
Chapter 1
Web Hacking &

Penetration
Methodologies

3

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1
blind folio 3

IN THIS CHAPTER:
■ Threats and Vulnerabilities

■ Profiling the Platform

■ Profiling the Application

■ Summary

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



The “revolution” part of the “Internet revolution” slogan has not
been around nearly as long as the Internet itself, whose lineage
dates back to the 1960s. While the beneficiaries of the revolution

are debatable, the amount of information that has been put “on the
Web” has obviously grown immensely. Today, anyone can post stories
about their cat, write insightful articles, chat on message boards, sell
widgets, sell used widgets, manage their collection of widgets, and
more. One of the common factors among these activities is the use of
web applications. Web applications may be static HTML files or com-
plex, dynamic, and database-driven web sites. In all cases, security is
paramount to maintaining the application’s integrity, privacy of its us-
ers, confidentiality of its data, and uptime of its servers.

This chapter describes the techniques you can use to assess the
(in)security of your application. It steps through the major categories of
attacks employed by malicious Internet users. In some cases, the attack
may appear innocuous, such as gathering line numbers from error mes-
sages or identifying all of the <form> fields in a web site. On the other
hand, the attacker may find the chink in the application’s armor that en-
ables arbitrary access to database information. In all cases, a compre-
hensive review of a web application requires a methodical approach.
Here is where you will find that approach.

THREATS AND VULNERABILITIES
There are two categories into which web vulnerabilities can be catego-
rized. One category contains vulnerabilities within the platform—the
components that many web applications share, such as Linux, Win-
dows, Apache, and Oracle. The other category of vulnerabilities targets
the application itself. In other words, programming errors in the web
site might expose a user’s credit card details, enable a malicious user to
execute arbitrary database queries, or even enable remote command-
line access to the server.

Consequently, any web application faces a variety of threats. Many
tools are available to check for vulnerabilities in an operating system or
web server, and exploit code for those vulnerabilities is common. Appli-
cation attacks, such as SQL injection or session hijacking, are more diffi-
cult to automate, but the most common vulnerabilities can be codified
so that a few lines of Perl can check for their presence, as in the case of
basic input validation checks. In short, many high-risk vulnerabilities
can be identified and exploited by the least competent of individuals.
That is not to say that other high-risk vulnerabilities require an elite skill
set; it merely points out that greatest common denominator of threats to
a web application has a very large set of tools and information available.

4 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



PROFILING THE PLATFORM
A web application consists of more than a shopping cart, a marketing
opt-out page, and a flashing graphic to capture your attention. The ma-
jority of e-commerce applications use a three-tier architecture. So, when
we say “application” we really mean one or more servers that perform
the following roles:

■ Web Server This component serves web pages to the user’s
browser. Apache and IIS are the most common examples.
Every web server has a collection of vulnerabilities.

■ Application Server This component manipulates, interprets,
and presents data for the user. The application server can be
part of the web server, as in the case of PHP and Apache, or
ASP.NET and IIS. On the other hand, the application server
could be a physically separate server, such as a Tomcat servlet
engine. Every web application server has a collection of
vulnerabilities.

■ Database This component stores all of the data required by
the application. Whereas users interact with the web and
application servers, they usually cannot access the database
server. Most of the time, the application server brokers data
between the user and the database, formatting data so that they
are stored correctly. Every database server has a collection of
vulnerabilities.

It may seem pedantic to repeat that each component has a potential
security problem; however, it should illustrate the number of threats a
web application faces—all before a single line of code has even been
written!

Port Scanning and Service Identification
This is the basic step in a security review. After all, in order to test a sys-
tem, there must be a service (open port) listening. There are several port
scanners for Windows- and Unix-based operating systems that not only
act as port scanners, but have quite a bit of extra functionality.

Nmap is probably the best-known port scanner. It compiles on just
about all Unix operating systems and has recently been ported to the
Windows platform.

[localhost:~]% nmap 192.168.0.43

Starting nmap V. 3.20 ( www.insecure.org/nmap/ )

Interesting ports on target (192.168.0.42):

(The 1596 ports scanned but not shown below are in

Profiling
the

Platform
Chapter 1: Web Hacking & Penetration Methodologies 5

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Platform

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



state: closed)

Port       State       Service

22/tcp     open        ssh

80/tcp     open        http

Nmap run completed -- 1 IP address (1 host up) scanned

in 0.481 seconds

Other uses for nmap include operating system identification, the
ability to save output in different formats, and a wide range of different
port scanning methods.

If you have trouble compiling nmap on Apple OSX, try passing the
“--build=powerpc-apple-macosx” flag to the ./configure script.

Scanline is a Windows-based port scanner that, unlike nmap, does
not require the installation of WinPCAP drivers. It is more basic than
nmap, meaning that it only performs SYN, ICMP, and UDP scans, but it
is extremely fast and especially reliable for UDP scans. One of its best
features is the “banner” option (-b) that collects the service banner, if
present, from each port it scans.

C:\>sl –bp –o website.sl 192.168.0.43

192.168.0.43

TCP ports: 80

UDP ports:

TCP 80:

[HTTP/1.0 200 OK Connection: Keep-Alive

Date: Wed, 19 Mar 2003 00:18

:38 GMT Set-Cookie:]

Netcat is a cumbersome tool for port scanning, but extremely useful
for banner grabbing. It will also make an appearance in Chapter 2 as a
tool for application attacks. Banner grabbing with netcat is simple. Ei-
ther connect to the target site and type in the http request or echo the re-
quest into netcat:

echo –e “GET / HTTP/1.0\n\n” | nc –vv website 80

We’ll make more mention of this later on in the book, but it’s impor-
tant to realize that any http request can be piped through netcat. For ex-
ample, a HEAD request doesn’t return HTML source when all you’re
looking for is the server’s banner. Also, some sites might respond differ-
ently to HTTP 1.1 or WebDAV requests.

echo –e “GET / HTTP/1.1\nHost:\n” | nc –vv website 80

6 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Windows command shell (cmd.exe) does not support a proper echo. You will
have to create a nudge.txt file that contains:
GET / HTTP/1.0
<blank line>
<blank line>
and use the command:
c:\> type nudge.txt | nc –vv website 80
You can also use the Cygwin utility on Windows platforms to obtain a Unix-like echo.

Netcat works great for HTTP connections, but won’t help when you
need to gather information and connect to sites using HTTPS. In that
case, use the openssl command to make connections:

[localhost:~]% echo –e “HEAD / HTTP/1.0\n\n” | \

openssl s_client –quiet –connect 192.168.0.43:443

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN= website

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN=website

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN=website

verify error:num=20:unable to get local issuer certificate

verify return:1

HTTP/1.1 302 Found

Date: Fri, 15 Nov 2002 08:43:17 GMT

Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix)

Location: http://www.website.com/

Connection: close

Content-Type: text/html; charset=iso-8859-1

OpenSSL can also be used to identify the encryption strength of the
target web server.

openssl s_client -connect website:443 -cipher EXPORT40

openssl s_client -connect website:443 -cipher NULL

openssl s_client -connect website:443 -cipher HIGH

The idea is to use openssl to try and negotiate a downgraded ses-
sion. In most cases, this should not work; however, you might run into
an embedded device or legacy server that supports a very weak encryp-
tion scheme. If the server supports the selected encryption strength,
then you will see the certificate information. Otherwise, you will receive
an error similar to the following:

CONNECTED(00000003)

27249:error:14077410:SSL routines:SSL23_GET_SERVER_HELLO:

sslv3 alert handshake failure:s23_clnt.c:455:

Profiling
the

Platform
Chapter 1: Web Hacking & Penetration Methodologies 7

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Platform

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



If you’re a fan of nessus, the ssl_ciphers.nes plug-in will perform the SSL strength
check for you and report all of the server’s supported algorithms.

Vulnerability Scanning
Vulnerability scanning is the trivial part of web application security
testing. Anyone with a little knowledge of the command line can perform
these checks.

Nikto is based on the libwhisker Perl library, which is an evolution
of the Whisker web vulnerability scanner. As such, Nikto is a vulnera-
bility checker that focuses on known vulnerabilities within web servers
and CGI scripts. The list of known vulnerabilities is continuously main-
tained and the tool even allows for quick updates:

[localhost:~]%./nikto.pl –update

----------------------------------------------------------------

- Nikto v1.23  - www.cirt.net - Mon Mar 17 23:30:46 2002

+ No updates required.

+ www.cirt.net message: Please report bugs and new tests.

To use Nikto, point it at a web server and examine the output for
HTTP 200 messages and other important notes.

[localhost:~] mike% ./nikto.pl -p 80 -host dusk

----------------------------------------------------------------

- Nikto v1.23  - www.cirt.net - Tue Mar 18 20:40:45 2003

----------------------------------------------------------------

+ Target IP:       192.168.0.175

+ Target Hostname: dusk

+ Target Port:     80

----------------------------------------------------------------

+ Server: Microsoft-IIS/5.0

+ No CGI Directories found (use -a to force check...)

+ /xxxxxxxxxxabcd.html - The IIS server may be vulnerable

to Cross Site Scripting (XSS) in error messages, see

MS02-018,CVE-2002-0075,SNS-49,MS02-018,CA-2002-09 (GET)

+ /_vti_bin/_vti_aut/author.dll?method=list+documents%3a

3%2e0%2e2%2e1706&service%5fname=&listHiddenDocs=true&

listExplorerDocs=true&listRecurse=false&listFiles=true&

listFolders=true&listLinkInfo=true&listIncludeParent=true&

listDerivedT=false&listBorders=false

Needs Auth: (realm NTLM)

+ /_vti_inf.html - FrontPage may be installed. (GET)

- 1106 items checked, 3 items found on remote host

Nessus is a more complete tool than Nikto because it combines port
scanning and vulnerability checking, not limited to web checks, into a

8 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Profiling
the

Platform

single application. Chapter 3 provides more detail and instructions on
how to use these tools.

As you begin the application assessment, create a matrix similar to
Table 1-1 to track the data you acquire.

PROFILING THE APPLICATION
The next step is to profile the actual web site by systematically catalog-
ing all of its pages, functions, and parameters. This is where you’ll be
able to identify common problems such as poor input validation, inade-
quate session handling, and other programming errors. Consequently,
it is important to maintain a descriptive record of the site. You will most
likely uncover some obvious application-level vulnerabilities in this

Profiling
the

Application
Chapter 1: Web Hacking & Penetration Methodologies 9

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Step (Repeat for Each Server) Subsequent Steps and Potential Attacks

Identify the server’s role What is its function? (Web, application,
database, firewall, proxy, administration)
What data does it handle?
With which servers does it interact? (For
example, does the web server contact the
database, or is there an intermediate
application server?)

Determine the operating
system and version

Identify the OS using banner information,
educated guesses, and “nmap –O” results.

Determine the operating system
and application patch level

Check the OS and application vendor’s web
site for the latest patch information.

Scan for open ports Perform a TCP and UDP port scan
Application server ports (7000, 8000, etc.)
Administration ports (22, 23, 2301, 3389,
10000)
Proxy ports (8080)
Sytem ports (79, 111, 139, 445, 512)

Record the web server type,
patch level, and additional
components

Apache mod_* modules
IIS ISAPI filters
This information will be useful for finding
known vulnerabilities, testing functionality
(such as WebDAV), and searching for
common HTML files.

Research known
vulnerabilities

Good resources are packetstormsecurity.org
and www.securityfocus.com.
Application-level vulnerability information
can be found at www.cgisecurity.com.

Table 1-1. Platform Profile Checklist

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



phase. Resist the urge to immediately branch off and begin hacking the
application. Collect a complete picture. Then, take advantage of vulner-
abilities to gather more information or gain additional access.

Complete a matrix similar to Table 1-3 as you visit each page of the
application.

Enumerate the Directory Structure and Files
In one way, this step is trivial, easy to perform, and can be readily auto-
mated. After all, in order to profile the application you need to know
what files make up the web site. The easy part is going through the appli-
cation and recording each file name and its full path from the web root.

The other portion of directory enumeration involves making edu-
cated guesses about files or directories that might exist. To be successful
at directory prognostication takes a little bit of luck and an eye for pat-
terns. For example, perhaps the application has three directories from
the root: /scripts, /users, and /manage. Now, if you observe /users/in-
cludes and /scripts/includes directories, then it’s probably a good
guess that there will also be a /manage/includes directory. Often, sub-
directories have incorrect authorization settings. So, while /manage
might be password protected, /manage/include is not.

A good example is Real Networks RealServer 7 web administration
portal. There is an /admin directory that requires a username and pass-
word to access; however, files in the /admin/docs/ directory can be ac-
cessed directly—not a good situation when the default.cfg file in this
directory contains at least one plaintext username and password to the
site. This vulnerability also demonstrates that any web-based platform
(server, application, or web engine) is susceptible to these types of vul-
nerabilities.

A tool such as wget or libwhisker’s crawl function is helpful for this
stage, but manual interaction gives you a better feel for how the pro-
grammers designed the application.

Always look for a robots.txt file. This file is intended to serve as a list of directories
that search engines should not crawl. Thus, a robots.txt file (if present) provides a
comprehensive list of directories on the server—especially directories that contain
sensitive information that search engines are supposed to ignore.

Identify Authentication Mechanism
If the application supports individual users, then record how users
must authenticate to the application:

10 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Anonymous No authentication required.

HTTP Basic Username and password are passed in a header that is
Base64 encoded of the type base64 (username:password).

HTTP Digest Username and password are passed in a header that is
an MD5 challenge/response.

HTTP NTLM Username and password use Windows credentials
passed in a challenge/response format.

Form-based Username and password are entered in a form. The user
receives some token (cookie value, session ID, etc.) that
indicates success.

Keep in mind that challenge/response mechanisms do not protect
passwords with 100 percent security. Even though the password is not
sent between the client and server, the “hash” passed by the chal-
lenge/response is susceptible to brute force. So, any user authentication
mechanism should also use an encrypted channel. In other words, use
SSL regardless of how users’ names and passwords are submitted to the
application.

If you’re interested in tools that break other challenge/response
mechanisms, check out kerbcrack from http://www.ntsecurity.nu/
and anwrap.pl from http://modelm.org/anwrap/. Although these ex-
amples are not directly related to web applications, they illustrate the
fallacy of relying on “one-hit wonder” algorithms or techniques for
your network’s security. This doesn’t imply that they are totally inse-
cure and useless, it just means that computer security is under continu-
ous escalation.

Identify Authorization Mechanism
In an application that enforces a tiered user model, try to log in with ac-
counts that have varying degrees of access. Compare what functions are
available to different user roles. Also, record which tokens change
based on user and role. Look at Table 1-2 for an example.

From this example, we have several attacks available to us.

Profiling
the

Application
Chapter 1: Web Hacking & Penetration Methodologies 11

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

User URL

John https://website/index.php?id=john&isadmin=false&menu=basic

Paul https://website/index.php?id=paul&isadmin=false&menu=basic

George https://website/index.php?id=george&isadmin=true&menu=full

Ringo https://website/index.php?id=ringo&isadmin=true&menu=full

Table 1-2. Identify Authorization Tokens

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:46 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



■ Log in as user John, then change the URL to

https://website/index.php?id=paul&isadmin=false&
menu=basic

If the request succeeds, then the application is vulnerable to
horizontal privilege escalation. A user can modify one token
(id) in order to impersonate a peer. If John changes the URL to

https://website/index.php?id=george&isadmin=false&
menu=basic

but doesn’t receive administrator rights, then user impersonation
still works, but the server tracks authorization in a parameter
other than id.

If John did receive administrator rights, then the application
performs the authorization check based on the username, is
vulnerable to horizontal and privilege escalation, and uses
poor session management. A poor application, indeed!

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=false&
menu=full

If the request succeeds, then the application is vulnerable to
vertical privilege escalation. A user can modify one token (menu)
in order to gain elevated rights. In this case, the application
does not perform any authorization checks after the user has
authenticated. It trusts that “menu=basic” will not be changed.

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=true&
menu=basic

If the request succeeds, then the application is vulnerable
to vertical privilege escalation. In this case, the application
performs an authorization check on the isadmin parameter
and provides functionality according to the value.

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=true&
menu=full

If the request succeeds, then the application is vulnerable to
vertical privilege escalation. The attack required manipulating
multiple tokens, but the application still failed to enforce
strong authorization checks.

12 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:46 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Chapter 1: Web Hacking & Penetration Methodologies 13

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Protect Authorization
Session management and its inherent authorization control is definitely
the greatest challenge to a web application. The best defense is to track
as many user attributes on the server as possible. For example, if the
isadmin and menu parameters from the previous example had been
tracked in a database and verified for each request, then the attacks
might not have succeeded. Of course, creating role-based access in a
custom database table increases application overhead and mainte-
nance; however, the security requirements of the application may re-
quire such a technique. After all, speedy processors and computer
hardware have become much more of a commodity. So, adding another
five or ten servers to a web farm in order to keep up with user demand
should have a better payoff than risking media headlines that include
the words “credit card numbers stolen.”

Identify All “Support” Files
Most of the time, support files can be identified, recorded, and ignored.
Some examples of these files include style sheets (.css) and IIS files that
are interpreted by specific ISAPI filters, such as .htr, .htx, .idc, and .idq.
These files usually contain layout information or other browser-specific
data, or contain a short list of application information. While there
might be a buffer overflow against the ISAPI filter itself (.ida, for exam-
ple), the files rarely contain values or data that can be exploited. Still,
they should be reviewed for the presence of developers’ comments.

On the other hand, support files such as global.asa and passwd.txt
contain authentication credentials for the application. One of the most
notorious support files is passwd.txt. As the name implies, it contains
usernames and passwords, resides in the web document root (usually
in / or /wwwboard), and its file suffix (txt) means that most web serv-
ers will happily let users view it in their web browser. Nikto will iden-
tify these common files, but only if they are in default locations.

Identify All Include Files
Include files are not usually explicitly called by the user’s browser. In-
stead, they are references by pages that the user visits. For example, a
login.asp file might call two include files: footer.inc and validateuser.inc.
A user only sees a request for login.asp; both of the include files are called
by a file on the web server and executed on the web server.

The easiest way to identify an include file is to search for the server
side include (SSI) tag. There are two types of SSI references:

■ Virtual The virtual SSI uses a path format that begins with
the web document root.

<!-- #include virtual = "/html/include/header.inc" -->

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



14 Part I: Hacking Techniques & Defenses

■ File The file SSI uses a path format that is relative to the
current directory.

<!-- #include file = "include/header.inc" -->

In both cases, the SSI will be visible in the HTML source code. On the
other hand, a language such as PHP references include files between
language tags. Therefore, you’ll have to try to find an /include directory
and guess some common file names. Also, be sure to check HTML com-
ments for programmer’s notes on the presence of include files.

Here is an example of an include file reference in PHP. Since it is be-
tween <? and ?> tags, the reference won’t be visible in the HTML source
available to the user.

<?php

include("$DOCUMENT_ROOT/include/db_connect.inc");

include ‘/include/db_connect.inc’;

include $db_connect_file;

?>

Include files often contain references to other include files, applica-
tion variables and constants, database connection strings, or SQL state-
ments. Basic input validation tests often produce errors that reveal
include files, or even internal errors give up these files:

Warning :  main( include /config.inc) [ function.main ]:

failed to create stream: No such file or directory in

/home/snews/documents/

include /page_headers.inc on line 10

Warning :  Supplied argument is not a valid MySQL-Link

resource in /usr/local/apache/include/db.inc on line 67

Protect Include Files
In Chapter 2, we’ll talk about countermeasures in detail, but some sim-
ple steps can protect the content of include files from prying eyes. Al-
ways use the language’s file suffix instead of .inc when naming include
files. The file’s function and execution will not be affected, but users will
be prevented from viewing the source code in the file. For example, a
database.inc file will not be parsed by the ASP filter and therefore every-
thing between <% and %> will be visible in the HTML source. By re-
naming the file to database.asp, then only HTML tags that lie outside of
the ASP tags will be visible.

<%

‘This line will not be visible if the file suffix is .asp

%>

<!-- This line will be visible regardless of the file suffix -->

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Chapter 1: Web Hacking & Penetration Methodologies 15

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

If you’re using Apache::ASP, then you can either rename the files to
.asp or modify the httpd.conf file to ensure their content is always inter-
preted as opposed to being sent in source format:

<FilesMatch “\.(asp|inc)$”>

SetHandler  perl-script

PerlModule  Apache::ASP

PerlHandler Apache::ASP

PerlSetVar  IncludesDir .;/home/httpd/asp/shared

PerlSetVar  StateDir /tmp/state

</FilesMatch>

The line in bold will match all files that end in .asp or .inc and parse
them with the proper module, as opposed to dumping their raw source
to a user’s browser.

The <FilesMatch> directive is an effective technique to control access
on a per-file basis. It uses the standard regex engine, so you could extend
the directive to match many custom extensions. Also, try the <Directory> or
<Location> directives to implement restrictions based on directory names.

The <FilesMatch> trick can also be used to prevent users from accessing backup
files that have been accidentally left in the web document root. For example, the
following syntax prevents users from downloading sensitive files such as data-
base.php.old, menu.pl.bak, scripts.tar.gz, or cgi-bin.tgz:
<FilesMatch “\.(old|bak|tar\.gz|tgz)$”>

Order Deny,Allow
Deny from All

</FilesMatch>

Enumerate All Forms
Forms are one of the most vulnerable parts of an application. Here, the ap-
plication requests data from an untrusted and potentially malicious
source: the user. When we discuss input validation attacks in Chapter 2,
we will demonstrate how any form data can be manipulated. For example,
even if a drop-down menu contains three pre-determined choices (such as
male, female, other), the application should not trust that it will receive one
of those three responses when the form is submitted. Hence, record every
parameter that the form uses because these will be used later on for input
validation. The obvious indicator of a form is the HTML <form> tag; how-
ever, the salient portions are the “input type” definitions:

<INPUT TYPE="hidden" NAME="sess_id" VALUE="">

<INPUT TYPE="hidden" NAME="postit" VALUE="TRUE">

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



<INPUT TYPE="hidden" NAME="insertinto" VALUE="1">

<INPUT TYPE="hidden" NAME="BoardID" VALUE="1">

<INPUT CLASS="button" TYPE="submit" NAME="new_topic"

VALUE="Thema posten">

<INPUT CLASS="button" TYPE="submit" NAME="preview_topic"

VALUE="Vorschau">

The preceding form snippet is from an application called APBoard.
The APBoard application handles multiple message boards, or “forums”
in APBoard parlance. The value of the hidden tag named insertinto
(meaning insert into the forum ID number of the value) can be changed to
enable a user to post to an arbitrary forum—even one to which access is
password-protected. ProXy (http://es-crew.de/) discovered this vulner-
ability. Also note that hidden tags track the session ID and other vari-
ables. A user can easily examine and modify hidden tags.

Form-based authentication is also a primary target for brute-force
password-guessing attacks. With just a few lines of Perl (or your lan-
guage of choice), you can craft a brute-force tool to test weak passwords
in form-based authentication. We’ll address this in more detail in later
chapters. For now, we need to finish profiling the application!

Enumerate All GET Parameters
Many applications track variables through URL parameters. The server
sets these parameters based on user permission level, a user’s action, a
session ID, or similar function. Like forms, GET parameters are a
high-risk area for input validation and SQL injection attacks.

Certain applications rely on parameter-driven techniques. For ex-
ample, the main page may be called main.asp?menu=viewprofile. Here,
a single ASP file generates different content based on the value of
“menu”: viewprofile, user, welcome, admin, debug, and so on.

Once you’ve enumerated the GET parameters, return to each page
and methodically delete each parameter from the URL. Observe how
the application reacts. This can point to the parameter’s function or its
relation to session tracking, or it can generate informational errors. Each
GET parameter should also be tested for input validation and SQL injec-
tion attacks.

Protect Parameters
If the application uses GET parameters to track important values, such
as session IDs or usernames, then you might consider using POST re-
quests more often. The parameters to a POST request will not show up
in a browser’s history file or bookmarks. However, be aware that POST
requests are consequently less reliable for users to bookmark. This does
not protect the parameters from being manipulated; it merely protects

16 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:48 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



them from casual “shoulder-surfing” or retrieval in a shared computing
environment (Internet cafés, for example).

Identify Vectors for Directory Attacks
Directory attacks take two forms: traversal and listing. A directory tra-
versal attack is an attempt to access files outside of the web document
root, or files within the document root that are otherwise restricted to the
user. The primary vector for a directory traversal attack is in the URL.
Therefore, this is where to focus checks for these types of vulnerabilities.

Applications that use templating techniques are prime candidates
for directory traversals. Such an application has file references within
the URL. All three of these examples are vulnerable to directory tra-
versal attacks that can access an arbitrary file:

■ http://website/cgi-bin/bb-hostsvc.sh?HOSTSVC=www,web
site,com.cpu

■ http://website/servlet/webacc?User.html=index

■ http://website/ultraboard.pl?action=PrintableTopic&Post=42

The typical attack merely involves replacing the problematic pa-
rameter with an arbitrary file:

■ ../../../../etc/passwd

■ ../../conf/httpd.conf

■ ../../../../boot.ini

■ ../../../../../winnt/repair/sam

At this point, we must emphasize the importance of the profiling the
platform step taken earlier in this chapter. It does you no good to at-
tempt to pull the /etc/passwd file from an IIS system vulnerable to di-
rectory traversal. Know the operating system and common locations for
sensitive files.

Slightly more advanced techniques require a trailing NULL (%00) character in or-
der to properly terminate the string. In the C programming language, a string is rep-
resented as an array of characters terminated by a NULL byte. So, while Perl might
happily accept “../../etc/passwd%00html” as a string value, the underlying operat-
ing system that handles file access sees it only as “../etc/passwd” and ignores the
portion after the %00. Try this to bypass scripts that check for file extensions or au-
tomatically append characters to file names. Also, see if %0a or %0d perform simi-
lar functions in your file parsing.

Chapter 1: Web Hacking & Penetration Methodologies 17

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:48 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



18 Part I: Hacking Techniques & Defenses

Identify Areas that Provide File Upload Capability
Not all applications provide or even require a file upload capability.
However, if you do encounter this functionality then be sure to note the
pages and parameters involved. File upload introduces several threats
to the application:

■ Malicious Content A user might be able to upload an
executable file. This could be a cmdasp.asp file that lets the
user run arbitrary commands on the IIS server. It could be a
PHP file that simply uses the passthru function to run arbitrary
commands on the web server. Alternately, the file may contain
a virus or Trojan horse that is intended to attack another user.

■ File Overwrite A user might be able to overwrite a system
file such as httpd.conf, /etc/passwd, or .htaccess in order to
create a back door into the server. Or, the user could overwrite
a file within the web document root such as login.pl in order to
gather usernames and passwords or perform some social
engineering trick.

■ Denial of Service A user might be able to upload excessively
large files that either cause the application to crash or fill up the
server’s disk space.

Identify Errors
There are two parts of this step. First, simply try to generate some errors
in the application. You can accomplish this by inserting garbage charac-
ters, deleting parameters, inserting punctuation (especially single
quotes), and doing anything you’re not “supposed” to be able to do
within the application.

Second, identify what types of errors are generated on the server
and how they are displayed to the user’s browser. Did it return the
server’s default HTTP 500 message? Is it a customized error page? Does
an error return a custom page, but an HTTP 200 message? What infor-
mation does the error contain? Can you identify path information?
What about internal variables or references to other files? Is the error re-
lated to SQL queries? In any of these cases, make a note of the error and
record any information it provides.

Protect Error Messages
Like the attack, this defense has two steps. Errors can be caught in two
locations. The first location is the web or application server. Most web
servers provide the capability to create custom response pages for

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



HTTP error response codes. Change the content of these pages so that it
does not include any server or application information. The second lo-
cation for error messages is within the application itself. Make sure that
the application has proper error-handling routines that default to a sim-
ple, innocuous error message.

Determine Which Pages Require SSL
Part of profiling the platform is to identify whether SSL is enabled and
determine what encryption algorithms are enabled. As you go through
the application, identify which pages are accessible by SSL. In some
cases, such as an online banking web site, the entire application should
be over SSL. In other cases, such as web-based e-mail, only the login and
profile pages might require SSL.

The next test is to replace all of the https:// references with http://
and see if the application still serves the page. Programmers tend to pro-
gram for the expected. In other words, the assumption might be that the
initial login page redirects from port 80 to port 443 and there the user will
happily stay. That is not always the case, so the server and application
should be designed to ensure that sensitive files are transmitted via SSL.

Table 1-3 summarizes the application profile process.

Chapter 1: Web Hacking & Penetration Methodologies 19

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Step Subsequent Steps and Potential Attacks

Harvest the web site Search for comments, e-mail addresses, SQL statements,
<script> tags, SSI, etc.

Enumerate the directory
structure and files

Obtain additional files by deduction. For example, look for
naming trends, additional ../inc, ../include, or ../scripts
directories.
Try appending .bak, .old, or .txt to these files in order to
view previous versions.

Identify authentication
mechanism

Target login prompts for brute-force attacks against trivial
passwords. Record how many invalid passwords can be
entered before an account is locked. How long is it locked?
What is the password reminder mechanism? Can the
reminder be attacked or spoofed?

Identify authorization
mechanism

Record relevant cookies, other headers, GET and POST
parameters, and what functions are available to different
users. How many tiers of users exist?
This will be the focus of horizontal and vertical privilege
escalation attacks.

Identify all “support”
files

May contain developer comments, but their content does
not usually introduce any security vulnerability.
On the other hand, validating that certain file extensions
such as .htr, .ida, and .idq are in use definitely identifies
potential vulnerabilities on an IIS server.

Table 1-3. Application Profile Checklist

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



20 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Step Subsequent Steps and Potential Attacks

Identify all include files
.inc
.inc.php
.js
config.inc
database.inc
db_connect.inc
footer.inc
global.asa
header.inc

Search each file for comments, variables, SQL statements,
database connection strings, and passwords.
Try appending .bak, .old, or .txt to these files in order to
view previous versions.

Enumerate all forms
type=hidden
type=password

Brute-force authentication pages.
Brute-force “random” values.
Test input validation.
Test SQL injection.
Test error handling.

Enumerate all GET
parameters
?name1=value1&…

Test input validation.
Test SQL injection.
Test session replay.
Test error handling.

Enumerate the effect of
absent GET parameters
?name1=value1&…

Delete combinations of parameters to identify which
values are related to session management, authentication,
authorization, and application functionality.

Identify vectors for
directory traversal
attacks

Search URL parameters:
?something.html
?index=english.html
?document=filename
?file=name
?load=filename
?image=filename

Identify areas that
provide file upload
capability

Test for script execution and directory traversal attacks.

Identify errors Try basic input validation strings:
‘
--
%00
(nothing, delete the parameter)
Record useful information:
HTTP response message (200, 401, 403, 404, 500, 501)
Full path information
File names (and include files)
Variables
SQL syntax

Determine which
pages require SSL

Can the same URL be accessed with HTTP instead?
If a site uses frames, are all of the frames accessed
via SSL?

Table 1-3. Application Profile Checklist (continued)

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



SUMMARY
In order to fully vet the security of an application, it must first be fully
profiled. This basically involves gathering as much information about
the platform (operating system, server, database) and the application.
Web application security does not necessarily require a web program-
mer, but it does require a systematic approach and understanding of the
underlying technology. As we will demonstrate in later chapters, it is
easy to generate an error by inserting a tick (‘) into a URL parameter, but
a good profile of the application and knowledge of SQL can turn an in-
nocuous error into a severe exploit. Once we’ve donned the deerstalker
cap, we’re ready to move on to attacking the application.

Chapter 1: Web Hacking & Penetration Methodologies 21

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Sum
m

ary

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite  Default screen


	In This Chapter:
	Threats and Vulnerabilities
	Profiling the Platform
	Profiling the Application
	Summary




