can run as a regular program. However, if it is not installed in the registry, it cannot be run as a service.

The functions of Stop, ups−events, and ups−status can be more easily invoked by right clicking on the
apcupsd icon in the system tray and selecting the desired function from the popup menu.

Disclaimer

Some of the features such as EEPROM programming have not been exhaustively tested on Win32 systems. If
at all possible, we recommend not to use it as a network master on Win95, Win98, and WinMe due to the

apcupsd User's Manual

Utility Functions 84

instability of those operating systems.

Some items to note:

•
This version of apcupsd will not attempt to shut off the UPS power when the battery is exhausted.
Thus if the power returns before the UPS completely shuts down, your computer may not reboot
automatically. This is because we do not know how to regain control after the disks have been synced
in order to shut off the UPS power.

Nevertheless, it is possible to use the −−kill−on−powerfail option on the apcupsd command
line, but the use of this option could cause the power to be cut off while your machine is still running.
See the section called â€œShutdown Sequenceâ€� of this document for a more complete discussion
of this subject. If you are still interested in trying to get this to work, please look at the code that is
commented out in c:\apcupsd\etc\apcupsd\apccontrol under the doshutdown case.

An alternative to the −−kill−on−powerfail option is to use the KILLDELAY configuration
directive.

This configuration directive is appropriate on Windows machines where apcupsd continues to run
even when the machine is halted (as is the case on most NT machines).

•
When apcupsd detects important events, it calls c:\apcupsd\etc\apcupsd\apccontrol,
which is a Unix shell script. You may modify this script to suit your particular needs. Currently, it
puts a Windows dialogue on the screen with a brief explanation of the event. If these dialogues annoy
you, you can remove or comment out the calls to popup from this file.

Email Notification of Events

On Win95/98 systems, it is possible to receive notification of apcupsd events that are passed to apccontrol.
This is possible using a simple email program that unfortunately is not functioning 100% correctly. In
addition, I (Kern) was not able to make this program work on WinNT while apcupsd is running as a service
under the system account (it works fine with any user account).

If you wish to try this program on Win95/98 systems, look at the files named changeme, commfailure,
commok, onbattery, and mainsback in the directory c:\apcupsd\examples. To use them, you must
modify the SYSADMIN variable to have a valid email address, then copy the files into the directory
c:\apcupsd\etc\apcupsd.

Killpower under Windows

If your batteries become exhausted during a power failure and you want your machine to automatically reboot
when the power comes back, it is useful to implement the killpower feature of the UPS where apcupsd sends
the UPS the command to shut off the power. In doing so, the power will be cut to your PC and if your BIOS is
properly setup, the machine will automatically reboot when the power comes back. This is important for
servers.

This feature is implemented on Unix systems by first requesting a system shutdown. As a part of the
shutdown, apcupsd is terminated by the system, but the shutdown process executes a script where apcupsd is

apcupsd User's Manual

Email Notification of Events 85

recalled after the disks are synced and the machine is idle. Bacula then requests the UPS to shut off the power
(killpower).

Unfortunately on Windows, there is no such shutdown script that we are aware of and no way for apcupsd to
get control after the machine is idled. If this feature is important to you, it is possible to do it by telling
apcupsd to immediately issue the killpower command after issuing the shutdown request. The danger in doing
so is that if the machine is not sufficiently idled when the killpower takes place, the disks will need to be
rescanned (and there is a possibility of lost data however small). Generally, UPSes have a shutdown grace
period which gives sufficient time for the OS to shutdown before the power is cut.

To implement this feature, you need to add the −p option to the apcupsd command line that is executed by the
system. Currently the procedure is manual. You do so by editing the registry and changing the line:

c:\apcupsd\apcupsd.exe /service

found under the key:

HKEY_LOCAL_MACHINE Software\Microsoft\Windows\CurrentVersion\RunServices

to

c:\apcupsd\apcupsd.exe /service −p

If you have a Smart UPS, you can configure the kill power grace period, and you might want to set it to 3
minutes. If you have a dumb UPS, there is no grace period and you should not use this procedure. If you have
a Back−UPS CS or ES, these UPSes generally have a fixed grace period of 2 minutes, which is probably
sufficient.

Power Down During Shutdown

Our philosophy is to shutdown a computer but not to power it down itself (as opposed to having the UPS cut
the power as described above). That is we prefer to idle a computer but leave it running. This has the
advantage that in a power fail situation, if the killpower function described above does not work, the computer
will continue to draw down the batteries and the UPS will hopefully shutoff before the power is restore thus
permitting an automatic reboot.

Nevertheless some people prefer to do a full power down. To do so, you might want to get a copy of
PsShutdown, which does have a power down option. You can find it and a lot more useful software at:
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml. to use their shutdown program rather than the
apcupsd supplied version, you simply edit:

c:\apcupsd\etc\apcupsd\apccontrol

with any text editor and change our calls to shutdown to psshutdown.

Command Line Options Specific to the Windows Version

These options are not normally seen or used by the user, and are documented here only for information
purposes. At the current time, to change the default options, you must either manually run apcupsd or you
must manually edit the system registry and modify the appropriate entries.

apcupsd User's Manual

Power Down During Shutdown 86

http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

In order to avoid option clashes between the options necessary for apcupsd to run on Windows and the
standard apcupsd options, all Windows specific options are signaled with a forward slash character (/), while
as usual, the standard apcupsd options are signaled with a minus (−), or a minus minus (−−). All the standard
apcupsd options can be used on the Windows version. In addition, the following Windows only options are
implemented:

/servicehelper
Run the service helper application

/service
Start apcupsdas a service

/run
Run the apcupsd application

/install
Install apcupsd as a service in the system registry

/remove
Uninstall apcupsd from the system registry

/about
Show the apcupsd about dialogue box

/status
Show the apcupsd status dialogue box

/events
Show the apcupsd events dialogue box

/kill
Stop any running apcupsd

/help
Show the apcupsd help dialogue box

It is important to note that under normal circumstances the user should never need to use these options as they
are normally handled by the system automatically once apcupsd is installed. However, you may note these
options in some of the .pif files that have been created for your use.

Building the Win32 Version from the Source

If you have the source code, follow the standard procedures for building apcupsd on Unix in Chapter 2 of
this manual. Please don't forget to look at the system specifics for CYGWIN.

Legacy Installation: Serial−Line UPSes
Table of Contents

17. Overview of Serial−Interface UPSes

apcupsd User's Manual

Legacy Installation: Serial−Line UPSes 87

18. Connecting a Serial−Line UPS to a USB Port
19. Cables

Smart−Custom Cable for SmartUPSes
Smart Signalling Cable for BackUPS CS Models
Voltage−Signalling Cable for "dumb" UPSes
Other APC Cables that apcupsd Supports
Voltage Signalling Features Supported by Apcupsd for Various Cables
Voltage Signalling
The Back−UPS Office 500 signals
Analyses of APC Cables

940−0020B Cable Wiring
940−0020C Cable Wiring
940−0023A Cable Wiring
940−0095A Cable Wiring
940−0095B Cable Wiring
940−0119A Cable Wiring
BackOffice ES
BackUPS ES and CS in Serial mode with Cable 940−0128A

Win32 Implementation Restrictions for Simple UPSes
Internal Apcupsd Actions for Simple Cables
RS232 Wiring and Signal Conventions
Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin, Female End
Ioctl to RS232 Correspondence

20. Testing Serial−Line UPSes
Establishing Serial Port Connection
Using apctest on Serial−Line UPSses

Expected apctest Signals for a UPS
Expected apctest Signals for a BackUPS Pro

21. Troubleshooting Serial Line communications
Determining Which Voltage−Signaling Cable You Have
Once you have established serial communications

Bizarre Intermittent Behavior
22. Recalibrating the UPS Runtime

Status Logging On Serial−Line UPSes
23. DATA Logging

Chapter 17. Overview of Serial−Interface UPSes

If you have a UPS that communicates via serial port, you need to do two things before you can even think
about configuring the software. First, you need to figure out whether it's a dumb (voltage−signalling) UPS or
speaks the apcsmart protocol (see this discussion). Second, if you have an interface cable from APC, you need
to figure out what kind it is. If you don't have such a cable, you need to build one. A straight−through serial
cable won't work.

Chapter 18. Connecting a Serial−Line UPS to a USB Port

By using a special adaptor, you can connect your serial−line UPS to a USB port. If you would like to free up
your serial port and connect your existing serial port UPS to a USB port, it is possible if you have one of the
later kernels. You simply get a serial to USB adapter that is supported by the kernel, plug it in and make one
minor change to your apcupsd.conf file and away you go. (Kern adds: Thanks to Joe Acosta for this out

apcupsd User's Manual

Chapter 17. Overview of Serial−Interface UPSes 88

to me.)

The device that Joe Acosta and Kern are using is IOgear guc232a USB 2 serial adapter. There may be other
adapters that work equally well. If you know of one, please let us know.

At Kern's site, running Red Hat 7.1 with kernel 2.4.9−12, he simply changed his
/etc/apcupsd/apcupsd.conf configuration line to be:

DEVICE /dev/ttyUSB0

Depending on whether or not you have hotplug working, you may need to explicitly load the kernel modules
usbserial and pl2303. In Kern's case, this was not necessary.

In fact, it turns out the protocol adaptor isn't necessary if you have the right cable. The ports on APC USB
UPSes not only speak USB, but also serial apcsmart and dumb voltage−signalling as well! This is something
that one of our users discovered by accident. With the Custom RJ45 cable described below plugged into the
APC UPS USB socket at one end and the other end plugged into a serial port on your PC, any APPC USB
UPS will act as a serial−line device.

Chapter 19. Cables

Table of Contents

Smart−Custom Cable for SmartUPSes
Smart Signalling Cable for BackUPS CS Models
Voltage−Signalling Cable for "dumb" UPSes
Other APC Cables that apcupsd Supports
Voltage Signalling Features Supported by Apcupsd for Various Cables
Voltage Signalling
The Back−UPS Office 500 signals
Analyses of APC Cables

940−0020B Cable Wiring
940−0020C Cable Wiring
940−0023A Cable Wiring
940−0095A Cable Wiring
940−0095B Cable Wiring
940−0119A Cable Wiring
BackOffice ES
BackUPS ES and CS in Serial mode with Cable 940−0128A

Win32 Implementation Restrictions for Simple UPSes
Internal Apcupsd Actions for Simple Cables
RS232 Wiring and Signal Conventions
Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin, Female End
Ioctl to RS232 Correspondence

You can either use the cable that came with your UPS (the easiest if we support it) or you can make your own
cable. We recommend that you obtain a supported cable directly from APC.

If you already have an APC cable, you can determine what kind it is by examining the flat sides of the two
connectors where you will find the cable number embossed into the plastic. It is generally on one side of the

apcupsd User's Manual

Chapter 19. Cables 89

male connector.

To make your own cable you must first know whether you have a UPS that speaks the apcsmart protocol or a
"dumb" UPS that uses serial port line voltage signalling.

If you have an apcmart UPS, and you build your own cable, build a Smart−Custom cable. If you have a
voltage−Signalling or dumb UPS, build a Simple−Custom cable. If you have a BackUPS CS with a RJ45
connector, you can build your own Custom−RJ45 cable.

Smart−Custom Cable for SmartUPSes

 SMART−CUSTOM CABLE

Signal Computer UPS
 DB9F DB9M
 RxD 2 −−−−−−−−−−−−−−−−−−−− 2 TxD Send
 TxD 3 −−−−−−−−−−−−−−−−−−−− 1 RxD Receive
 GND 5 −−−−−−−−−−−−−−−−−−−− 9 Ground

When using this cable with apcupsd specify the following in apcupsd.conf:

If you have an OS that requires DCD or RTS to be set before you can receive input, you might try building the
standard APC Smart 940−0024C cable listed below.

UPSCABLE smart
UPSTYPE apcsmart
DEVICE /dev/ttyS0 (or whatever your serial port is)

If you wish to build the standard cable furnished by APC (940−0024C), use the following diagram.

 APC Smart Cable 940−0024C

Signal Computer UPS
 DB9F DB9M
 RxD 2 −−−−−−−−−−−−−−−−−−−− 2 TxD Send
 TxD 3 −−−−−−−−−−−−−−−−−−−− 1 RxD Receive
 DCD 1 −−*
 |
 DTR 4 −−*
 GND 5 −−−−−−−−−−−−−−−−−−−− 9 Ground
 RTS 7 −−*
 |
 CTS 8 −−*

Smart Signalling Cable for BackUPS CS Models

If you have a BackUPS CS, you are probably either using it with the USB cable that is supplied or with the

apcupsd User's Manual

Smart−Custom Cable for SmartUPSes 90

940−0128A supplied by APC, which permits running the UPS in dumb mode. By building your own cable,
you can now run the BackUPS CS models (and perhaps also the ES models) using smart signalling and have
all the same information that is available as running it in USB mode.

The jack in the UPS is actually a 10 pin RJ45. However, you can just as easily use a 8 pin RJ45 connector,
which is more standard (ethernet TX, and ISDN connector). It is easy to construct the cable by cutting off one
end of a standard RJ45−8 ethernet cable and wiring the other end (three wires) into a standard DB9F female
serial port connector.

Below, you will find a diagram for the CUSTOM−RJ45 cable:

 CUSTOM−RJ45 CABLE

Signal Computer UPS UPS
 DB9F RJ45−8 RJ45−10
 RxD 2 −−−−−−−−−−−−−−−− 1 2 TxD Send
 TxD 3 −−−−−−−−−−−−−−−− 7 8 RxD Receive
 GND 5 −−−−−−−−−−−−−−−− 6 7 Ground

The RJ45−8 pins are: looking at the end of the connector:

 8 7 6 5 4 3 2 1

| |
| |
−−−−−−−−−−−−−−−−−−−
 |____|

The RJ45−10 pins are: looking at the end of the connector:

10 9 8 7 6 5 4 3 2 1

| |
| |
−−−−−−−−−−−−−−−−−−−−−−−
 |____|

For the serial port DB9F connector, the pin numbers are stamped in the plastic near each pin. In addition,
there is a diagram near the end of this chapter.

When using this cable with apcupsd specify the following in apcupsd.conf:

UPSCABLE smart
UPSTYPE apcsmart
DEVICE /dev/ttyS0 (or whatever your serial port is)

The information for constructing this cable was discovered and transmitted to us by slither_man. Many
thanks!

apcupsd User's Manual

Smart−Custom Cable for SmartUPSes 91

Voltage−Signalling Cable for "dumb" UPSes

NOTE. YOU DO NOT HAVE THIS CABLE UNLESS YOU BUILT IT YOURSELF. THE
SIMPLE−CUSTOM CABLE IS NOT AN APC PRODUCT.

For "dumb" UPSes using voltage signalling, if you are going to build your own cable, we recommend to make
the cable designed by the apcupsd team as follows:

 SIMPLE−CUSTOM CABLE

Signal Computer UPS
 DB9F 4.7K ohm DB9M
 DTR 4 −−[####]−−* DTR set to +5V by Apcupsd
 |
 CTS 8 −−−−−−−−−−*−−−−−−−−− 5 Low Battery
 GND 5 −−−−−−−−−−−−−−−−−−−− 4 Ground
 DCD 1 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 RTS 7 −−−−−−−−−−−−−−−−−−−− 1 Kill UPS Power

List of components one needs to make the Simple cable:

1.
One (1) male DB9 connector, use solder type connector only.

2.
One (1) female DB9/25F connector, use solder type connector only.

3.
One (1) 4.7K ohm 1/4 watt 5% resistor.

4.
resin core solder.

5.
three (3) to five (5) feet of 22AWG multi−stranded four or more conductor cable.

1.
Solder the resistor into pin 4 of the female DB9 connector.

2.
Next bend the resistor so that it connects to pin 8 of the female DB9 connector.

3.
Pin 8 on the female connector is also wired to pin 5 on the male DB9 connector. Solder both ends.

4.
Solder the other pins, pin 5 on the female DB9 to pin 4 on the male connector; pin 1 on the female
connector to pin 2 on the male connector; and pin 7 on the female connector to pin 1 on the male

apcupsd User's Manual

Voltage−Signalling Cable for "dumb" UPSes 92

connector.

5.
Double check your work.

We use the DTR (pin 4 on the female connector) as our +5 volts power for the circuit. It is used as the Vcc
pull−up voltage for testing the outputs on any "UPS by APC" in voltage−signalling mode. This cable may not
work on a BackUPS Pro if the default communications are in apcsmart mode. This cable is also valid for
"ShareUPS" BASIC Port mode and is also reported to work on SmartUPSes. However, the Smart Cable
described above is much simpler. To have a better idea of what is going on inside apcupsd, for the SIMPLE
cable apcupsd reads three signals and sets three:

Reads:
CD, which apcupsd uses for the On Battery signal when high.

CTS, which apcupsd uses for the Battery Low signal when high.

RxD (SR), which apcupsd uses for the Line Down
 signal when high. This signal isn't used for much.

Sets:
DTR, which apcupsd sets when it detects a power failure (generally
 5 to 10 seconds after the CD signal goes high). It
 clears this signal if the CD signal subsequently goes low
 −− i.e. power is restored.

TxD (ST), which apcupsd clears when it detects that the CD signal
 has gone low after having gone high − i.e. power is restored.

RTS, which apcupsd sets for the killpower signal −− to cause the UPS
 to shut off the power.

Please note that these actions apply only to the SIMPLE cable, the signals used on the other cables are
different.

Finally, here is another way of looking at the CUSTOM−SIMPLE cable:

APCUPSD SIMPLE−CUSTOM CABLE

Computer Side | Description of Cable | UPS Side
DB9f | DB25f | | DB9m | DB25m
4 | 20 | DTR (5vcc) *below | n/c |
8 | 5 | CTS (low battery) *below | <− 5 | 7
2 | 3 | RxD (no line voltage) *below | <− 3 | 2
5 | 7 | Ground (Signal) | 4 | 20
1 | 8 | CD (on battery from UPS) | <− 2 | 3
7 | 4 | RTS (kill UPS power) | −> 1 | 8
n/c | 1 | Frame/Case Gnd (optional) | 9 | 22

apcupsd User's Manual

Voltage−Signalling Cable for "dumb" UPSes 93

Note: the <− and −> indicate the signal direction.

Optional connections of original SIMPLE−CUSTOM specification
that are not used.

 4.7K ohm
 DTR 4 −−[####]−−* Note needed
 |
 RxD 2 −−−−−−−−−−*−−−−−−−−− 3 Not used by Apcupsd

When using this cable with apcupsd specify the following in apcupsd.conf:

UPSCABLE simple
UPSTYPE dumb
DEVICE /dev/ttyS0 (or whatever your serial port is)

Other APC Cables that apcupsd Supports

apcupsd will also support the following off the shelf cables that are supplied by APC

•
940−0020B/C Simple Signal Only, all models.

•
940−0023A Simple Signal Only, all models.

•
940−0119A Simple Signal Only, Back−UPS Office, and BackUPS ES.

•
940−0024[B/C/G] SmartMode Only, SU and BKPro only.

•
940−0095[A/B/C] PnP (Plug and Play), all models.

•
940−1524C SmartMode Only

•
940−0127A/B USB Cables

•
940−0128A Simple Signal Only, Back−UPS CS in serial mode.

Voltage Signalling Features Supported by Apcupsd for Various
Cables

The following table shows the features supported by the current version of apcupsd (3.8.5 or later) for various
cables running the UPS in voltage−signalling mode.

apcupsd User's Manual

Other APC Cables that apcupsd Supports 94

Cable Power LossLow Battery Kill Power Cable Disconnected

940−0020B Yes No Yes No

940−0020C Yes Yes Yes No

940−0023A Yes No No No

940−0119A Yes Yes Yes No

940−0127A Yes Yes Yes No

940−0128A Yes Yes Yes No

940−0095A/B/CYes Yes Yes No

simple Yes Yes Yes No

Voltage Signalling

Apparently, all APC voltage−signalling UPSes have the same signals on the output pins of the UPS. The
difference at the computer end is due to different cable configurations. Thus, by measuring the connectivity of
a cable, one can determine how to program the UPS. This is to be verified.

The signals presented or accepted by the UPS on its DB9 connector using the numbering scheme listed above
is:

UPS Pin Signal meaning
 1 <− Shutdown when set by computer for 1−5 seconds.
 2 −> On battery power (this signal is normally low but
 goes high when the UPS switches to batteries).
 3 −> Mains down (line fail) See Note 1 below.
 5 −> Low battery. See Note 1 below.
 6 −> Inverse of mains down signal. See Note 2 below.
 7 <− Turn on/off power (only on advanced UPSes only)

 Note 1: these two lines are normally open, but close when the
 appropriate signal is triggered. In fact, they are open collector
 outputs which are rated for a maximum of +40VDC and 25 mA. Thus
 the 4.7K ohm resistor used in the Custom Simple cable works
 quite well.

 Note 2: the same as note 1 except that the line is normally closed,
 and opens when the line voltage fails.

The Back−UPS Office 500 signals

The Back−UPS Office UPS has a telephone type jack as output, which looks like the following:

Looking at the end of the connector:

 6 5 4 3 2 1

 | |

apcupsd User's Manual

Voltage Signalling 95

 | |
 | |−−−−−−−−−−|
 |__|

It appears that the signals work as follows:

 UPS Signal meaning
1 (brown) <− Shutdown when set by computer for 1−5 seconds.
2 (black) −> On battery power
3 (blue) −> Low battery
4 (red) Signal ground
5 (yellow) <− Begin signalling on other pins
6 (none) none

Analyses of APC Cables

940−0020B Cable Wiring

This diagram is for informational purposes and is not complete. Although we do not know what the black box
semi−conductor contains, we believe that we understand its operation (many thanks to Lazar M. Fleysher for
working this out).

This cable can only be used on voltage−signalling UPSes, and provides the On Battery signal as well as kill
UPS power. Most recent evidence (Lazar's analysis) indicates that this cable under the right conditions may
provide the Low Battery signal. This is to be confirmed.

APC Part# − 940−0020B

Signal Computer UPS
 DB9F DB9M
 CTS 8 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 DTR 4 −−−−−−−−−−−−−−−−−−−− 1 Kill power
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 −−− *−−−− 9 Common
 DCD 1 −−−−|///|−−−−−−−−−−− 5 Low Battery
 |\\\|
 RTS 7 −−−−|///| (probably a
 −−− semi−conductor)

Thanks to Lazar M. Fleysher.

940−0020C Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable can only be used on voltage−signalling UPSes, and provides the On Battery
signal, the Low Battery signal as well as kill UPS power. In apcupsd versions 3.8.2 and prior, please set your

apcupsd User's Manual

Analyses of APC Cables 96

UPSCABLE to 940−0020B. In version 3.8.3 and later, you may specify the cable as 940−0020C. Please note
that this diagram may not be accurate.

APC Part# − 940−0020C

Signal Computer UPS
 DB9F DB9M
 CTS 8 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 DTR 4 −−−−−−−−−−−−−−−−−−−− 1 Kill power
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common
 RTS 7 −−−−−[93.5K ohm]−−−−− 5 Low Battery
 or semi−conductor

940−0023A Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable can only be used on voltage−signalling UPSes, and apparently only
provides the On Battery signal. As a consequence, this cable is pretty much useless, and we recommend that
you find a better cable because all APC UPSes support more than just On Battery. Please note that we are not
sure the following diagram is correct.

APC Part# − 940−0023A

Signal Computer UPS
 DB9F DB9M
 DCD 1 −−−−−−−−−−−−−−−−−−−− 2 On Battery

 3.3K ohm
 TxD 3 −−[####]−*
 |
 DTR 4 −−−−−−−−−*
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common

940−0095A Cable Wiring

This is the definitive wiring diagram for the 940−0095A cable submitted by Chris Hanson <cph at
zurich.ai.mit.edu>, who disassembled the original cable, destroying it in the process. He then built one from
his diagram and it works perfectly.

Construction and operation of the APC #940−0095A cable.
This cable is included with the APC Back−UPS Pro PNP series.

apcupsd User's Manual

940−0023A Cable Wiring 97

UPS end Computer end
−−−−−−− −−−−−−−−−−−−
 47k 47k
BATTERY−LOW (5) >−−−−R1−−−−*−−−−R2−−−−*−−−−< DTR,DSR,CTS (4,6,8)
 | |
 | |
 | / E
 | |/
 | B |
 *−−−−−−−| 2N3906 PNP
 |
 |\
 \ C
 |
 |
 *−−−−< DCD (1) Low Batt
 |
 |
 R 4.7k
 3
 |
 4.7k |
SHUTDOWN (1) >−−−−−−−−−−*−−−−R4−−−−*−−−−< TxD (3)
 |
 | 1N4148
 *−−−−K|−−−−−−−−−< RTS (7) Shutdown

POWER−FAIL (2) >−−−−−−−−−−−−−−−−−−−−−−−−−−< RxD,RI (2,9) On Batt

GROUND (4,9) >−−−−−−−−−−−−−−−−−−−−−−−−−−< GND (5)

Operation:

* DTR is "cable power" and must be held at SPACE. DSR or CTS may be
used as a loopback input to determine if the cable is plugged in.

* DCD is the "battery low" signal to the computer. A SPACE on this
line means the battery is low. This is signalled by BATTERY−LOW
being pulled down (it is probably open circuit normally).

Normally, the transistor is turned off, and DCD is held at the MARK
voltage by TxD. When BATTERY−LOW is pulled down, the voltage
divider R2/R1 biases the transistor so that it is turned on, causing
DCD to be pulled up to the SPACE voltage.

* TxD must be held at MARK; this is the default state when no data is
being transmitted. This sets the default bias for both DCD and
SHUTDOWN. If this line is an open circuit, then when BATTERY−LOW is
signalled, SHUTDOWN will be automatically signalled; this would be

apcupsd User's Manual

940−0023A Cable Wiring 98

true if the cable were plugged in to the UPS and not the computer,
or if the computer were turned off.

* RTS is the "shutdown" signal from the computer. A SPACE on this
line tells the UPS to shut down.

* RxD and RI are both the "power−fail" signals to the computer. A
MARK on this line means the power has failed.

* SPACE is a positive voltage, typically +12V. MARK is a negative
voltage, typically −12V. Linux appears to translate SPACE to a 1
and MARK to a 0.

940−0095B Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
one yourself.

APC Part# − 940−0095B

Signal Computer UPS
 DB9F DB9M
 DTR 4 −−−−*
 CTS 8 −−−−|
 DSR 6 −−−−|
 DCD 1 −−−−*
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common
 RI 9 −−−−*
 |
 RxD 2 −−−−*−−−−−−−−−−−−−−− 2 On Battery
 TxD 3 −−−−−−−−−−[####]−−−− 1 Kill UPS Power
 4.7K ohm

940−0119A Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable is used with the BackUPS Office UPSes.

APC Part# − 940−0119A

 UPS Computer
 pins pins Signal Signal meaning
1 (brown) 4,6 DSR DTR <− Shutdown when set by computer for 1−5 seconds.
2 (black) 8,9 RI CTS −> On battery power
3 (blue) 1,2 CD RxD −> Low battery
4 (red) 5 Ground

apcupsd User's Manual

940−0095B Cable Wiring 99

5 (yellow) 7 RTS <− Begin signalling on other pins
6 (none) none

BackOffice ES

The BackUPS ES has a straight through serial cable with no identification on the plugs. To make it work with
apcupsd, specify the UPSCABLE 940−0119A and UPSTYPE backups. The equivalent of cable 940−0119A
is done on a PCB inside the unit. Thanks to William Stock for supplying us with the information about the
straight through cable, the PCB, and the following diagram:

computer −−−−−−−−−−− BackUPS−ES −−−−−−−−−−−−−−−−−
DB9−M DB−9F
pin signal pin

 4 DSR −> 4 −−+
 | diode resistor
 6 DTR −> 6 −−+−−−−>|−−−−/\/\/\−−−o kill power

 1 DCD <− 1 −−+
 |
 2 RxD <− 2 −−+−−−−−−−−−−−−−−−−+−−o low battery
 |
 7 RTS −> 7 −−−−−−−−+−−/\/\/\−−+
 |
 +−−/\/\/\−−+
 |
 8 RI <− 8 −−+−−−−−−−−−−−−−−−−+−−o on battery
 |
 9 CTS <− 9 −−+

 5 GND −−− 5 −−−−−−−−−−−−−−−−−−−−−−o ground

 3 TxD 3 nc

BackUPS ES and CS in Serial mode with Cable 940−0128A

Though these UPSes are USB UPSes, APC supplies a serial cable (typically with a green DB9 F connector)
that has 940−0128A stamped into one side of the plastic serial port connector. The other end of the cable is a
10 pin RJ45 connector that plugs into the UPS (thanks to Dean Waldow for sending me a cable!). Apcupsd
version 3.8.5 and later supports this cable when specified as UPSCABLE 940−0128A and UPSTYPE
backups. However, running in this mode much of the information that would be available in USB mode is
lost. In addition, when apcupsd attempts to instruct the UPS to kill the power, it begins cycling about 4 times
a second between battery and line. The solution to the problem (thanks to Tom Suzda) is to unplug the UPS
and while it is still chattering, press the power button (on the front of the unit) until the unit beeps and the
chattering stops. After that the UPS should behave normally and power down 1−2 minutes after requested to
do so.

apcupsd User's Manual

BackOffice ES 100

An amazing discovery by slither_man allows one to build a CUSTOM−RJ45 cable (documented above) and
run the BackUPS CS (and probably also the ES) in Smart mode. Running it this way provides all the same
information that you would get by running it in USB mode. As a consequence, we recommend that you either
purchase (where I don't know) or build your own CUSTOM−RJ45 cable rather than use the 940−0128A cable.

Thanks to all the people who have helped test this and have provided information on the cable wiring, our best
guess for the cable schematic is the following:

computer −−−−−−−−− Inside the Connector−−−−−−−−− UPS
DB9−F | | RJ45
pin − signal | | Pin − Color
 | |
 4 DSR −>|−−−+ |
 | | diode resistor |
 6 DTR −>|−−−+−−−−>|−−−−/\/\/\−−−o kill power | 8 Orange
 | |
 1 DCD <−|−−−−+ |
 | | |
 2 RxD <−|−−−−+−−−−−−−−−−−−−−−−+−−o low battery| 3 Brown
 | | |
 7 RTS −>|−−−−−−−−−−+−−/\/\/\−−+ |
 | | |
 | +−−/\/\/\−−+ |
 | | |
 8 RI <−|−−−−+−−−−−−−−−−−−−−−−+−−o on battery | 2 Black
 | | |
 9 CTS <−|−−−−+ |
 | signal |
 5 GND −−|−−−−−−−−−−−−−−−−−−−−−−−o ground | 7 Red
 | |
 3 TxD | |
 | chassis |
 Chassis/GND |−−−−−−−−−−−−−−−−−−−−−−−o ground | 4 Black
 | |
 | Not connected | 1, 5, 6, 9, 10
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The RJ45 pins are: looking at the end of the connector:

10 9 8 7 6 5 4 3 2 1

| |
| |
−−−−−−−−−−−−−−−−−−−−−−−
 |____|

apcupsd User's Manual

BackOffice ES 101

Win32 Implementation Restrictions for Simple UPSes

Due to inadequacies in the Win32 API, it is not possible to set/clear/get all the serial port line signals. apcupsd
can detect: CTS, DSR, RNG, and CD. It can set and clear: RTS and DTR.

This imposes a few minor restrictions on the functionality of some of the cables. In particular, LineDown on
the Custom Simple cable, and Low Battery on the 0023A cable are not implemented.

Internal Apcupsd Actions for Simple Cables

This section describes how apcupsd 3.8.5 (March 2002)
treats the serial port line signals for simple cables.

apcaction.c:
 condition = power failure detected
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOCMBIS, DTR) set DTR (enable power bit?)

apcaction.c:
 condition = power back
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOCMBIC, DTR) clear DTR (clear power bit)
 action = ioctl(TIOCMBIC, ST) clear ST (TxD)

apcserial.c:
 condition = serial port initialization
 cable = 0095A, 0095B, 0095C
 action = ioctl(TIOMBIC, RTS) clear RTS (set PnP mode)

 cable = 0119A, 0127A, 0128A
 action = ioctl(TIOMBIC, DTR) clear DTR (killpower)
 action = ioctl(TIOMBIS, RTS) set RTS (ready to receive)

apcserial.c:
 condition = save_dumb_status
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOMBIC, DTR) clear DTR (power bit?)
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower)

 cable = 0020B, 0020C, 0119A, 0127A, 0128A
 action = ioctl(TIOMBIC, DTR) clear DTR (killpower)

 cable = 0095A, 0095B, 0095C
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower)
 action = ioctl(TIOMBIC, CD) clear DCD (low batt)
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower) a second time!

apcserial.c:
 condition = check_serial

apcupsd User's Manual

Win32 Implementation Restrictions for Simple UPSes 102

 cable = CUSTOM_SIMPLE
 action = OnBatt = CD
 action = BattLow = CTS
 action = LineDown = SR

 cable = 0020B, 0020C, 0119A, 0127A, 0128A
 action = OnBatt = CTS
 action = BattLow = CD
 action = LineDown = 0

 cable = 0023A
 action = Onbatt = CD
 action = BattLow = SR
 action = LineDown = 0

 cable = 0095A, 0095B, 0095C
 action = OnBatt = RNG
 action = BattLow = CD
 action = LineDown = 0

apcserial.c
 condition = killpower

 cable = CUSTOM_SIMPLE, 0095A, 0095B, 0095C
 action = ioctl(TIOMCBIS, RTS) set RTS (kills power)
 action = ioctl(TIOMCBIS, ST) set TxD

 cable = 0020B, 020C, 0119A, 0127A, 0128A
 action = ioctl(TIOMCBIS, DTR) set DTR (kills power)

RS232 Wiring and Signal Conventions

DB−25 Pin # DB−9 Pin # Name DTE−DCE Description

1 −− FG −−− Frame Ground/Chassis GND

2 3 TD −−−> Transmitted Data, TxD

3 2 RD <−−− Received Data, RxD

4 7 RTS −−−> Request To Send

5 8 CTS <−−− Clear To Send

6 6 DSR <−−− Data Set Ready

7 5 SG −−−− Signal Ground, GND

8 1 DCD <−−− Data Carrier Detect

9 −− −− −−− Positive DC test voltage

10 −− −− −−− Negative DC test voltage

apcupsd User's Manual

RS232 Wiring and Signal Conventions 103

11 −− QM <−−− Equalizer mode

12 −− SDCD <−−− Secondary Data Carrier Detect

13 −− SCTS <−−− Secondary Clear To Send

14 −− STD −−−> Secondary Transmitted Data

15 −− TC <−−− Transmitter (signal) Clock

16 −− SRD <−−− Secondary Receiver Clock

17 −− RC −−−> Receiver (signal) Clock

18 −− DCR <−−− Divided Clock Receiver

19 −− SRTS −−−> Secondary Request To Send

20 4 DTR −−−> Data Terminal Ready

21 −− SQ <−−− Signal Quality Detect

22 9 RI <−−− Ring Indicator

23 −− −− −−−> Data rate selector

24 −− −− <−−− Data rate selector

25 −− TC <−−− Transmitted Clock

Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin,
Female End

 13 1 5 1
 _______________________________ _______________
 \ / \ / RS232−connectors
 \ / \ / looking into the
 −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−− end of the cable.
 25 14 9 6

The diagram above represents the Female end of the cable. The
male end is the same, but looking from inside the cable.

 DTE : Data Terminal Equipment (i.e. computer)
 DCE : Data Communications Equipment (i.e. UPS)
 RxD : Data received; 1 is transmitted "low", 0 as "high"
 TxD : Data sent; 1 is transmitted "low", 0 as "high"
 DTR : DTE announces that it is powered up and ready to communicate
 DSR : DCE announces that it is ready to communicate; low=modem hang−up
 RTS : DTE asks DCE for permission to send data
 CTS : DCE agrees on RTS
 RI : DCE signals the DTE that an establishment of a connection is attempted
 DCD : DCE announces that a connection is established

Ioctl to RS232 Correspondence

#define TIOCM_LE 0x001
#define TIOCM_DTR 0x002

apcupsd User's Manual

Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin, Female End 104

#define TIOCM_RTS 0x004
#define TIOCM_ST 0x008
#define TIOCM_SR 0x010
#define TIOCM_CTS 0x020
#define TIOCM_CAR 0x040
#define TIOCM_RNG 0x080
#define TIOCM_DSR 0x100
#define TIOCM_CD TIOCM_CAR
#define TIOCM_RI TIOCM_RNG
#define TIOCM_OUT1 0x2000
#define TIOCM_OUT2 0x4000

Chapter 20. Testing Serial−Line UPSes

Table of Contents

Establishing Serial Port Connection
Using apctest on Serial−Line UPSses

Expected apctest Signals for a UPS
Expected apctest Signals for a BackUPS Pro

If you have a serial−line UPS, there are some tests you should run before the general ones described in the
Testing section.

To test your computer's connection with a serial−line UPS, you first need to establish that the serial line is
functioning, and then that the UPS is responding to commands. This can be a bit tricky, especially with a
dumb voltage−signalling interface, because it is completely quiescent when there are no commands being
passed, and the command repertoire doesn't include any self−tests.

Because it is easy to configure a serial cable incorrectly in such a way as to cause premature shutdowns of the
UPS power, we strongly recommend, especially for voltage− signaling (dumb) UPSes, that you do most of the
initial testing with your computer plugged into the wall rather than your UPS. Thus if the UPS power is
suddenly shut off, your computer will continue to run. We also recommend using safe−apccontrol as
described below, until you are sure that the signaling is correct.

Also note that if you launch the execution of apcupsd while your voltage−signaling UPS is on battery power,
it is very likely that your UPS will immediately shut off the power. This is due to the initialization of the serial
port line signals, which often looks to the UPS like a shutdown command.

Finally, double−check the state of your cabling and UPS indicator lights frequently during testing. For
voltage−signaling UPSes, apcupsd is not currently able to detect whether or not the serial cable is connected.
In addition, some simple signaling UPSes with certain cable combinations are not able to detect the low
battery condition. For more details please see the section called â€œVoltage Signalling Features Supported by
Apcupsd for Various Cablesâ€�.

Establishing Serial Port Connection

Once you have compiled, installed, and invoked apcupsd, you should wait to allow apcupsd to configure itself
and establish contact with the UPS.

apcupsd User's Manual

Chapter 20. Testing Serial−Line UPSes 105

If you see the following message about 30 seconds after starting apcupsd:

apcupsd FATAL ERROR in apcserial.c at line 156
PANIC! Cannot communicate with UPS via serial port.

it means that apcupsd tried for about 30 seconds to establish contact with the UPS via the serial port, but was
unable to do so. Before continuing, you must correct this problem. Some of the possible sources of the
problem are:

•
You have not configured the correct serial port name on the DEVICE directive in your apcupsd
configuration file.

•
The serial port that you have chosen has logins enabled. You must disable logins on that port,
otherwise, the system prevents apcupsd from using it. Normally, the file /etc/inittab specifies
the ports for which a getty process is started (on Sun machines, the serial port program equivalent to
getty is called ttymon). You must disable this for the port that you wish to use.

•
Make sure you are doing your testing as root otherwise, you may have permissions problems
accessing the serial port.

•
You may have cabling problems, either with an incorrect cable, or the incorrect cable specification
directive in the configuration file.

•
You may have a problem with the /etc/apcupsd/acpupsd.conf file. For example, check that
you have specified the correct type of UPS and the correct networking directives. For more details,
see the Chapter 3.

•
If you have a SmartUPS 5000 RM 15U or similar model, that comes with a "Web/SNMP
management card" in one of the "Smart Slots", this card may interfere with the serial port operation. If
you are having problems, please remove this card and try again. Supposedly V3.0 of the card
firmware has been corrected to properly release the serial port.

•
Ensure that you have no other programs that are using the serial port. One user reported that he had
problems because the serial port mouse (gpm) was using the same port as apcupsd. This causes
intermittent seemingly random problems.

•
If you are using a WinNT or Win2000 machine, the OS is probably attempting to attach a serial
mouse to the port you are using (COM1 or COM2). To prevent this, edit your c:\boot.ini file,
and you will find a line that looks something like the following:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"

Add the following to the end of the line: /NoSerialMice:COM1 (or COM2) so that the new line

apcupsd User's Manual

Chapter 20. Testing Serial−Line UPSes 106

looks like:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00" /NoSerialMice:COM1

•
If you are using a WinNT or Win2000 machine, try connecting apcupsd to COM2 rather than COM1
(be sure to change your c:\apcupsd\etc\apcupsd\apcupsd.conf to reflect the change).

•
If you are using a Solaris machine, you may have similar problems as described above for the WinNT
machine. A possible fix is documented in the Sun section of the Configuration chapter of this manual.

•
Try connecting your UPS to another machine. If it works, then you probably have a bad serial port
card. As unlikely as this may sound, at least two of our users have had to replace bad serial port cards.

•
Try doing an lsof /dev/ttyS0 where you replace the /dev/ttyS0 with your serial port name. If you get
no output, the port is free (or there is no physical port). If you get output, then another program is
using the port, and you should see which one.

•
Try doing a dmesg | grep tty. This may show you if a program has grabbed the port. (Thanks to Joe
Acosta for the suggestion.)

•
If all else fails, make sure your system is configured for serial port support.

•
If you are running Linux, check your /proc file system. For example: cat /proc/devices should print
something like 4 ttyS if you have a serial port. If your serial port is working, a cat /proc/interrupts
should show the serial port usage (e.g. 4: 294553 XT−PIC serial) Also, cat /proc/ioports should
show up something like 03f8−03ff : serial(auto). Or, cat /proc/tty should print a line like serial
/dev/ttyS 4 64−127 serial. Finally, a cat /proc/tty/driver/serial should print something like the
following:

serinfo:1.0 driver:5.05c revision:2001−07−08
0: uart:16550A port:3F8 irq:4 baud:9600 tx:1503168 rx:1461721 fe:8

The first thing to do is to look at your log file, usually /var/log/messages because apcupsd writes more
detailed information to the log file whenever there is an error.

If you have a UPS that uses apcsmart protcol (see table of types for a list of the UPSes using these protocols),
you can manually test the serial communications with the UPS by starting a serial port communications
program (such as minicom, tip, or cu) with the settings 2400 8N1 (2400 baud, 8 bits, no parity, 1 stop bit). Be
extremely careful what you send to your UPS as certain characters may cause it to power down or may even
cause damage to the UPS. Try sending an upper case Y to the UPS (without a return at the end). It should
respond with SM. If this is not the case, review the possible problems listed above. If you fat finger the Y and
enter y instead, no cause for alarm, you will simply get the APC copyright notice.

Once you are sure that serial port communications is working, proceed to the next test.

apcupsd User's Manual

Chapter 20. Testing Serial−Line UPSes 107

Using apctest on Serial−Line UPSses

On an apcsmart serial−line UPS, apctest will give you access to the battery of low−level tests we described in
the section called â€œapctestâ€�. If you have a voltage−signalling UPS, it enables a different test repertoire
which is described here, Among other things, if you are uncertain about what kind of cable you have, you may
be able to use apctest to figure that out.

Shutdown apcupsd if it is running. Make sure your /etc/apcupsd/apcupsd.conf file has UPSTYPE
backups and UPSCABLE simple Normally apctest will have been built and installed by default, otherwise,
you can explicitly build it on Unix with:

cd <apcupsd−source−directory>
make apctest
./apctest

on Win32 systems, use:

make apctestwin32
./apctest

It will present you with the following output

2001−02−07 04:08:26 apctest 3.8.5 (3 January 2002) redhat
Checking configuration ...
sharenet.type = DISABLE
cable.type = CUSTOM_SIMPLE
mode.type = BK
Setting up serial port ...
Creating serial port lock file ...
Doing prep_serial() ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing dumb UPSes (ones that uses signaling rather than commands.
Most tests enter a loop polling every second for 10 seconds.

Then it will present you with the following list of choices:

1) Test 1 − normal mode
2) Test 2 − no cable
3) Test 3 − no power
4) Test 4 − low battery (requires test 3 first)
5) Test 5 − battery exhausted
6) Test 6 − kill UPS power
7) Test 7 − run tests 1 through 5
8) Guess which is the appropriate cable
9) quit

Select test number:

Run tests 1, 2, and 3. Note, none of the currently supported cables will indicate a change for test 2. You can
then run test 8 to see what cable it thinks you should be using. Finally run test 4.

apctest can also be run for Smart UPSes.

The print out of your testing will be written to the file apctest.output. If you are unable to solve your
problem, you can try posting that file to the development mailing list, and perhaps we can help you. In this

apcupsd User's Manual

Using apctest on Serial−Line UPSses 108

case, please also include information on your operating system, which version of apcupsd you are using, your
UPS model, and also your apcupsd.conf file.

Expected apctest Signals for a UPS

If you have configured your UPS as:

UPSTYPE backups
UPSCABLE APC_940_0119A
 or APC_940_0127A
 or APC_940_0128A
 or APC_940_0020B
 or APC_940_0020C

here are typical signals you would expect to see in the output from the various tests of apctest:

Test 1 normal: RTS for cables (0119A 0127A 0128A)
Test 2 no serial cable: not important
Test 3 no AC power: CTS for all cables
Test 4 batteries exhausted: CTS and CD for all cables

Note: RTS if set in Test 1 will probably also be set in all the other tests. This is not important, what counts is
the appearance of CTS when the power fails and additionally CD when the batteries are low.

Expected apctest Signals for a BackUPS Pro

If you have configured your UPS as:

UPSTYPE backupspro
UPSCABLE APC_940_0095A
 or APC_940_0095C

here are the typical signals you would expect to see in the output from the various tests of apctest:

Test 1 normal: RTS not set
Test 2 no serial cable: not important
Test 3 no AC power: RNG
Test 4 batteries exhausted: RNG and CD

Note: RTS should never be set in any of the tests as it is the killpower signal. What is important is the
appearance of RNG when the power fails and additionally CD when the batteries are low.

Chapter 21. Troubleshooting Serial Line communications

Table of Contents

Determining Which Voltage−Signaling Cable You Have
Once you have established serial communications

Bizarre Intermittent Behavior

apcupsd User's Manual

Expected apctest Signals for a UPS 109

Determining Which Voltage−Signaling Cable You Have

The most frequently encountered problem with voltage−signalling UPSes (e.g. BackUPS 650) is that you have
incorrectly specified which cable is being used. All cables furnished by APC have the cable number stamped
on the side of the computer connector end of the cable. Using this number with apcupsd will normally work
fine. If you do not know what cable you have, you can use the apctest program to determine the type of the
cable.

For simple signaling UPSes, you should not use simple in the cable specification (i.e. UPSCABLE simple)
unless you have made the cable yourself according to the wiring diagram given in the cables chapter of this
manual.

Once you have established serial communications

Once you have established that apcupsd can talk to the UPS over the serial part, go do the series of functional
tests described in the main Testing section.

One additional note applies:

Bizarre Intermittent Behavior

In one case, a user reported that he received random incorrect values from the UPS in the status output. It
turned out that gpm, the mouse control program for command windows, was using the serial port without
using the standard Unix locking mechanism. As a consequence, both apcupsd and gpm were reading the serial
port. Please ensure that if you are running gpm that it is not configured with a serial port mouse on the same
serial port.

Chapter 22. Recalibrating the UPS Runtime

Table of Contents

Status Logging On Serial−Line UPSes

Note: In a future release of apcupsd this procedure will be replaced by a daemon operation that can be
performed on all types of UPS.

This section does not apply to voltage−signalling or dumb UPSes such as the older BackUPS models.

Smart UPSes internally compute the remaining runtime, and apcupsd uses the value supplied by the UPS. As
the batteries age (after say two or three years), the runtime computation may no longer be accurate since the
batteries no longer hold the same charge. As a consequence, in the event of a power failure, the UPS and thus
apcupsd can report a runtime of 5 minutes remaining when in fact only one minute remains. This can lead to a
shutdown before you might expect it, because regardless of the runtime remaining that is reported, the UPS
will always correctly detect low batteries and report it, thus causing apcupsd to correctly shutdown your
computer.

If you wish to have the UPS recalibrate the remaining runtime calculations, you can do so manually as the
current version of apcupsd does not support this feature. To do so,

•

apcupsd User's Manual

Determining Which Voltage−Signaling Cable You Have 110

Shutdown apcupsd

•
contact your UPS directly using some terminal program such as minicom, tip, or cu with the settings
2400 8N1 (2400 baud, 8 bits, no parity, 1 stop bit). Be extremely careful what you send to your UPS
as certain characters may cause it to power down or may even cause damage to the UPS. Try sending
an upper case Y to the UPS (without a return at the end). It should respond with SM. If this is not the
case, read the chapter on testing. If you fat finger the Y and enter y instead, no cause for alarm, you
will simply get the APC copyright notice.

•
when you are sure you are properly connected send an upper case D (no cr). This will put the UPS
into calibration mode, and it will drain the battery down to 25% capacity (35% for a Matrix) at which
point it will go back on the mains. In doing so, it will recompute the runtime calibration.

•
If you wish to abort the calibration, enter a second D command.

•
When you are done, restart apcupsd.

In principle, you should be able to do this with the computer powered by the UPS, but if you wish to be
completely safe, you should plug your computer into the wall prior to performing the runtime calibration. In
that case, you will need to artificially load the UPS with light bulbs or other means. You should supply a load
of about 30 to 35% but not more than 50%. You can determine the load by looking at the output of the
apcaccess status command while apcupsd is running.

You should not run the recalibration command more than once or twice per year as discharging these kinds of
batteries tends to shorten their life span.

Status Logging On Serial−Line UPSes

Serial−line UPSes that speak the apcsmart protocol log all of the events described in the Status Format section
of the Technical Reference. Voltage−signalling UPSes, on the other hand, have a much narrower data
channel. They can only report a small handful of conditions.

The following summarizes (rather sketchily, sorry) the data you can expect to get from this obsolete hardware.
All corrections and additions will be welcome.

From BackUPS Pro and SmartUPS v/s:

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus
MAINS : LineVoltageState
LASTEVNT : LastEventObserved

BackUPS and NetUPS Simple Signals

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus

apcupsd User's Manual

Status Logging On Serial−Line UPSes 111

Chapter 23. DATA Logging

This feature is somewhat outdated and not often used.

Data logging consists of periodically logging important data concerning the operation of the UPS. For the
definitive definition of the format, see log_data() in apcreports.c. The format varies according to the UPS
model and the information available from the UPS.

For UPS models, NBKPRO, SMART, SHARESMART, and MATRIX, the output is written in a format very
similar to what PowerChute writes. That is:

MinLineVoltage, MaxLineVoltage, OutputVoltage, BatteryVoltage, LineFrequency, LoadPercent,
UPSTemperature,AmbientTemperature,Humidity,LineVoltage, BatteryCharge,toggle

Any value that is not supported by your UPS such as AmbientTemperature and Humidity will be blank or
possibly as 0.0. In any case the commas before and after that field will still be output. The toggle value
alternates from 0 to 1 on each line. This was added at user request so that no two adjacent samples are
identical.

An actual example from the log file is:

Nov 2 12:43:05 matou apcupsd[23439]: 224.9,227.5,226.2,27.74,50.00,100.0,30.6,,,226.2,50.0,1

Technical Reference
Table of Contents

24. Configuration Directive Reference
General Configuration Directives
Configuration Directives Used by the Network Information Server
Configuration Directives used during Power Failures
Configuration Directives used to Control System Logging
Configuration Directives for Sharing a UPS
Configuration Directives Used to Set the UPS EPROM

25. Configuration Examples
A Simple Configuration for a SmartUPS
A Simple USB Configuration
A Simple Master Configuration
A Simple Slave Configuration
Variation on the Master/Slave Configuration
A Sample Slave Configuration Using the Net Driver

26. apcupsd Status Logging
Status report format
Status Report Example
Status Report Fields
Logging the STATUS Information

27. The Shutown Sequence and its Discontents
Shutdown Sequence
Shutdown Problems
Master/Slave Shutdown

apcupsd User's Manual

Technical Reference 112

Startup
Windows Considerations

28. APC's smart protocol
Description
RS−232 differences
Diagram for cable hackers
The Smart Protocol
Dip switch info
Status bits
Alert messages
Register 1
Register 2
Register 3
Interpretation of the Old Firmware Revision
Interpretation of the New Firmware Revision
EEPROM Values
Programming the UPS EEPROM
Acknowledgements

Chapter 24. Configuration Directive Reference

Table of Contents

General Configuration Directives
Configuration Directives Used by the Network Information Server
Configuration Directives used during Power Failures
Configuration Directives used to Control System Logging
Configuration Directives for Sharing a UPS
Configuration Directives Used to Set the UPS EPROM

Configuration directives in /etc/apcupsd/apcupsd.conf control the behavior of the apcupsd daemon.
For most installations it is only necessary to set a handful of general directives. The rest can be left at their
defaults unless you have an exotic configuration.

General Configuration Directives

In general, each of these directives is required (ecept that the DEVICE directive is ignored for UPSCABLE
ether).

UPSTYPE <type of APC UPS you have>
The name of a driver. Should be one of dumb, apcsmart, net, usb, snmp, or test. This
describes your interface type.

The UPSTYPE directive can be defined during installation by using the −−with−upstype= option
of the ./configure program.

UPSCABLE <type of cable you are using>>

 [simple | 940−0020B | 940−0023A]
 [smart | 940−0024B | 940−0024C]

apcupsd User's Manual

Chapter 24. Configuration Directive Reference 113

 [940−1524C | 940−0024G | 940−0095A | 940−0095B | 940−0095C | 940−0119A]
 [ether | usb]
The −−with−upscable= option of ./configure can be used to set a default for this directive during
the your build.

DEVICE <name of device>
Specify which device is used for UPS communications (normally a USB or serial port. The default is
platform−dependent, and is usually something like /dev/ttyS0. For USB ports, you may leave the
name of the device blank (no specification) and apcupsd will automatically search the standard
locations for the UPS. You may also specify a port range specification of the form
/dev/usb/hid/hiddev[0−15], .

Normally, the ./configure program will set an appropriate default value. You may also specify the
−−with−serial−dev= option of the ./configure program to set this directive at build time.

If you have specified UPSTYPE net, then the device name to be specified consists of hostname:port
where the hostname is the fully qualified name or IP address of the host (NIS server) and the port
(optional) is the port to use to contact the server.

If you specified UPSTYPE snmp, then the device name becomes hostname:vendor:community.
Please see the SNMP chapter in this manual for more details.

LOCKFILE <path to lockfile>
This option tells apcupsd where to create a lockfile for the USB or serial port in the specified
directory. This is important to keep two programs from reading or writing the port at the same time.
Please note that although the directive name is LOCKFILE, you are actually specifying the lock file
path. apcupsd automatically appends the name of the device when creating the file. On most systems,
this directive is automatically set by the ./configure program. You may also explicitly set it during the
build process by using the −−with−lock−dir= option of the ./configure program.

Configuration Directives Used by the Network Information
Server

None of these directives are required for proper operation of apcupsd. For the Network Information Server to
work, it must be enabled in the configuration (default) with −−enable−nis

NETSERVER [on | off]
This configuration directive turns the network information server on or off. If it is on, apcupsd will
spawn a child process that serves STATUS and EVENTS information over the network. This
information is currently used by the Web−based CGI programs. The default is on. In some cases, for
added security, you may want to invoke a separate information server daemon from the inetd daemon.
In that case, NETSERVER should be off.

NISIP <IP−address>
This directive specifies an IP address on which NIS server will listen for incoming connections.
Default value is 0.0.0.0 that means any incoming request will be serviced but if you want it to listen to
a single subnet you can set it up to that subnet address, for example 192.168.10.0. Additionally you
can listen for a single IP like 192.168.10.1. You may also use the −−with−nisip= option of the
./configure program to set this directive during the build.

apcupsd User's Manual

Configuration Directives Used by the Network Information Server 114

This directive does not work on Win32 machines because inet_ipton() is not implemented there.

NISPORT <port>
This configuration directive specifies the port to be used by the apcupsd Network Information Server.
The default is platform dependent, but typically 3551, which we have received from IANA as the
official apcupsd networking port. If you change this port, you must manually change the #define
SERV_TCP_PORT in cgi/upsfetch.c and rebuild the CGI programs. An alternative is to use the
−−with−nis−port= option of the ./configure program during the build. In this case, all the
appropriate locations will be automatically changed.

EVENTSFILE <filename>
If you want the apcupsd network information server to provide the last 10 events via the network, you
must specify a file where apcupsd will save these events. The default is:
/etc/apcupsd/apcupsd.events. Currently, apcupsd will save at most the last 50 events.
Periodically (once an hour by default), apcupsd will check the size of this file. When more than 50
events are recorded, apcupsd will truncate the file to the most recent 10 events. Consequently this file
will not grow indefinitely. Although we do not recommend it, you may change these values by editing
apcevents.c and changing the appropriate defines. Be aware that if you set these values to very large
numbers, apcupsd may make excessive memory demands on the system during the data access and
file truncation operations.

This filename may also be specified at build time by using the −−with−log−dir= option of the
./configure program.

Configuration Directives used during Power Failures

In general, none of these directives are required. However, if you have a voltage−signalling (dumb) UPS with
a cable that does not support the Low Battery signal, you must set the TIMEOUT directive to force a
shutdown. Please see the Cables section of this manual for more details.

ANNOY <time in seconds>
Specify the time in seconds between messages requesting logged in users to get off the system during
a power failure. This timer starts only when the UPS is running on batteries. The default is 300
seconds (5 minutes). apcupsd sends the annoy messages by invoking the apccontrol script with the
annoyme argument. The default is to send a wall message on Unix systems and a popup message in
Windows.

The value of ANNOYDELAY must be greater than the value of ANNOY in order to receive annoy
messages (this doesn't make sense, and means that the default values do not generate annoy messages:
KES).

Note that if NOLOGON is set to disable the annoy messages will also be disabled.

ANNOYDELAY <time in seconds>
Specify delay time in seconds before apcupsd begins requesting logged in users to get off the system
during a power failure. This timer starts only after the UPS is running on batteries. This timer is reset
when the power returns. The default is 60 seconds. Thus, the first warning to log off the system
occurs after 60 seconds on batteries, assuming that NOLOGON is not set to disable.

NOLOGON <specifies when apcupsd should prevent user logins>

apcupsd User's Manual

Configuration Directives used during Power Failures 115

[disable | timeout | percent | minutes | always] are valid types.

The type specified allows you define the point when apcupsd will create the /etc/nologin file
and thus when user logins are prohibited. Once the /etc/nologin file is created, normal users are
prevented from logging in. Control of when this file is created is important for allowing systems with
big UPSes to run as normally until the system administrator determines the need for preventing user
logins. The feature also allows the system administrator to hold the "ANNOY" factor until the
/etc/nologin file is created. The default is always if no NOLOGON directive is specified.

As far as I can tell, the only useful types are disable and always since the difference in the time when
the logout warning is given and shutdown occurs for the other types is very short (KES).

disable
prevents apcupsd from creating the nologin file. Consequently, any user can login during a
power failure condition. Also, the ANNOY feature is disabled so users will not be warned to
logoff the system.

timeout
specifies that apcupsd should prohibit logins after the UPS is on batteries for 90% of the time
specified on the TIMEOUT configuration directive. Note! Normally you don't want to
specify a TIMEOUT value, so this option is probably not too useful (KES).

percent
specifies that apcupsd should prohibit logins when the remaining battery charge percentage
reaches 110% or less than the value specified on the BATTERYLEVEL configuration
directive. Thus if the BATTERYLEVEL is specified as 15, apcupsd will prohibit logins
when the battery charge drops below 16% (15% X 110% = 16%).

minutes
specifies that apcupsd should prohibit logins when the remaining runtime in minutes reaches
110% or less than the value specified on the MINUTES configuration directive. Thus if
MINUTES is set to 3, apcupsd will prohibit logins when the remaining runtime is less than 3
minutes (3 X 110% = 3).

always
causes apcupsd to immediately prohibit logins when a power failure occurs. This will also
enable the ANNOY feature.

BATTERYLEVEL <percent of battery>
If BATTERYLEVEL is specified, during a power failure, apcupsd will halt the system when the
remaining battery charge falls below the specified percentage. The default is 5 percent. This directive
is ignored for dumb (voltage−signalling) UPSes. To totally disable this counter, set
BATTERYLEVEL −1 in your apcupsd.conf file.

MINUTES <battery runtime in minutes>
If MINUTES is specified, during a power failure, apcupsd will shutdown the system when the
remaining runtime on batteries as internally calculated by the UPS falls below the time specified. The
default is 3. This directive is ignored for dumb (voltage−signalling) UPSes. It should be noted that
some UPSes report an incorrect value for remaining runtime when the battery is fully charged. This
can be checked by examining the TIMELEFT value as printed in the output of an apcaccess status
command. If the value is zero or otherwise unreasonable, your UPS is probably broken. In this case,

apcupsd User's Manual

Configuration Directives used during Power Failures 116

we recommend that you disable this timer by setting MINUTES −1 in your apcupsd.conf file.

TIMEOUT <time in seconds>
After a power failure, apcupsd will halt the system when TIMEOUT seconds have expired. A value of
zero disables this timer. Normally for all Smart UPS models and dumb UPSes with cables that
support low battery detection, this should be zero so that the shutdown time will be determined by the
battery level and/or remaining runtime (see above) or in the case of a voltage−signalling UPS, when
the battery is exhausted. This command is required for dumb UPSes that do not provide a battery
exhausted signal (only testing can determine this point). For more information, see the Testing section
of this manual. This timer can also be useful if you want some slave machines to shutdown before
other machines to conserve battery power. It is also useful for testing apcupsd because you can force a
rapid shutdown by setting a small value (e.g. 60) and pulling the plug to the UPS.

When apcupsd is running in master mode (UPSCLASS netmaster), and a shutdown condition is
determined, apcupsd will notify each of the slaves to perform a shutdown then apcupsd will sleep for
30 seconds before issuing the shutdown of its own computer. If you need the master to wait additional
time before shutting down (to allow for shutdown of slower slaves or of slaves running software that
requires more time to shutdown â€” e.g. databases), you can do so by adding additional sleep()
commands to /etc/apcupsd/apccontrol in each case that causes a shutdown.

TIMEOUT, BATTERYLEVEL, and MINUTES can be set together without problems. apcupsd
will react to the first case or test that is valid. Normally SmartUPS users will set TIMEOUT to zero
so that the system is shutdown depending on the percentage battery charge remaining
(BATTERYLEVEL) or the remaining battery runtime (MINUTES).

KILLDELAY <time in seconds>
If killdelay is set, apcupsd will continue running after a shutdown has been requested, and after the
specified time in seconds, apcupsd will attempt to shut off the UPS the power. This directive should
normally be disabled by setting the value to zero, but on some systems such as Win32 systems
apcupsd cannot regain control after a shutdown to force the UPS to shut off the power. In this case,
with proper consideration for the timing, the KILLDELAY directive can be useful. Please be aware,
if you cause apcupsd to kill the power to your computer too early, the system and the disks may not
have been properly prepared. In addition, apcupsd must continue running after the shutdown is
requested, and on Unix systems, this is not normally the case as the system will terminate all
processes during the shutdown.

Configuration Directives used to Control System Logging

STATTIME <time>
This directive supplies the time interval between writes to the STATUS file. If set to zero, the
STATUS file will not be written. Please note that in a future version of apcupsd the STATUS file
code will disappear since its functionality has been replaced by the Network Information Server and
by apcaccess status, as a consequence, it is normally disabled by setting it to zero.

STATFILE <file>
This directive specifies the file to be used when writing the STATUS information. The default is
/etc/apcupsd/apcupsd.status.

DATATIME<time>
This directives supplies the time interval between writes of PowerChute&tm; like data information to

apcupsd User's Manual

Configuration Directives used to Control System Logging 117

the log file. See the Data section of this manual for additional details.

FACILITY <log−facility>
The facility directive can be used to change the system logging class or facility. The default is
DAEMON. This parameter can be useful if you wish to direct the apcupsd system logging
information to other than your system default files. See the Logging section of this manual for
additional details.

Configuration Directives for Sharing a UPS

The following directives apply to the master/slave networking mode of apcupsd where multiple machines can
be powered by the same UPS. One machine, the master, will have a serial port connection to the UPS, and the
other machines, the slaves, will obtain their information via the network from the master.

Note, as of version 3.10.x, the old master/slave code is by default turned off in the configuration. You must
explicitly enable it by including a −−enable−master−slave option on your ./configure command before
building the source.

In addition to the old master/slave code, there is now a new network driver enabled with −−enable−net
(default disabled) that can be used to control a slave from any version of apcupsd running NIS. This is a much
more flexible system of controlling slaves because a slave machine that also has NIS turned on can thus act as
a master for another slave with −−enable−net turned on. With this mode turned on, the slave obtains the
address of the master from the DEVICE directive, which takes the form hostname[:port] as a consequence,
none of the directives apply for this form of networking. In addition, for this mode to work, you must specify
UPSTYPE net so that the proper driver is loaded.

The remainder of this section presents directives that apply to the old master/slave code that must be enabled
by the enable−master−slave configuration option.

UPSCLASS <class of operation>
[standalone | shareslave | sharemaster] and [netslave | netmaster] are valid types. [standalone |
netslave | netmaster] are tested classes. [shareslave | sharemaster] classes are being tested.

The default is standalone and should be used for all machines powered by the UPS and having a
serial port connection to the UPS, but where there are no other computers dependent on power from
the same UPS. This is the normal case.

Use netmaster, if and only if you have a serial port connection to the UPS and there are other
machines deriving power from the same UPS. This is required in all master configuration files.

Use netslave if and only if you have no serial port connection to the UPS, but you derive power from
it. This is required in all slave configuration files, and in this case, you will also have UPSCABLE set
to ether.

Use shareslave if and only if you are using a ShareUPS and connected to a BASIC Port with Simple
Signal. This code is not fully tested.

Use sharemaster, if and only if you are using a ShareUPS and connected to the ADVANCED Port
Smart Signal control. This code is not fully tested.

apcupsd User's Manual

Configuration Directives for Sharing a UPS 118

UPSMODE [disable | share | net | sharenet] are valid types.
[disable | net] are the only known and tested classes.

[share | sharenet] classes are being tested.

For normal standalone operations, you will set UPSMODE to disable to indicate that you are
disabling the master/slave networking.

However, if you are using a single UPS to power several computers and you have configured master
and slave computers, then set this value to net.

Use share for two or seven (2/7) additional simple signal ports on a SmartAccessories(tm)
(internal/external box) for SmartUPSes. The share and sharenet code is not fully tested.

NETTIME <time in seconds>
The interval in seconds that the master uses to send information to slave machines. This rate is
automatically set to 1 second if the UPS goes on batteries and reset to your specified value when the
mains power returns. A typical value might be 60 seconds.

NETPORT <IP port number>
This port number is used for communications in the master/slave networking code. Note that the
master and each slave must have the same port number specified on the NETPORT directive in the
configuration file. This port may also be specified during installation by using the
−−with−net−port= option of the ./configure program.

The NETPORT should not be confused with the port number for the Network Information Server
which is specified with the SERVERPORT configuration directive.

MASTER <name of the master> for slave machines.
Used in slave configuration files, this is the network name of the master which is authorized to send
commands to this slave. In all cases (of which I am aware), when you specify a MASTER directive,
you will also specify UPSCABLE ether since your information about the UPS will come via the
network from a master.

The slave machine will be shutdown whichever occurs first: either at the request of the master when it
does a shutdown or when the values you have specified for TIMEOUT, BATTERYLEVEL, or
MINUTES expire (these should work but have not been fully tested). Consequently, if you want the
slaves to begin shutting down before the master, you can do so by adjusting the values in the
configuration file. If you want the slave to remain up until the master shuts down, you should set
TIMEOUT, BATTERYLEVEL, and MINUTES all to zero.

For proper functioning of the slave, you must specify the same UPSTYPE in the slave configuration
file as is in the master configuration file.

It should be noted that the master and slaves continue to communicate over the network even after the
master has issued a shutdown command to the slaves. This is because the master apcupsd continues to
run until it receives the shutdown signal from the system. This is important to ensure that all the
slaves have been properly notified of the shutdown.

We recommend that the machine names used on the MASTER and SLAVE directives be put in your
/etc/hosts file so that apcupsd will be able to resolve the machine name during startup and

apcupsd User's Manual

Configuration Directives for Sharing a UPS 119

shutdown even if DNS is not running. Alternatively, you can use IP addresses on the MASTER and
SLAVE directives, but this is less flexible.

SLAVE <name of slave(s)> used only in MASTER configuration files.
Used in master configuration files, this is the name of a slave machine that depends on this master.
There can be a maximum of 20 slaves attached to one master. Thus you can specify multiple SLAVE
directives in a master configuration file. Only one slave name can be specified per SLAVE directive,
thus for multiple slaves, specify multiple SLAVE directives.

As noted above the master and slaves continue to communicate over the network even after the master
has issued a shutdown command to the slaves. This is because the master apcupsd continues to run
until it receives the shutdown signal from the system. This is important to ensure that all the slaves
have been properly notified of the shutdown.

We recommend that the machine names used on the MASTER and SLAVE directives be put in your
/etc/hosts file so that apcupsd will be able to resolve the machine name during startup and
shutdown even if DNS is not running. Alternatively, you can use IP addresses on the MASTER and
SLAVE directives, but this is less flexible.

USERMAGIC < user defined magic> used only in SLAVE configuration files.
The USERMAGIC directive is a sort of password that gives a second level of identification security
in a slave configuration file. It is a character string up to 17 characters in length. It should be unique
for each slave. When the slave makes initial contact with the master, this string is passed to the
master. Then on each transmission from the master to the slave, the string is passed back to the slave,
which checks that it is the correct string before accepting the master's information. This string should
be different for each and every slave on the network. This directive is not required.

Configuration Directives Used to Set the UPS EPROM

The values specified with the following directives are only used if the −−configure option is specified on
the apcupsd command line, and the UPS is capable of internal EPROM programming. In that case, apcupsd
attempts to set the values into the UPSes EPROM.

Under normal operations, the values for these parameters specified in the configuration file are not used.
Instead, they are read from the UPS EPROM by apcupsd. See the section called â€œConfiguration Directives
Used to Set the UPS EPROMâ€� of this manual for further details before attempting to reprogram your
EEPROM.

SENSITIVITY <sets sensitivity level>
(H)igh, (M)edium, (L)ow

This value determine how sensitive the UPS is to the mains quality and voltage fluctuations. The
more sensitive it is, the quicker the UPS will switch to battery power when the mains line quality is
bad. Normally, this should be set to H, but if you find your UPS switching to batteries frequently, you
might want to try a less sensitive setting, providing that your computer equipment tolerates the poor
quality mains. This value is written to the UPS EPROM when the configure option is specified.

Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

apcupsd User's Manual

Configuration Directives Used to Set the UPS EPROM 120

WAKEUP <set wakeup delay>
The UPS power restart delay value in [0,60,180,300] in seconds after the UPS has shut down during a
power failure. This is to prevent the power from coming back on too quickly after a power down, and
is important for those who have high rpm drives that need to spin down before powering them up
again. Some older SCSI models are very sensitive to this problem. Default is zero. This value is
written to the UPS EPROM when the −−configure option is specified.

Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

SLEEP <set sleep delay>
The UPS delay or grace period in [20,180,300,600] seconds before the UPS cuts the power to your
equipment. The default is 20 seconds. This value is written to the UPS EPROM when the
−−configure option is specified.

Under normal apcupsdoperations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

LOTRANSFER <lower limit of ups batt. transfer>
This sets the low line voltage point at which to switch over to batteries. Different values are permitted
based on the UPS model, classification, and manufacture date. Use apcaccess eeprom to show you
which values are permitted. This value is written to the UPS EPROM when the −−configure
option is specified.

Under normal apcupsdoperations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

HITRANSFER <upper limit of ups batt. transfer>
This sets the high line voltage point to switch over to batteries. Different values are permitted based
on the UPS model, classification, and manufacture date. Use apcaccess eeprom to show you which
values are permitted. This value is written to the UPS EPROM when the −−configure option is
specified.

Under normal apcupsdoperations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

RETURNCHARGE <min. batt. charge level>
This parameter specifies what battery percentage charge is necessary before the UPS will supply
power to your equipment after a power down. Different values are permitted based on the UPS model,
classification, and manufacture date. Use apcaccess eeprom to show you which values are permitted.
This value is written to the UPS EPROM when the −−configure option is specified.

Under normal apcupsdoperations (no −−configure option), apcupsd will read the value stored in
the UPS and display it in the STATUS output.

BEEPSTATE <alarm beep state>
This parameter tells the UPS when it can sound its audio alarm. These settings are based on discrete
events related to the remaining capacity of the UPS.

0
immediately upon power failure

apcupsd User's Manual

Configuration Directives Used to Set the UPS EPROM 121

T
power failure + 30 seconds

L
low battery power

N
never

UPSNAME <string>
This is an eight character string. This is the UPS name that will be stored in the UPS EPROM.

BATTDATE <string>
This is an eight character string that is the last date the batteries were changed.

Chapter 25. Configuration Examples

Table of Contents

A Simple Configuration for a SmartUPS
A Simple USB Configuration
A Simple Master Configuration
A Simple Slave Configuration
Variation on the Master/Slave Configuration
A Sample Slave Configuration Using the Net Driver

A Simple Configuration for a SmartUPS

You have a Smart UPS using the cable supplied by APC. A very simple configuration file would look like the
following:

apcupsd.conf v1.1
UPSCABLE smart
UPSTYPE smartups
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

Normally you would have many more configuration directives to completely customize your installation, but
this example shows you the minimum required.

A Simple USB Configuration

apcupsd.conf v1.1
UPSCABLE usb
UPSTYPE usb
DEVICE /dev/usb/hid/hiddev[0−15]
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

apcupsd User's Manual

Chapter 25. Configuration Examples 122

A Simple Master Configuration

You have a Smart UPS using the cable supplied by APC and you want it to act as a master for another
computer, which is powered by the same UPS. A very simple configuration file would look like the following:

apcupsd.conf v1.1 ##
UPSCABLE smart
UPSTYPE smartups
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS netmaster
UPSMODE net
NETTIME 10
NETPORT 6666
SLAVE slave1.mynetwork.com
SLAVE slave2.mynetwork.com

Note, the main difference from the stand alone configuration is that you have specified UPSCLASS
netmaster and UPSMODE net. In addition, you have specified one or more slave machines.

A Simple Slave Configuration

You have a Smart UPS using the cable supplied by APC that is connected to the master machine configured
above. This slave machine has no serial port connection to the UPS, but is powered by the same UPS as the
master. A very simple configuration file would look like the following:

apcupsd.conf v1.1 ##
UPSCABLE ether
UPSTYPE smartups
LOCKFILE /var/lock
UPSCLASS netslave
UPSMODE net
NETPORT 6666
MASTER master.mynetwork.com

The main difference from the master configuration is that you have specified UPSCABLE ether and
UPSCLASS netslave. In addition, you have specified a single controlling master.

In this configuration, the shutdown will be initiated by the master. It is also possible to specify
BATTERYLEVEL, MINUTES, and TIMEOUT configuration directives in the Slave machine that will cause
the slave to shutdown before the master. This can often be useful if the slave is less important than the master
and you wish to reduce battery power consumption so that the master can remain up longer during a power
outage.

Variation on the Master/Slave Configuration

It is also possible to have a Master/Slave configuration where the Slave is powered by a different UPS (or any
other power source), but is nevertheless controlled (i.e. shutdown) by the master. The setup would be identical
to the Master/Slave configuration files shown above. The only difference is where the slave actually receives
its power. In effect, apcupsd does not know or care where the power really comes from.

apcupsd User's Manual

A Simple Master Configuration 123

A Sample Slave Configuration Using the Net Driver

As opposed to the master/slave mode demonstrate above, you can turn any computer into a slave by
configuring with the NIS network driver turned on −−enable−net. Running in this configuration, you can
use any computer with apcupsd running the Network Information Server (NIS) as the master. The slave
simply uses the NIS information to decide when to shutdown. This is a much simpler mode than the older
master/slave code mentioned above.

apcupsd.conf v1.1 ##
UPSCABLE ether
UPSTYPE net
LOCKFILE /var/lock
DEVICE server−network−address:3551
UPSCLASS standalone
UPSMODE disable

where on the DEVICE directive you replace the server−network−address with the fully qualified
domain name or IP address of a machine running apcupsd with NIS enabled (and normally, but not required,
connected to a UPS). The :3551 that follows the server address is the port to use. The default is 3551, but
older versions of apcupsd used port 7000.

Please do not confuse this with a master/slave network configuration that is described above. This is a
master/slave setup, but much simpler (the master does not know about the slaves), and any NIS server, even a
slave, can act as a server to a slave that listens to it.

This mode works principally by reading the STATFLAG record that is sent by the NIS (present in the output
of apcaccess). The low 16 bits are the standard APC status flag, and the upper 16 bits represent the internal
state of apcupsd, so the slave can see when the power fails and know when to shutdown.

Chapter 26. apcupsd Status Logging

Table of Contents

Status report format
Status Report Example
Status Report Fields
Logging the STATUS Information

There is a good deal of information available about the UPS and apcupsd's status. This document describes
the format of that information. Normally you will get at it via apcaccess, but there are other ways as well.

Status report format

The STATUS output is in ASCII format with a single data value or piece of information on each line output.
Because not all UPSes supply the same information, the output varies based on the type of UPS that you are
using. In general, if the information is not available for your UPS, the data portion of the output record will
contain an N/A indicating that the information is not available.

Status logging consists of periodically logging ALL available information concerning the UPS. Since the
volume of data is rather large (over 1000 bytes per status), the STATUS data is not automatically sent to the
system log file, instead, it is written as a series of data records to a specific file (normally

apcupsd User's Manual

A Sample Slave Configuration Using the Net Driver 124

/etc/apcupsd/apcupsd.status).

After each write, the file is rewound so that the size of the file remains constant. At the current time, this file
is 1135 bytes. The format of this file is very similar to the old apcupsd procfs file. The STATUS file is kept
for backward compatibility and will be eliminated in a future version of apcupsd. The preferred method for
obtaining this information is from apcaccess or by using the CGI interface.

To make reading the status data reliable via a named pipe, the first record written contains a version number,
the number of records that follow the first record, and the total number of bytes in those subsequent records.
An actual example of such a status file (/etc/apcupsd/apcupsd.status) is:

Consequently, the first record always consists of 24 bytes (23 characters followed by a newline). This record
starts with APC and as indicated in the example above is followed by 28 records consisting of 675 bytes. The
last record begins with END APC and contains the date and time matching the DATE record.

Documentation of each record needs to be written. In the coming weeks, I plan to add additional records and
possibly change the names of some of the fields.

When this data is written to a file, it is written as two records, the first record, and all the other records
together. In reading the file, it can be either be read a record at a time, or in one big read.

When this data is written to syslog(), it is written a record at a time. The first record is the first 24 bytes. By
having the number of records and the size in the first record, the complete status can be reliably reassembled.

Status Report Example

An example of output from an international SmartUPS 1000 follows:

DATE : Wed Sep 27 17:30:23 CEST 2000
HOSTNAME : polymatou.sibbald.com
RELEASE : 3.7.3−20000925
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
STARTTIME: Wed Sep 27 10:39:23 CEST 2000
UPSNAME : UPS_IDEN
STATUS : ONLINE
LINEV : 235.3 Volts
LOADPCT : 9.3 Percent Load Capacity
BCHARGE : 100.0 Percent
TIMELEFT : 130.0 Minutes
MBATTCHG : 5 Percent
MINTIMEL : 3 Minutes
MAXTIME : 0 Seconds
MAXLINEV : 239.2 Volts
MINLINEV : 234.0 Volts
OUTPUTV : 236.6 Volts
SENSE : High
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
DLOWBATT : 02 Minutes
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 000.0 Percent
ITEMP : 32.8 C Internal

apcupsd User's Manual

Status Report Example 125

ALARMDEL : 5 seconds
BATTV : 27.9 Volts
LINEFREQ : 50.0 Hz
LASTXFER : Line voltage notch or spike
NUMXFERS : 0
XONBATT : N/A
TONBATT : 0 seconds
CUMONBATT: 0 seconds
XOFFBATT : N/A
SELFTEST : NO
STESTI : 336
STATFLAG : 0x08 Status Flag
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 07/31/99
SERIALNO : QS9931125245
BATTDATE : 07/31/99
NOMOUTV : 230
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Wed Sep 27 17:30:31 CEST 2000

Status Report Fields

The meaning of the above variables are:

APC
is the header record indicating the STATUS format revision level, the number of records that follow
the APC statement, and the number of bytes that follow the record.

DATE
is the date and time that the information was last obtained from the UPS.

HOSTNAME
is the name of the machine that collected the UPS data.

RELEASE
is the apcupsd release number.

CABLE
is the cable as specified in the configuration file.

MODEL
is the UPS model as derived from information from the UPS.

UPSMODE
is the mode in which apcupsd is operating.

apcupsd User's Manual

Status Report Fields 126

STARTTIME
is the time/date that apcupsd was started.

UPSNAME
is the name of the UPS as stored in the EEPROM.

STATUS
is the current status of the UPS (ONLINE, CHARGING, ONBATT,...)

MASTERUPD
is the last time the master sent an update to the slave. This value is present only in slave
configurations.

LINEV
is the current line voltage as returned by the UPS.

LOADPCT
is the percentage of load capacity as estimated by the UPS.

BCHARGE
is the percentage charge on the batteries.

TIMELEFT
is the remaining runtime left on batteries as estimated by the UPS.

MBATTCHG
if the battery charge percentage (BCHARGE) drops below this value, apcupsd will shutdown your
system.

MINTIMEL
apcupsd will shutdown your system if the remaining runtime equals or is below this point.

MAXTIME
apcupsd will shutdown your system if the time on batteries exceeds this value. A value of zero
disables the feature.

MAXLINEV
is the maximum line voltage since the last STATUS as returned by the UPS.

MINLINEV
is the minimum line voltage since the last STATUS as returned by the UPS.

OUTPUTV
is the voltage the UPS is supplying to your equipment.

SENSE
is the sensitivity level of the UPS to line voltage fluctuations.

DWAKE
is the amount of time the UPS will wait after a power off condition when the power is restored.

apcupsd User's Manual

Status Report Fields 127

DSHUTD
is the grace delay that the UPS gives after receiving a power down command from apcupsd before it
powers off your equipment.

DLOWBATT
is the remaining runtime below which the UPS sends the low battery signal. At this point apcupsd will
force an immediate emergency shutdown.

LOTRANS
is the line voltage below which the UPS will switch to batteries.

HITRANS
is the line voltage above which the UPS will switch to batteries.

RETPCT
is the percentage charge that the batteries must have after a power off condition before the UPS will
restore power to your equipment.

STATFLAG
is a status flag indicating the UPS status. See STATUS.

ITEMP
is the internal UPS temperature as supplied by the UPS.

ALARMDEL
is the delay period for the UPS alarm.

BATTV
is the battery voltage as supplied by the UPS.

LINEFREQ
is the line frequency in Hertz as given by the UPS.

LASTXFER
is the reason for the last transfer to batteries.

NUMXFERS
the number of transfers to batteries since apcupsd startup.

XONBATT
time and date of last transfer to batteries, or N/A.

TONBATT
time in seconds currently on batteries, or 0.

CUMONBATT
total (cumulative) time on batteries in seconds since apcupsd startup.

XOFFBATT
time and date of last transfer from batteries, or N/A.

apcupsd User's Manual

Status Report Fields 128

SELFTEST
is the results of the last self test, and may have the following values: OK − self test indicates good
battery BT − self test failed due to insufficient battery capacity NG − self test failed due to overload
NO − No results (i.e. no self test performed in the last 5 minutes).

STESTI
is the interval in hours between automatic self tests.

STATFLAG
status flag. English version is given by STATUS.

DIPSW
is the dip switch settings.

REG1
is the value from the UPS fault register 1.

REG2
is the value from the UPS fault register 2.

REG3
is the value from the UPS fault register 3.

MANDATE
is the date the UPS was manufactured.

SERIALNO
is the UPS serial number.

BATTDATE
is the date that batteries were last replaced.

NOMOUTV
is the output voltage that the UPS will attempt to supply when on battery power.

NOMBATTV
is the nominal battery voltage.

HUMIDITY
is the humidity as measured by the UPS.

AMBTEMP
is the ambient temperature as measured by the UPS.

EXTBATTS
is the number of external batteries as defined by the user. A correct number here helps the UPS
compute the remaining runtime more accurately.

BADBATTS
is the number of bad battery packs.

apcupsd User's Manual

Status Report Fields 129

FIRMWARE
is the firmware revision number.

APCMODEL
is the old APC model identification code.

END APC
is the time and date that the STATUS record was written.

Logging the STATUS Information

If specified in the configuration file, the STATUS data will also be written to the system log file. Please note,
that it would not normally be wise to write this data to a normal system log file as there is no mechanism in
syslog() to rewind the file and hence the log file would quickly become enormous. However, in two cases, it
can be very useful to use syslog() to write this information.

The first case is to set up your syslog.conf file so that the data is written to a named pipe. In this case,
normally not more than about 8192 bytes of data will be kept before it is discarded by the system.

The second case is to setup your syslog.conf file so that the status data is sent to another machine, which
presumably then writes it to a named pipe. Consequently, with this mechanism, provides a simple means of
networking apcupsd STATUS information.

Although we mention system logging of STATUS information, we strongly recommend that you use
apcaccess or the CGI interface to get this information.

Chapter 27. The Shutown Sequence and its Discontents

Table of Contents

Shutdown Sequence
Shutdown Problems
Master/Slave Shutdown
Startup
Windows Considerations

Shutdown Sequence

If you experienced so problems with the testing procedures, or if you are porting apcupsd to another system,
or you are simply curious, you may want to know exactly what is going on during the shutdown process.

The shutdown sequence is as follows:

•
apcupsd detects that there is a power problem and it calls /etc/apcupsd/apccontrol powerout, which
normally sends a message to all users informing them of a potential problem.

•
After approximately 5 seconds in the power problem mode, apcupsd calls /etc/apcupsd/apccontrol

apcupsd User's Manual

Logging the STATUS Information 130

onbattery, which normally sends a message to all users informing them that the UPS is on batteries.

•
When one of the conditions listed below occurs, apcupsd issues a shutdown command by calling
/etc/apcupsd/apccontrol doshutdown, which should perform a shutdown of your system using the
system shutdown(8) command. You can modify the behavior by editing the
/etc/apcupsd/apccontrol script, but doing so will make it more complicated to upgrade to
the next apcupsd version.

The conditions that trigger the shutdown can be: running time on batteries have expired (TIMEOUT),
the battery runtime remaining is below the configured value (BATTERYLEVEL), the estimated
remaining runtime is below the configured value (MINUTES), or the UPS signals that the batteries
are exhausted.

A shutdown could also be initiated if apcupsd detects that the batteries are no longer functioning
correctly. This case, though very unusual, can happen at any time even if there is proper mains
voltage, and /etc/apcupsd/apccontrol emergency is called.

Just before initiating any shutdown through the apccontrol script, apcupsd will create the file
/etc/apcupsd/powerfail. This file will be used later in the shutdown sequence to recall
apcupsd after syncing of the disks to initiate a power off of the UPS.

If the /etc/nologin file has not already been created, it will normally be created during the
shutdown sequence to prevent additional users from logging in (see the NOLOGIN configuration
directive).

Even though apcupsd has requested the system to perform a shutdown, it continues running. If it is a
master with slaves, it will inform the slaves to do a shutdown. They perform their shutdown by calling
/etc/apcupsd/apccontrol remotedown.

•
When the system signals apcupsd to do exit, it does so. This is part of the normal system shutdown (at
least on Unix and Linux systems) and the exact time that apcupsd receives the termination signal
depends on how the shutdown links (usually in /etc/rc.d) are set.

Note that on Windows NT systems, apcupsd apparently continues to run as a Service even though the
machine is "shutdown".

•
During the shutdown of the system after apcupsd has been forced to exit, one of the last things done
by the system shutdown is to call the halt script, which is usually in /etc/rc.d/halt or
/etc/rc.d/init.d/halt, or possibly in /sbin/init.d/rc.0 depending on your system. If
apcupsd was properly installed, this standard halt script was modified to include a bit of new logic just
before the final halt of the system. It first tests if the file /etc/apcupsd/powerfail exists, and
if it does, it executes /etc/apcupsd/apccontrol killpower. It is this last step that will cause apcupsd to
be re−executed with the −−killpower option on the command line. This option tells apcupsd to
inform the UPS to kill the power.

This final step is important if you want to ensure that your system will automatically reboot when the
power comes back on. The actual code used on the Red Hat version is:

apcupsd User's Manual

Logging the STATUS Information 131

See if this is a powerfail situation. # ***apcupsd***
if [−f /etc/apcupsd/powerfail]; then # ***apcupsd***
 echo # ***apcupsd***
 echo "APCUPSD will now power off the UPS" # ***apcupsd***
 echo # ***apcupsd***
 /etc/apcupsd/apccontrol killpower # ***apcupsd***
 echo # ***apcupsd***
 echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
 echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
 echo # ***apcupsd***
fi # ***apcupsd***

The above code must be inserted as late as possible in the halt script. On many systems, such as Red Hat, all
the disk drives were unmounted, then remounted read−only, thus permitting access to the /etc files and the
apcupsd executable. If your system does not explicitly remount the disks, you must remount them in
read−only mode in the code that you add. Examples of code fragments that do this can be found in the
distributions/suse subdirectory of the source.

If you are not able to insert the above code in your halt script because there is no halt script, or because your
halt script calls the init program as some Unix systems do, you can either just forget about powering off the
UPS, which means that your machine will not automatically reboot after a power failure, or there is yet
another alternative, though not at all as satisfying as inserting code in the halt script.

Only if you cannot insert the appropriate code in the halt script, when you start apcupsd, normally from the
/etc/rc.d/init.d/apcupsd script, use the −−kill−on−powerfail option. This will cause
apcupsd to program the UPS to shutoff the power just before it (apcupsd) does the system shutdown. Please
note that this is not the most ideal solution. Read on to understand why.

A very important consideration is that you must set the EEPROM in your UPS so that it waits a sufficient
time for the system to halt before it shuts off the UPS power. The current value as well as the permitted values
for your UPS can be determined by executing:

apcaccess eeprom

The output should look something like the following:

apcaccess eeprom

Valid EPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

apcupsd User's Manual

Logging the STATUS Information 132

The line of interest for you is the Shutdown grace delay, which can be changed using the SLEEP directive in
your apcupsd.conf file. The default value is 20 seconds, but generally, you can set it to 180, 300, or 600
seconds depending on your UPS. See the EEPROM this manual for further details on how to change this
EPROM value.

If you use the −−kill−on−powerfail option, you run the risk of having the computer power cut before
the system has shutdown. Even if the grace period is rather long, if something goes wrong in the shutdown,
well, it is up to you to decide.

If apcupsd has successfully shutdown your computer and powered off the UPS during a power outage, you
can control whether or not your computer is automatically rebooted when the power returns.

The UPS contains two internal EPROM values that determine when it will restore power to your computer
after a full power shutdown. They are the RETURNCHARGE percentage and the WAKEUP delay. Briefly,
the RETURNCHARGE specifies what percentage charge the battery must have before the power is restored.
Higher values are recommended in regions where the power goes up and down frequently. The WAKEUP
delay is a simple time delay. Most sites will have both of these at zero, or perhaps the RETURNCHARGE
set to 15. Please follow the links to the Configuration section of this manual for more information. See the
EEPROM of this manual for further details on how to change these EPROM values.

Shutdown Problems

Obviously if your halt script is not properly modified, apcupsd will not be able to shut off the power to the
UPS, and if the power returns before the batteries are exhausted your system will not automatically reboot. In
any case, your machine should have been cleanly shut down.

Master/Slave Shutdown

In master/slave configurations, however, the master cannot be 100 percent sure that the slaves have all
shutdown before it performs the power off. As a consequence, it is possible that the master will shut off the
power before the slave has finished shutdown. If this is the case, the best procedure is to put an appropriate
sleep command in the /etc/apcupsd/apccontrol file on the master. For example to give the slaves 30
additional seconds to shutdown, one would add:

sleep 30

just after the line that reads

doshutdown)

in the apccontrol file (approximately line 79 â€” depending on your system version).

Also, on a slave machine, you do not want to use the modified halt script since it will recall apcupsd, which
will detect that it is a slave (i.e. no connection to the UPS) and will complain that it cannot do the killpower.
This situation is not harmful just annoying and possibly confusing.

One possible problem during shutdown can be caused by remnants of old versions. Please be sure to delete or
rename all prior versions (/usr/local/sbin/apcupsd or /sbin/powersc).

apcupsd User's Manual

Shutdown Problems 133

Startup

Normally, apcupsd is automatically started when your system is rebooted. This normally occurs because the
startup script apcupsd is linked into the appropriate places in /etc/rc.d. On most Linux systems, there is a
program called chkconfig(8) that will automatically link the startup script. This program is invoked by the
make install scripts, or it is explicitly done for those systems that do not have chkconfig(8). If this is not the
case, you can either link it in appropriately yourself or explicitly call it from your rc.local file. The appropriate
manual way to startup apcupsd is by executing:

<path>/apcupsd start

where <path> is normally /etc/rc.d or /etc/rc.d/init.d depending on your system (isn't Unix
wonderful? :−)). Using this script is important so that any files remaining around after a power failure are
removed. Likewise, shutting down apcupsd should be done with the same script:

<path>/apcupsd stop

Windows Considerations

Please see the end of Windows chapter of this manual for conderations pertaining to shutdown and killpower
on Windows.>

Chapter 28. APC's smart protocol

Table of Contents

Description
RS−232 differences
Diagram for cable hackers
The Smart Protocol
Dip switch info
Status bits
Alert messages
Register 1
Register 2
Register 3
Interpretation of the Old Firmware Revision
Interpretation of the New Firmware Revision
EEPROM Values
Programming the UPS EEPROM
Acknowledgements

The APC UPS protocol was originally analyzed by Pavel Korensky with additions from Andre H. Hendrick
beginning in 1995, and we want to give credit for good, hard work, where credit is due. After having said that,
you will see that Steven Freed built much of the orginal apcupsd information file. [Comment inserted by
Riccardo Facchetti]

The start of this chapter of the apcupsd manual in HTML format was pulled from the Network UPS Tools
(NUT) site. It has been an invaluable tool in improving apcupsd, and I consider it the Bible of APC UPS
programming. In the course of using it, I have added information gleaned from apcupsd and information

apcupsd User's Manual

Startup 134

http://www.exploits.org/nut/library/apcsmart.html
http://www.exploits.org/nut/library/apcsmart.html

graciously supplied by APC. Hopefully, the additions made herein can benefit the original author and his
programming project, and maybe some day, the apcupsd project and the NUT project can join forces.

Description

Here's the information on the elusive APC smart signaling protocol used by their higher end units (Back−UPS
Pro, Smart−UPS, Matrix−UPS, etc). What you see here has been collected from a variety of sources. Some
people analyzed the chatter between PowerChute and their hardware. Others sent various characters to the
UPS and figured out what the results meant.

RS−232 differences

Normal 9 pin serial connections have TxD on 3 and RxD on 2. APC's smart serial ports put TxD on pin 1 and
RxD on pin 2. This means you go nowhere if you use a normal straight through serial cable. In fact, you might
even power down the load if you plug one of those cables in. This is due to the odd routing of pins − DTR and
RTS from the PC usually wind up driving the on/off line. So, when you open the port, they go high and
poof your computer dies.

Originally this evil hack was used to connect the UPS to the PC when this page was first being built. As you
can see, I cheated and neglected the ground (only 2 wires!) and it still worked. This method can be used for
playing around, but for professional systems this is obviously not a viable option.

That hack didn't work out so well (damned cats), so it was retired quite awhile back. The most practical
solution was to go out and BUY the DOS/Win version of PowerChute just for the black (smart) cable. I
recommend doing the same thing if you actually care about this thing working properly. Of course, if you
have one of the newer packages that came with PowerChute, you already have the cable you need.

Diagram for cable hackers

If you are handy with cable creation tools, check out the 940−0024C clone diagram. That's the black "smart"
cable normally provided with APC models sold after 1996. The loopback pins on that diagram are used to
keep PowerChute happy by allowing cable detection. If you use the NUT apcsmart driver, those pins don't
matter.

Many thanks to Steve Draper for providing this scan.

For additional information on cables, see the section on custom cables in this manual.

The Smart Protocol

Despite the lack of official information from APC, this table has been constructed. It's standard RS−232 serial
communications at 2400 bps/8N1. Don't rush the UPS while transmitting or it may stop talking to you. This
isn't a problem with the normal single character queries, but it really does matter for multi−char things like
"@000". Sprinkle a few calls to usleep() in your code and everything will work a lot better.

The following table describes the single character Code or command that you can send to the UPS, its
meaning, and what sort of response the UPS will provide. Typically, the response shown below is followed by
a newline (\n in C) and a carriage return (\r in C). If you send the UPS a command that it does not recognize
or that is not available on your UPS, it will normally respond by "NA" for not available, otherwise the

apcupsd User's Manual

Description 135

http://www.exploits.org/nut
http://www.exploits.org/nut/library/940-0024C.jpg
http://www.exploits.org/nut/

response is given in the "Typical results" column. >

Code Meaning Typical results

^A Model string SMART−UPS 700

^N

Turn on UPS (send twice,
with > 1.5s delay between
chars) Only on 3rd gen
SmartUPS and Black
Back−UPS Pros

n/a

^Z
Permitted EEPROM
Values

A large string (254 chars) that gives the EEPROM permitted values for
your model. For details see below.

A Front panel test Light show + "OK" (and 2s beep)

B Battery voltage Ranges − typical "27.87"

C
Internal temperature
(degrees C)

Ranges − typical "036.0"

D

Runtime calibration −
runs until battery is below
25% (35% for Matrix)
This updates the 'j' values
− only works at 100%
battery charge. Can be
aborted with a second "D"

! when on battery, $ on line

E
Automatic self test
intervals

Default = 336 (336 hours = 14 days) (336=14 days, 168=7 days,
ON=power on, OFF=never)

F Line frequency, Hz 60.00 (50.0 in Europe)

G Cause of transfer

R = unacceptable utility voltage rate of change, H = high utility
voltage, L = low utility voltage, T = line voltage notch or spike, O = no
transfers yet (since turnon), S = transfer due to serial port U command
or activation of UPS test from front panel, NA = transfer reason still
not available (read again).

K−−K

Shutdown with grace
period (set with 'p') − need
> 1.5s between first and
second K

Matrix/3rd gen SmartUPS/Black Back−UPS Pros: "OK", all others:
"*"

L Input line voltage Ranges − typical "118.3" or "228.8" in Europe

M
Maximum line voltage
received since last M
query

Ranges − typical "118.9" or "230.1" in Europe

N
Minimum line voltage
received since last N
query

Ranges − typical "118.9" or "226.2" in Europe

O Output voltage Ranges − typical "118.3" or "228.8" in Europe

P Power load % Ranges − typical "011.4" depends on what you have plugged in.

Q Status flags Bitmapped, see below

R "BYE"

apcupsd User's Manual

Description 136

Turn dumb Only on 3rd
gen SmartUPS, SmartUPS
v/s, BackUPS Pro

S

Soft shutdown after 'p'
delay, return online when
power returns Only works
when UPS is on battery

OK

U Simulate power failure !! when switching to battery, then $ when back on line

V Old firmware revision
"GWD" or "IWI" The last character indicates the locale (Domestic,
International).

W
Self test (battery), results
stored in "X"

"OK"

X Results of last self test
"OK" − good battery, "BT" − failed due to insufficient capacity, "NG"
− failed due to overload, "NO" − no results available (no test
performed in last 5 minutes)

Y Enter smart mode "SM"

Z−−Z

Shutdown immediately
(no delay) − need > 1.5s
between first and second
Z

N/A

a

Show protocol
version.alert
messages.valid commands
(delimited by periods)

"3.!$%+?=#|.^A^N^Z+−789<@ABCDEFGKLMNOPQRSUVWXYZ'abcefgjklmnopqrsuvzy~^?"
− Link−Level.alert−messages.commands

b Firmware revision
"50.9.D" − 50 = SKU (variable length), 9 = firmware revision, D =
country code (D=USA, I=International, A=Asia, J=Japan, M=Canada)

c UPS local id UPS_IDEN (you can program any 8 characters here)

e Return threshold
% battery charge threshold for return (00=00%, 01=15%, 02=25%,
03=90%)

f Battery level %
Ranges − typical "100.0" when fully charged as should normally be
the case

g
Nominal battery voltage
(not actual voltage − see
B)

"012" or "024" or "048".

h
Measure−UPS: ambient
humidity (%)

"nnn.n" − percentage

i
Measure−UPS: dry
contacts

10 = contact 1, 20 = 2, 40 = 3, 80 = 4

j
Estimated runtime at
current load (minutes)

"0112:" (note, it is terminated with a colon)

k Alarm delay
0(zero) = 5 second delay after fail, T = 30 second delay, L = alarm at
low battery only, N = no alarm

l Low transfer voltage Default "103" or "208" in Europe

m Manufacturing date Unique within groups of UPSes (production runs)

apcupsd User's Manual

Description 137

n Serial number Unique for each UPS

o Nominal Output Voltage
The Nominal Output Voltage when running on batteries. Default "115"
or "230" in Europe.

p
Shutdown grace delay,
seconds

Default "020" (020/180/300/600)

q
Low battery warning,
minutes

Default "02"

r
Wakeup delay (time) −
seconds

Default "000" (000/060/180/300)

s Sensitivity
"H" − highest, "M" − medium, "L" − lowest, "A" − autoadjust (Matrix
only)

u Upper transfer voltage Default "132" or "253" in Europe

t
Measure−UPS: ambient
temperature (degrees C)

"nn.nn"

x Last battery change Eight characters. Varies typically dd/mm/yy − 31/12/99

y Copyright notice "(C) APCC" − only works if firmware letter (from "V") is later than O

z

Reset the EEPROM to
factory settings (but not
ident or batt replacement
date) Not on SmartUPS
v/s or BackUPS Pro

"CLEAR"

+ Capability cycle
Cycle forward through possible values ("|" from UPS afterward to
confirm change). Do not use this unless you know how to program
your UPS EEPROM or you may damage your UPS.

− Capability cycle
Cycle backward through possible values ("|" from UPS afterward to
confirm change)Do not use this unless you know how to program your
UPS EEPROM or you may damage your UPS.

@nnn

Shutdown (after delay 'p')
with delayed wakeup of
nnn tenths of an hour
(after 'r' time)

Matrix/3rd gen UPS: "OK", others "*"

0x7f
(DEL
key)

Abort shutdown − use to
abort @, S, K−−K

"OK"

~ Register #1 See below

' Register #2 See below

0 Battery constant Set to A0 on SmartUPS 1000 with new battery

4 ??? Prints 35 on SmartUPS 1000

5 ??? Prints EF on SmartUPS 1000

6 ??? Prints F9 on SmartUPS 1000

7
Dip switch positions (if
applicable)

See below

8 Register #3 See below

apcupsd User's Manual

Description 138

9 Line quality "FF" acceptable, "00" unacceptable

>
Number of external
battery packs attached

SmartCell models: "nnn" where nnn is how many external packs are
connected Non−SmartCell units: whatever has been set with >+ and
>− by the user

Matrix UPS (and possibly Symmetra) specific commands

^ Run in bypass mode
If online, "BYP" is received as bypass mode starts If already in bypass,
"INV" is received and UPS goes online "ERR" received if UPS is
unable to transfer

<
Number of bad battery
packs

"nnn" − count of bad packs connected to the UPS

/ Load current "nn.nn" − true RMS load current drawn by UPS

\ Apparent load power "nnn.nn" − output load as percentage of full rated load in VA.

^V
Output voltage selection
(editable)

"A" − automatic according to input tap, "M" − 208 VAC, "I" − 240
VAC

^L Front panel language
"E" − English, "F" − French, "G" − German, "S" − Spanish, "1" "2"
"3" "4" − ?

w Run time conservation
"NO" (disabled) or "02" "05" "08" − minutes of runtime to leave in
battery (UPS shuts down "early")

Dip switch info

Bit Switch Option when bit=1

0 4 Low battery alarm changed from 2 to 5 mins. Autostartup disabled on SU370ci and 400

1 3 Audible alarm delayed 30 seconds

2 2 Output transfer set to 115 VAC (from 120 VAC) or to 240 VAC (from 230 VAC)

3 1 UPS desensitized − input voltage range expanded

4−7 − Unused at this time

Status bits

This is probably the most important register of the UPS, which indicates the overall UPS status. Some
common things you'll see:

•
08 = On line, battery OK

•
10 = On battery, battery OK

•
50 = On battery, battery low

•
SM = Status bit is still not available (retry reading)

Bit Hex Bit Meaning

apcupsd User's Manual

Dip switch info 139

0 0x01 1 = Runtime calibration occurring Not reported by Smart UPS v/s and BackUPS Pro

1 0x02 1 = SmartTrim Not reported by 1st and 2nd generation SmartUPS models

2 0x04 1 = SmartBoost

3 0x08 1 = On line (this is the normal condition)

4 0x10 1 = On battery

5 0x20 1 = Overloaded output

6 0x40 1 = Battery low

7 0x80 1 = Replace battery

Alert messages

These single character messages are sent by the UPS any time there is an Alert condition. All other responses
indicated above are sent by the UPS only in response to a query or action command.

Character Description

!
Line Fail − sent when the UPS goes on−battery, repeated every 30 seconds until low battery
condition reached. Sometimes occurs more than once in the first 30 seconds.

$ Return from line fail − UPS back on line power, only sent if a ! has been sent.

% Low battery − Sent to indicate low battery, but not on SmartUPS v/s or BackUPS Pro models

+
Return from low battery − Sent when the battery has been recharged to some level only if a % has
been sent previously

?
Abnormal condition − sent for conditions such as "shutdown due to overload" or "shutdown due
to low battery capacity". Also occurs within 10 minutes of turnon.

=
Return from abnormal condition − Sent when the UPS returns from an abnormal condition where
? was sent, but not a turn−on. Not implemented on SmartUPS v/s or BackUPS Pro models.

*
About to turn off − Sent when the UPS is about to switch off the load. No commands are
processed after this character is sent. Not implemented on SmartUPS v/s, BackUPS Pro, or 3rd
generation SmartUPS models.

#
Replace battery − Sent when the UPS detects that the battery needs to be replaced. Sent every 5
hours until a new battery test is run or the UPS is shut off. Not implemented on SmartUPS v/s or
BackUPS Pro models.

&

Check alarm register for fault (Measure−UPS) − sent to signal that temp or humidity out of set
limits. Also sent when one of the contact closures changes states. Sent every 2 minutes, stops
when the alarm conditions are reset. Only sent for alarms enabled with I. Cause of alarm may be
determined with J. Not on SmartUPS v/s or BackUPS Pro.

|
Variable change in EEPROM − Sent whenever any EEPROM variable is changed. Only
supported on Matrix UPS and 3rd generation SmartUPS models.

Register 1

All bits are valid on the Matrix UPS. SmartUPS models only support bits 6 and 7. Other models do not
respond.

Bit Hex Bit Meaning

0 0x01 In wakeup mode (typically lasts < 2s)

apcupsd User's Manual

Alert messages 140

1 0x02 In bypass mode due to internal fault − see register 2 or 3

2 0x04 Going to bypass mode due to command

3 0x08 In bypass mode due to command

4 0x10 Returning from bypass mode

5 0x20 In bypass mode due to manual bypass control

6 0x40 Ready to power load on user command

7 0x80 Ready to power load on user command or return of line power

Register 2

Matrix UPS models report bits 0−5. SmartUPS models only support bits 4 and 6. SmartUPS v/s and BackUPS
Pro report bits 4, 6, 7. Unused bits are set to 0. Other models do not respond.

Bit Meaning

0 Fan failure in electronics, UPS in bypass

1 Fan failure in isolation unit

2 Bypass supply failure

3 Output voltage select failure, UPS in bypass

4 DC imbalance, UPS in bypass

5 Command sent to stop bypass with no battery connected − UPS still in bypass

6 Relay fault in SmartTrim or SmartBoost

7 Bad output voltage

Register 3

All bits are valid on the Matrix UPS and 3rd generation SmartUPS models. SmartUPS v/s and BackUPS Pro
models report bits 0−5. All others report 0−4. State change of bits 1,2,5,6,7 are reported asynchronously with
? and = messages.

Bit Meaning

0 Output unpowered due to shutdown by low battery

1 Unable to transfer to battery due to overload

2 Main relay malfunction − UPS turned off

3 In sleep mode from @ (maybe others)

4 In shutdown mode from S

5 Battery charger failure

6 Bypass relay malfunction

7 Normal operating temperature exceeded

Interpretation of the Old Firmware Revision

The Old Firmware Revision is obtained with the "V" command, which gives a typical response such as
"GWD" or "IWI", and can be interpreted as follows:

apcupsd User's Manual

Register 2 141

Old Firmware revision and model ID String for SmartUPS & MatrixUPS

This is a three character string XYZ

 where X == Smart−UPS or Matrix−UPS ID Code.
 range 0−9 and A−P
 1 == unknown
 0 == Matrix 3000
 5 == Matrix 5000
 the rest are Smart−UPS and Smart−UPS−XL
 2 == 250 3 == 400 4 == 400
 6 == 600 7 == 900 8 == 1250
 9 == 2000 A == 1400 B == 1000
 C == 650 D == 420 E == 280
 F == 450 G == 700 H == 700XL
 I == 1000 J == 1000XL K == 1400
 L == 1400XL M == 2200 N == 2200XL
 O == 3000 P == 5000

 where Y == Possible Level of Smart Features, unknown???
 G == Stand Alone
 T == Stand Alone
 V == ???
 W == Rack Mount

 where Z == National Model Use Only Codes
 D == Domestic 115 Volts
 I == International 230 Volts
 A == Asia ?? 100 Volts
 J == Japan ?? 100 Volts

Interpretation of the New Firmware Revision

New Firmware revison and model ID String in NN.M.L is the format

 where NN == UPS ID Code.
 12 == Back−UPS Pro 650
 13 == Back−UPS Pro 1000
 52 == Smart−UPS 700
 60 == SmartUPS 1000
 72 == Smart−UPS 1400

 where NN now Nn has possible meanings.
 N == Class of UPS
 1n == Back−UPS Pro
 5n == Smart−UPS
 7n == Smart−UPS NET

 n == Level of intelligence
 N1 == Simple Signal, if detectable WAG(*)
 N2 == Full Set of Smart Signals
 N3 == Micro Subset of Smart Signals

 where M == Possible Level of Smart Features, unknown???
 1 == Stand Alone
 8 == Rack Mount
 9 == Rack Mount

 where L == National Model Use Only Codes
 D == Domestic 115 Volts

apcupsd User's Manual

Interpretation of the New Firmware Revision 142

 I == International 230 Volts
 A == Asia ?? 100 Volts
 J == Japan ?? 100 Volts
 M == North America 208 Volts (Servers)

EEPROM Values

Upon sending a ^Z, your UPS will probably spit back approximately 254 characters something like the
following (truncated here for the example):

#uD43132135138129uM43229234239224uA43110112114108

It looks bizarre and ugly, but is easily parsed. The # is some kind of marker/ident character. Skip it. The rest
fits this form:

•
Command character − use this to select the value

•
Locale − use 'b' to find out what yours is (the last character), '4' applies to all

•
Number of choices − '4' means there are 4 possibilities coming up

•
Choice length − '3' means they are all 3 chars long

Matrix−UPS models have ## between each grouping for some reason.

Here is an example broken out to be more readable:

 CMD DFO RSP FSZ FVL
 u D 4 3 127 130 133 136
 u M 4 3 229 234 239 224
 u A 4 3 108 110 112 114
 u I 4 3 253 257 261 265
 l D 4 3 106 103 100 097
 l M 4 3 177 172 168 182
 l A 4 3 092 090 088 086
 l I 4 3 208 204 200 196
 e 4 4 2 00 15 50 90
 o D 1 3 115
 o J 1 3 100
 o I 1 3 230 240 220 225
 o M 1 3 208
 s 4 4 1 H M L L
 q 4 4 2 02 05 07 10
 p 4 4 3 020 180 300 600
 k 4 4 1 0 T L N
 r 4 4 3 000 060 180 300
 E 4 4 3 336 168 ON OFF

 CMD == UPSlink Command.
 u = upper transfer voltage
 l = lower transfer voltage

apcupsd User's Manual

EEPROM Values 143

 e = return threshold
 o = output voltage
 s = sensitivity
 p = shutdown grace delay
 q = low battery warning
 k = alarm delay
 r = wakeup delay
 E = self test interval

 DFO == (4)−all−countries (D)omestic (I)nternational (A)sia (J)apan
 (M) North America − servers.
 RSP == Total number possible answers returned by a given CMD.
 FSZ == Max. number of field positions to be filled.
 FVL == Values that are returned and legal.

Programming the UPS EEPROM

There are at this time a maximum of 12 different values that can be programmed into the UPS EEPROM.
They are:

Item Command Meaning

1. c The UPS Id or name

2. x The last date the batteries were replaced

3. u The Upper Transfer Voltage

4. l The Lower Transfer Voltage

5. e The Return Battery Charge Percentage

6. o The Output Voltage when on Batteries

7. s The Sensitivity to Line Quality

8. p The Shutdown Grace Delay

9. q The Low Battery Warning Delay

10. k The Alarm Delay

11. r The Wakeup Delay

12. E The Automatic Self Test Interval

The first two cases (Ident and Batt date) are somewhat special in that you tell the UPS you want to change the
value, then you supply 8 characters that are saved in the EEPROM. The last ten item are programmed by
telling the UPS that you want it to cycle to the next permitted value.

In each case, you indicate to the UPS that you want to change the EEPROM by first sending the appropriate
query command (e.g. "c" for the UPS ID or "u" for the Upper Transfer voltage. This command is then
immediately followed by the cycle EEPROM command or "−". In the case of the UPS Id or the battery date,
you follow the cycle command by the eight characters that you want to put in the EEPROM. In the case of the
other ten items, there is nothing more to enter.

The UPS will respond by "OK" and approximately 5 seconds later by a vertical bar (|) to indicate that the
EEPROM was changed.

apcupsd User's Manual

Programming the UPS EEPROM 144

Acknowledgements

The apcupsd has a rather long and tormented history. Many thanks to the guys that, with time, contributed to
the general public knowledge.

Pavel Korensky <pavelk at dator3.anet.cz>, Andre M. Hedrick <hedrick at suse.de>, Christopher J. Reimer
<reimer at doe.carleton.ca>, Kevin D. Smolkowski <kevins at trigger.oslc.org>, Werner Panocha <wpanocha
at t−online.de>, Steven Freed, Russell Kroll.

additions by: Kern Sibbald <apcupsd−users at lists.sourceforge.net>

Appendix A. Credits

Table of Contents

Contributors
Disclaimer: NO WARRANTY

The success of apcupsd is due to the many people that helped in development, testing and in many other
ways.

Thank all the developers that worked hard to make APCUPSD one of the best piece of software for
UPS management.

Contributors

Project Starter and Former Code Maintainer:
Andre Hedrick (andre at linux−ide.org)

Current Code Maintainer and Project Manager:
Riccardo Facchetti (riccardo at master.oasi.gpa.it)

Serial Communications:
Andre Hedrick (andre at linux−ide.org)

2.0 User's Manual:
Eric S. Raymond (esr at thyrsus.com)

Alpha Port:
Kern Sibbald (kern at sibbald dot com)

JoÃ£o Rochate (jrochate at ualg.pt) testing and machine loan

Caldera:
John Pinner (john at clocksoft.com)

apcupsd User's Manual

Acknowledgements 145

http://www.exploits.org/~rkroll/contact.html
http://www.apcupsd.com

HP−UX Port
Carl Erhorn (Carl_Erhorn at hyperion.com)

Robert K Nelson (rnelson at airflowsciences.com)

SOLARIS Port:
Carl Erhorn (Carl_Erhorn at hyperion.com)

OpenBSD Port:
Devin Reade (gdr at gno.org)

NetBSD Port:
Neil Darlow (neil at darlow.co.uk)

Win32 Port:
Kern Sibbald (kern at sibbald dot com)

Paul Z. Stagner (paul.stagner at charterco.com) testing

WEB Interfaces:
Kern Sibbald (kern at sibbald dot com)

Joseph Acosta (joeja at mindspring.com)

Apcupsd Support and Knowledge Base:
Brian Schau (Brian.Schau at compaq.com)

Hard Core Coders:
Riccardo Facchetti (riccardo at master.oasi.gpa.it)

Kern Sibbald (kern at sibbald dot com)

Part Time Coders:
Jonathan H N Chin (jc254 at newton.cam.ac.uk)

Andre Hedrick (andre at linux−ide.org)

Brian Schau (Brian.Schau at compaq.com)

Carl Erhorn (Carl_Erhorn at hyperion.com)

Distribution Maintainers:
Alpha: Kern Sibbald (kern at sibbald dot com) temp

Debian: Leon Breedt (ljb at debian.org)

FreeBSD/BSDi: Jeff Palmer (scorpio at drkshdw.org)

NetBSD: Neil Darlow (neil at darlow.co.uk)

apcupsd User's Manual

Acknowledgements 146

HP−UX: Carl Erhorn (Carl_Erhorn at hyperion.com), Robert K Nelson (rnelson at
airflowsciences.com)

OpenBSD: Devin Reade (gdr at gno.org)

RedHat: Kern Sibbald (kern at sibbald dot com)

Slackware: Devin Reade (gdr at gno.org)

Sparc Solaris: Carl Erhorn (Carl_Erhorn at hyperion.com)

SuSE: Riccardo Facchetti (riccardo at master.oasi.gpa.it)

Win32: Kern Sibbald (kern at sibbald dot com)

Project Discussions:
APCUPSD Mailing List

Thanks to American Power Conversion (APC) who helped in giving technical information on their UPSes.

A special thanks to APC who gave me (Riccardo) a Smart UPS 1400 INET when my old Back UPS v/s 650's
battery died. Thank you guys, your help has been invaluable.

Thanks to all the users that send bug reports and suggestions: we need your help.

Thanks to every one I forgot here. If you feel I have forgot your name, please don't hesitate to tell me.

Miquel van Smoorenburg, The Doctor What, Pavel Korensky, and Russell Kroll <rkroll at exploits.org> for
the CGI programs. Jonathan Benson <jbenson at technologist.com> for adapting the upsstatus.cgi program to
work with apcupsd

The gd 1.2 Image Library used in our CGI programs is copyright 1994, 1995, Quest Protein Database Center,
Cold Spring Harbor Labs. Permission granted to copy and distribute this work provided that this notice
remains intact. Credit for the library must be given to the Quest Protein Database Center, Cold Spring Harbor
Labs, in all derived works. This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for Quest, not to interfere with your use of gd.

gd 1.2 was written by Thomas Boutell and is currently distributed by boutell.com, Inc.

Parts of the VNC project by ATT (cool code) were used as templates for our Win32 code, see:
http://www.uk.research.att.com/vnc

Disclaimer: NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

apcupsd User's Manual

Disclaimer: NO WARRANTY 147

http://www.uk.research.att.com/vnc

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

apcupsd User's Manual

Disclaimer: NO WARRANTY 148

